Working Memory and Transcranial-Alternating Current Stimulation-State of the Art: Findings, Missing, and Challenges
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
35237214
PubMed Central
PMC8882605
DOI
10.3389/fpsyg.2022.822545
Knihovny.cz E-zdroje
- Klíčová slova
- brain oscillations, cognitive deficits, non-invasive brain stimulation, transcranial alternating-current stimulation, working memory,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Working memory (WM) is a cognitive process that involves maintaining and manipulating information for a short period of time. WM is central to many cognitive processes and declines rapidly with age. Deficits in WM are seen in older adults and in patients with dementia, schizophrenia, major depression, mild cognitive impairment, Alzheimer's disease, etc. The frontal, parietal, and occipital cortices are significantly involved in WM processing and all brain oscillations are implicated in tackling WM tasks, particularly theta and gamma bands. The theta/gamma neural code hypothesis assumes that retained memory items are recorded via theta-nested gamma cycles. Neuronal oscillations can be manipulated by sensory, invasive- and non-invasive brain stimulations. Transcranial alternating-current stimulation (tACS) and repetitive transcranial magnetic stimulation (rTMS) are frequency-tuned non-invasive brain stimulation (NIBS) techniques that have been used to entrain endogenous oscillations in a frequency-specific manner. Compared to rTMS, tACS demonstrates superior cost, tolerability, portability, and safety profile, making it an attractive potential tool for improving cognitive performance. Although cognitive research with tACS is still in its infancy compared to rTMS, a number of studies have shown a promising WM enhancement effect, especially in the elderly and patients with cognitive deficits. This review focuses on the various methods and outcomes of tACS on WM in healthy and unhealthy human adults and highlights the established findings, unknowns, challenges, and perspectives important for translating laboratory tACS into realistic clinical settings. This will allow researchers to identify gaps in the literature and develop frequency-tuned tACS protocols with promising safety and efficacy outcomes. Therefore, research efforts in this direction should help to consider frequency-tuned tACS as a non-pharmacological tool of cognitive rehabilitation in physiological aging and patients with cognitive deficits.
Zobrazit více v PubMed
Abellaneda-Pérez K., Vaqué-Alcázar L., Perellón-Alfonso R., Bargalló N., Kuo M.-F., Pascual-Leone A., et al. (2020). Differential tDCS and tACS Effects on Working Memory-Related Neural Activity and Resting-State Connectivity. Front. Neurosci. 13:1440. 10.3389/FNINS.2019.01440 PubMed DOI PMC
Adrian E. D., Matthews B. H. C. (1934). The interpretation of potential waves in the cortex. J. Physiol. 81 440–471. 10.1113/jphysiol.1934.sp003147 PubMed DOI PMC
Ahn S., Mellin J. M., Alagapan S., Alexander M. L., Gilmore J. H., Jarskog L. F., et al. (2019). Targeting reduced neural oscillations in patients with schizophrenia by transcranial alternating current stimulation. Neuroimage 186 126–136. 10.1016/J.NEUROIMAGE.2018.10.056 PubMed DOI PMC
Alekseichuk I., Pabel S. C., Antal A., Paulus W. (2017). Intrahemispheric theta rhythm desynchronization impairs working memory. Restor. Neurol. Neurosci. 35 147–158. 10.3233/RNN-160714 PubMed DOI
Alekseichuk I., Turi Z., Amador de Lara G., Antal A., Paulus W. (2016). Spatial Working Memory in Humans Depends on Theta and High Gamma Synchronization in the Prefrontal Cortex. Curr. Biol. 26 1513–1521. 10.1016/j.cub.2016.04.035 PubMed DOI
Alexander M. L., Alagapan S., Lugo C. E., Mellin J. M., Lustenberger C., Rubinow D. R., et al. (2019). Double-blind, randomized pilot clinical trial targeting alpha oscillations with transcranial alternating current stimulation (tACS) for the treatment of major depressive disorder (MDD). Transl. Psychiatry 9 1–12. 10.1038/s41398-019-0439-0 PubMed DOI PMC
Ali M. M., Sellers K. K., Fröhlich F. (2013). Transcranial alternating current stimulation modulates large-scale cortical network activity by network resonance. J. Neurosci. 33 11262–11275. 10.1523/JNEUROSCI.5867-12.2013 PubMed DOI PMC
Amin Z., Epperson C. N., Constable R. T., Canli T. (2006). Effects of estrogen variation on neural correlates of emotional response inhibition. Neuroimage 32 457–464. 10.1016/J.NEUROIMAGE.2006.03.013 PubMed DOI
Amzica F., Steriade M. (1998). Electrophysiological correlates of sleep delta waves. Electroencephalogr. Clin. Neurophysiol. 107 69–83. 10.1016/S0013-4694(98)00051-0 PubMed DOI
Andersen R. A., Cui H. (2009). Intention, Action Planning, and Decision Making in Parietal-Frontal Circuits. Neuron 63 568–583. 10.1016/J.NEURON.2009.08.028 PubMed DOI
Antal A., Herrmann C. S. (2016). Transcranial Alternating Current and Random Noise Stimulation: possible Mechanisms. Neural Plast. 2016:3616807. 10.1155/2016/3616807 PubMed DOI PMC
Arciniega H., Gözenman F., Jones K. T., Stephens J. A., Berryhill M. E. (2018). Frontoparietal tDCS Benefits Visual Working Memory in Older Adults With Low Working Memory Capacity. Front. Aging Neurosci. 10:57. 10.3389/FNAGI.2018.00057 PubMed DOI PMC
Axmacher N., Henseler M. M., Jensen O., Weinreich I., Elger C. E., Fell J. (2010). Cross-frequency coupling supports multi-item working memory in the human hippocampus. Proc. Natl. Acad. Sci. U. S. A. 107 3228–3233. 10.1073/pnas.0911531107 PubMed DOI PMC
Baars B. J., Franklin S. (2003). How conscious experience and working memory interact. Trends Cogn. Sci. 7 166–172. 10.1016/S1364-6613(03)00056-1 PubMed DOI
Baddeley A. (2000). The episodic buffer: a new component of working memory? Trends Cogn. Sci. 4 417–423. 10.1016/S1364-6613(00)01538-2 PubMed DOI
Baddeley A. (2003). Working memory: looking back and looking forward. Nat. Rev. Neurosci. 4 829–839. 10.1038/nrn1201 PubMed DOI
Baddeley A. (2012). Working Memory: theories, Models, and Controversies. Annu. Rev. Psychol. 63 1–29. 10.1146/annurev-psych-120710-100422 PubMed DOI
Baddeley A. D., Bressi S., Della Sala S., Logie R., Spinnler H. (1991). The decline of working memory in alzheimer’s disease: a longitudinal study. Brain 114 2521–2542. 10.1093/brain/114.6.2521 PubMed DOI
Baddeley A. D., Hitch G. (1974). Working memory. Psychol. Learn. Motiv. Adv. Res. Theory 8 47–89. 10.1016/S0079-7421(08)60452-1 DOI
Bahramisharif A., Jensen O., Jacobs J., Lisman J. (2018). Serial representation of items during working memory maintenance at letter-selective cortical sites. PLoS Biol. 16:e2003805. 10.1371/journal.pbio.2003805 PubMed DOI PMC
Balconi M. (2013). Dorsolateral prefrontal cortex, working memory and episodic memory processes: insight through transcranial magnetic stimulation techniques. Neurosci. Bull. 29 381–389. 10.1007/S12264-013-1309-Z PubMed DOI PMC
Barch D. M., Sheline Y. I., Csernansky J. G., Snyder A. Z. (2003). Working memory and prefrontal cortex dysfunction: specificity to schizophrenia compared with major depression. Biol. Psychiatry 53 376–384. 10.1016/S0006-3223(02)01674-8 PubMed DOI
Barrouillet P., Bernardin S., Camos V. (2004). Time Constraints and Resource Sharing in Adults’ Working Memory Spans. J. Exp. Psychol. Gen. 133 83–100. 10.1037/0096-3445.133.1.83 PubMed DOI
Barrouillet P., Gavens N., Vergauwe E., Gaillard V., Camos V. (2009). Working Memory Span Development: a Time-Based Resource-Sharing Model Account. Dev. Psychol. 45 477–490. 10.1037/A0014615 PubMed DOI
Bender M., Romei V., Sauseng P. (2019). Slow Theta tACS of the Right Parietal Cortex Enhances Contralateral Visual Working Memory Capacity. Brain Topogr. 32 477–481. 10.1007/s10548-019-00702-2 PubMed DOI
Benussi A., Cantoni V., Cotelli M. S., Cotelli M., Brattini C., Datta A., et al. (2021). Exposure to gamma tACS in Alzheimer’s disease: a randomized, double-blind, sham-controlled, crossover, pilot study. Brain Stimul. Basic Transl. Clin. Res. Neuromodulation 14 531–540. 10.1016/J.BRS.2021.03.007 PubMed DOI
Berger B., Griesmayr B., Minarik T., Biel A. L., Pinal D., Sterr A., et al. (2019). Dynamic regulation of interregional cortical communication by slow brain oscillations during working memory. Nat. Commun. 101:4242. 10.1038/s41467-019-12057-0 PubMed DOI PMC
Berman K. F., Schmidt P. J., Rubinow D. R., Danaceau M. A., Van Horn J. D., Esposito G., et al. (1997). Modulation of cognition-specific cortical activity by gonadal steroids: a positron-emission tomography study?in?women. Proc. Natl. Acad. Sci. U. S. A. 94 8836–8841. 10.1073/PNAS.94.16.8836 PubMed DOI PMC
Bhatti G. K., Reddy A. P., Reddy P. H., Bhatti J. S. (2020). Lifestyle Modifications and Nutritional Interventions in Aging-Associated Cognitive Decline and Alzheimer’s Disease. Front. Aging Neurosci. 11:369. 10.3389/FNAGI.2019.00369 PubMed DOI PMC
Bland N. S., Sale M. V. (2019). Current challenges: the ups and downs of tACS. Exp. Brain Res. 237 3071–3088. 10.1007/s00221-019-05666-0 PubMed DOI
Bleichner M. G., Debener S. (2017). Concealed, Unobtrusive Ear-Centered EEG Acquisition: cEEGrids for Transparent EEG. Front. Hum. Neurosci. 11:163. 10.3389/FNHUM.2017.00163 PubMed DOI PMC
Boes A. D., Kelly M. S., Trapp N. T., Stern A. P., Press D. Z., Pascual-Leone A. (2018). Noninvasive Brain Stimulation: challenges and Opportunities for a New Clinical Specialty. J. Neuropsychiatry Clin. Neurosci. 30 173–179. 10.1176/APPI.NEUROPSYCH.17110262 PubMed DOI
Bogdanov M., Schwabe L. (2016). Transcranial stimulation of the dorsolateral prefrontal cortex prevents stress-induced working memory deficits. J. Neurosci. 36 1429–1437. 10.1523/JNEUROSCI.3687-15.2016 PubMed DOI PMC
Bonnefond M., Jensen O. (2012). Alpha oscillations serve to protect working memory maintenance against anticipated distracters. Curr. Biol. 22 1969–1974. 10.1016/J.CUB.2012.08.029 PubMed DOI
Borchers S., Himmelbach M., Logothetis N., Karnath H. O. (2012). Direct electrical stimulation of human cortex-the gold standard for mapping brain functions? Nat. Rev. Neurosci. 13 63–70. 10.1038/nrn3140 PubMed DOI
Borghini G., Candini M., Filannino C., Hussain M., Walsh V., Romei V., et al. (2018). Alpha oscillations are causally linked to inhibitory abilities in ageing. J. Neurosci. 38 4418–4429. 10.1523/JNEUROSCI.1285-17.2018 PubMed DOI PMC
Bramson B., den Ouden H. E. M., Toni I., Roelofs K. (2020). Improving emotional-action control by targeting long-range phase-amplitude neuronal coupling. Elife 9 1–19. 10.7554/ELIFE.59600 PubMed DOI PMC
Bréchet L., Yu W., Biagi M. C., Ruffini G., Gagnon M., Manor B., et al. (2021). Patient-Tailored, Home-Based Non-invasive Brain Stimulation for Memory Deficits in Dementia Due to Alzheimer’s Disease. Front. Neurol. 12:598135. 10.3389/fneur.2021.598135 PubMed DOI PMC
Bruns A., Eckhorn R. (2004). Task-related coupling from high- to low-frequency signals among visual cortical areas in human subdural recordings. Int. J. Psychophysiol. 51 97–116. 10.1016/J.IJPSYCHO.2003.07.001 PubMed DOI
Bueno-Lopez A., Eggert T., Dorn H., Danker-Hopfe H. (2019). Slow oscillatory transcranial direct current stimulation (so-tDCS) during slow wave sleep has no effects on declarative memory in healthy young subjects. Brain Stimul. 12 948–958. 10.1016/j.brs.2019.02.012 PubMed DOI
Canolty R. T., Edwards E., Dalal S. S., Soltani M., Nagarajan S. S., Kirsch H. E., et al. (2006). High gamma power is phase-locked to theta oscillations in human neocortex. Science 313 1626–1628. 10.1126/science.1128115 PubMed DOI PMC
Cebolla A. M., Cheron G. (2019). Understanding neural oscillations in the human brain: from movement to consciousness and vice versa. Front. Psychol. 10:1930. 10.3389/fpsyg.2019.01930 PubMed DOI PMC
Chai W. J., Abd Hamid A. I., Abdullah J. M. (2018). Working memory from the psychological and neurosciences perspectives: a review. Front. Psychol. 9:401. 10.3389/fpsyg.2018.00401 PubMed DOI PMC
Chander B. S., Witkowski M., Braun C., Robinson S. E., Born J., Cohen L. G., et al. (2016). tACS Phase Locking of Frontal Midline Theta Oscillations Disrupts Working Memory Performance. Front. Cell. Neurosci. 10:120. 10.3389/fncel.2016.00120 PubMed DOI PMC
Chang C.-C., Chia-Yu Huang C., Chung Y.-A., Jamie Im J., Lin Y.-Y., Ma C.-C., et al. (2021). Online Left-Hemispheric In-Phase Frontoparietal Theta tACS for the Treatment of Negative Symptoms of Schizophrenia. J. Pers. Med. 11:1114. 10.3390/JPM11111114 PubMed DOI PMC
Cowan N. (2008). What are the differences between long-term, short-term, and working memory? Prog. Brain Res. 169:323. 10.1016/S0079-6123(07)00020-9 PubMed DOI PMC
Dallmer-Zerbe I., Popp F., Lam A. P., Philipsen A., Herrmann C. S. (2020). Transcranial Alternating Current Stimulation (tACS) as a Tool to Modulate P300 Amplitude in Attention Deficit Hyperactivity Disorder (ADHD): preliminary Findings. Brain Topogr. 33 191–207. 10.1007/s10548-020-00752-x PubMed DOI PMC
Daneman M., Carpenter P. A. (1980). Individual differences in working memory and reading. J. Verbal Learning Verbal Behav. 19 450–466. 10.1016/S0022-5371(80)90312-6 DOI
Dayan E., Censor N., Buch E. R., Sandrini M., Cohen L. G. (2013). Noninvasive brain stimulation: from physiology to network dynamics and back. Nat. Neurosci. 16 838–844. 10.1038/nn.3422 PubMed DOI PMC
Debener S., Emkes R., De Vos M., Bleichner M. (2015). Unobtrusive ambulatory EEG using a smartphone and flexible printed electrodes around the ear. Sci. Rep. 5:16743. 10.1038/SREP16743 PubMed DOI PMC
Deng Z.-D., Lisanby S. H., Peterchev A. V. (2013). Electric field depth–focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs. Brain Stimul. 6 1–13. 10.1016/J.BRS.2012.02.005 PubMed DOI PMC
D’Esposito M. (2007). From cognitive to neural models of working memory. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362 761–772. 10.1098/rstb.2007.2086 PubMed DOI PMC
D’Esposito M., Postle B. R. (2015). The Cognitive Neuroscience of Working Memory. Annu. Rev. Psychol. 66 115–142. 10.1146/ANNUREV-PSYCH-010814-015031 PubMed DOI PMC
Drevets W. C. (2000). Neuroimaging studies of mood disorders. Biol. Psychiatry 48 813–829. 10.1016/S0006-3223(00)01020-9 PubMed DOI
Dunning D. L., Westgate B., Adlam A. L. R. (2016). A meta-analysis of working memory impairments in survivors of moderate-to-severe traumatic brain injury. Neuropsychology 30 811–819. 10.1037/neu0000285 PubMed DOI
Elyamany O., Leicht G., Herrmann C. S., Mulert C. (2021). Transcranial alternating current stimulation (tACS): from basic mechanisms towards first applications in psychiatry. Eur. Arch. Psychiatry Clin. Neurosci. 271 135–156. 10.1007/S00406-020-01209-9 PubMed DOI PMC
Engle R. W. (2002). Working memory capacity as executive attention. Curr. Dir. Psychol. Sci. 11 19–23. 10.1111/1467-8721.00160 DOI
Fertonani A., Pirulli C., Miniussi C. (2011). Random Noise Stimulation Improves Neuroplasticity in Perceptual Learning. J. Neurosci. 31 15416–15423. 10.1523/JNEUROSCI.2002-11.2011 PubMed DOI PMC
Feurra M., Galli G., Pavone E. F., Rossi A., Rossi S. (2016). Frequency-specific insight into short-term memory capacity. J. Neurophysiol. 116 153–158. 10.1152/jn.01080.2015 PubMed DOI PMC
Force R. B., Riddle J., Jarskog L. F., Fröhlich F. (2021). A case study of the feasibility of weekly tACS for the treatment of auditory hallucinations in schizophrenia. Brain Stimul. Basic Transl. Clin. Res. Neuromodulation 14 361–363. 10.1016/J.BRS.2021.01.014 PubMed DOI PMC
Fregni F., Simon D. K., Wu A., Pascual-Leone A. (2005). Non-invasive brain stimulation for Parkinson’s disease: a systematic review and meta-analysis of the literature. J. Neurol. Neurosurg. Psychiatry 76 1614–1623. 10.1136/JNNP.2005.069849 PubMed DOI PMC
Fries P., Reynolds J. H., Rorie A. E., Desimone R. (2001). Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291 1560–1563. 10.1126/science.1055465 PubMed DOI
Fröhlich F., Sellers K. K., Cordle A. L. (2015). Targeting the neurophysiology of cognitive systems with transcranial alternating current stimulation (tACS). Expert Rev. Neurother. 15:145. 10.1586/14737175.2015.992782 PubMed DOI PMC
Gevins A., Smith M. E., McEvoy L., Yu D. (1997). High-resolution EEG mapping of cortical activation related to working memory: effects of task difficulty, type of processing, and practice. Cereb. Cortex 7 374–385. 10.1093/cercor/7.4.374 PubMed DOI
Goldsworthy M. R., Rogasch N. C., Ballinger S., Graetz L., Van Dam J. M., Harris R., et al. (2020). Age-related decline of neuroplasticity to intermittent theta burst stimulation of the lateral prefrontal cortex and its relationship with late-life memory performance. Clin. Neurophysiol. 131 2181–2191. 10.1016/J.CLINPH.2020.06.015 PubMed DOI
Goldthorpe R. A., Rapley J. M., Violante I. R. (2020). A Systematic Review of Non-invasive Brain Stimulation Applications to Memory in Healthy Aging. Front. Neurol. 11:575075. 10.3389/FNEUR.2020.575075 PubMed DOI PMC
Gonzalez-Perez M., Wakui E., Thoma V., Nitsche M. A., Rivolta D. (2019). Transcranial alternating current stimulation (tACS) at 40?Hz enhances face and object perception. Neuropsychologia 135:107237. 10.1016/J.NEUROPSYCHOLOGIA.2019.107237 PubMed DOI
Gross J., Schmitz F., Schnitzler I., Kessler K., Shapiro K., Hommel B., et al. (2004). Modulation of long-range neural synchrony reflects temporal limitations of visual attention in humans. Proc. Natl. Acad. Sci. U. S. A. 101 13050–13055. 10.1073/pnas.0404944101 PubMed DOI PMC
Grot S., Légaré V. P., Lipp O., Soulières I., Dolcos F., Luck D. (2017). Abnormal prefrontal and parietal activity linked to deficient active binding in working memory in schizophrenia. Schizophr. Res. 188 68–74. 10.1016/j.schres.2017.01.021 PubMed DOI
Guo X., Li Z., Zhang L., Liu Q. (2021). Modulation of Visual Working Memory Performance via Different Theta Frequency Stimulations. Brain Sci. 11:1358. 10.3390/BRAINSCI11101358 PubMed DOI PMC
Haller N., Hasan A., Padberg F., Brunelin J., da Costa Lane Valiengo L., Palm U. (2020a). Gamma transcranial alternating current stimulation in patients with negative symptoms in schizophrenia: a case series. Neurophysiol. Clin. 50 301–304. 10.1016/J.NEUCLI.2020.06.004 PubMed DOI
Haller N., Senner F., Brunoni A. R., Padberg F., Palm U. (2020b). Gamma transcranial alternating current stimulation improves mood and cognition in patients with major depression. J. Psychiatr. Res. 130 31–34. 10.1016/J.JPSYCHIRES.2020.07.009 PubMed DOI
Hanslmayr S., Axmacher N., Inman C. S. (2019). Modulating Human Memory via Entrainment of Brain Oscillations. Trends Neurosci. 42 485–499. 10.1016/J.TINS.2019.04.004 PubMed DOI
Haque Z. Z., Samandra R., Mansouri F. A. (2021). Neural substrate and underlying mechanisms of working memory: insights from brain stimulation studies. J. Neurophysiol. 126 2038–2053. 10.1152/JN.00041.2021/ASSET/IMAGES/MEDIUM/JN-00041-2021R01.PNG PubMed DOI
Harmony T., Fernández T., Silva J., Bernal J., Díaz-Comas L., Reyes A., et al. (1996). EEG delta activity: an indicator of attention to internal processing during performance of mental tasks. Int. J. Psychophysiol. 24 161–171. 10.1016/S0167-8760(96)00053-0 PubMed DOI
Hedden T., Gabrieli J. D. E. (2004). Insights into the ageing mind: a view from cognitive neuroscience. Nat. Rev. Neurosci. 5 87–96. 10.1038/nrn1323 PubMed DOI
Herman P. A., Lundqvist M., Lansner A. (2013). Nested theta to gamma oscillations and precise spatiotemporal firing during memory retrieval in a simulated attractor network. Brain Res. 1536 68–87. 10.1016/j.brainres.2013.08.002 PubMed DOI
Hermiller M. S., Chen Y. F., Parrish T. B., Voss J. L. (2020). Evidence for Immediate Enhancement of Hippocampal Memory Encoding by Network-Targeted Theta-Burst Stimulation during Concurrent fMRI. J. Neurosci. 40 7155–7168. 10.1523/JNEUROSCI.0486-20.2020 PubMed DOI PMC
Herrmann C. S., Demiralp T. (2005). Human EEG gamma oscillations in neuropsychiatric disorders. Clin. Neurophysiol. 116 2719–2733. 10.1016/J.CLINPH.2005.07.007 PubMed DOI
Hong L. E., Buchanan R. W., Thaker G. K., Shepard P. D., Summerfelt A. (2008). Beta (∼16 Hz) frequency neural oscillations mediate auditory sensory gating in humans. Psychophysiology 45 197–204. 10.1111/j.1469-8986.2007.00624.x PubMed DOI
Honkanen R., Rouhinen S., Wang S. H., Palva J. M., Palva S. (2015). Gamma oscillations underlie the maintenance of feature-specific information and the contents of visual working memory. Cereb. Cortex 25 3788–3801. 10.1093/CERCOR/BHU263 PubMed DOI
Hoy K. E., Bailey N., Arnold S., Windsor K., John J., Daskalakis Z. J., et al. (2015). The effect of γ-tACS on working memory performance in healthy controls. Brain Cogn. 101 51–56. 10.1016/j.bandc.2015.11.002 PubMed DOI
Hoy K. E., Whitty D., Bailey N., Fitzgerald P. B. (2016). Preliminary investigation of the effects of γ -tACS on working memory in schizophrenia. J. Neural Transm. 123 1205–1212. 10.1007/S00702-016-1554-1 PubMed DOI
Huang Y., Shen L., Huang J., Xu X., Wang Y., Jin H. (2021). Efficacy and Safety of tDCS and tACS in Treatment of Major Depressive Disorder: a Randomized, Double-Blind, Factorial Placebo-Controlled Study Design. Neuropsychiatr. Dis. Treat. 17:1459. 10.2147/NDT.S295945 PubMed DOI PMC
Inghilleri M., Conte A., Currà A., Frasca V., Lorenzano C., Berardelli A. (2004). Ovarian hormones and cortical excitability. An rTMS study in humans. Clin. Neurophysiol. 115 1063–1068. 10.1016/J.CLINPH.2003.12.003 PubMed DOI
Jaušovec N., Jaušovec K. (2014). Increasing working memory capacity with theta transcranial alternating current stimulation (tACS). Biol. Psychol. 96 42–47. 10.1016/j.biopsycho.2013.11.006 PubMed DOI
Jaušovec N., Jaušovec K., Pahor A. (2014). The influence of theta transcranial alternating current stimulation (tACS) on working memory storage and processing functions. Acta Psychol. 146 1–6. 10.1016/j.actpsy.2013.11.011 PubMed DOI
Jeffries S., Everatt J. (2004). Working memory: its role in dyslexia and other specific learning difficulties. Dyslexia 10 196–214. 10.1002/DYS.278 PubMed DOI
Jensen O., Colgin L. L. (2007). Cross-frequency coupling between neuronal oscillations. Trends Cogn. Sci. 11 267–269. 10.1016/j.tics.2007.05.003 PubMed DOI
Jensen O., Lisman J. E. (1996). Novel lists of 7±2 known items can be reliably stored in an oscillatory short-term memory network: interaction with long-term memory. Learn. Mem. 3 257–263. 10.1101/lm.3.2-3.257 PubMed DOI
Jensen O., Spaak E., Zumer J. M. (2019). ““Human Brain Oscillations: from Physiological Mechanisms to Analysis and Cognition,” in Magnetoencephalography, eds Supek S., Aine C. (Cham: Springer International Publishing; ), 1–46. 10.1007/978-3-319-62657-4_17-1 DOI
Jirsa V., Müller V. (2013). Cross-frequency coupling in real and virtual brain networks. Front. Comput. Neurosci. 7:78. 10.3389/fncom.2013.00078 PubMed DOI PMC
Jones K. T., Arciniega H., Berryhill M. E. (2019). Replacing tDCS with theta tACS provides selective, but not general WM benefits. Brain Res. 1720:146324. 10.1016/J.BRAINRES.2019.146324 PubMed DOI
Kallel L., Mondino M., Brunelin J. (2016). Effects of theta-rhythm transcranial alternating current stimulation (4.5 Hz-tACS) in patients with clozapine-resistant negative symptoms of schizophrenia: a case series. J. Neural Transm. 123 1213–1217. 10.1007/S00702-016-1574-X PubMed DOI
Kehler L., Francisco C. O., Uehara M. A., Moussavi Z. (2020). “The effect of transcranial alternating current stimulation (tACS) on cognitive function in older adults with dementia,” in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, (Montreal, QC, Canada: Institute of Electrical and Electronics Engineers Inc; ), 3649–3653. 10.1109/EMBC44109.2020.9175903 PubMed DOI
Kim C., Kroger J. K., Calhoun V. D., Clark V. P. (2015). The role of the frontopolar cortex in manipulation of integrated information in working memory. Neurosci. Lett. 595 25–29. 10.1016/j.neulet.2015.03.044 PubMed DOI PMC
Kim J., Kim H., Jeong H., Roh D., Kim D. H. (2021). tACS as a promising therapeutic option for improving cognitive function in mild cognitive impairment: a direct comparison between tACS and tDCS. J. Psychiatr. Res. 141 248–256. 10.1016/J.JPSYCHIRES.2021.07.012 PubMed DOI
Kleinert M. L., Szymanski C., Müller V. (2017). Frequency-unspecific effects of θ-tACS related to a visuospatial working memory task. Front. Hum. Neurosci. 11:367. 10.3389/fnhum.2017.00367 PubMed DOI PMC
Klimesch W. (1997). EEG-alpha rhythms and memory processes. Int. J. Psychophysiol. 26 319–340. 10.1016/S0167-8760(97)00773-3 PubMed DOI
Klimesch W., Freunberger R., Sauseng P. (2010). Oscillatory mechanisms of process binding in memory. Neurosci. Biobehav. Rev. 34 1002–1014. 10.1016/J.NEUBIOREV.2009.10.004 PubMed DOI
Klimesch W., Sauseng P., Hanslmayr S. (2007). EEG alpha oscillations: the inhibition-timing hypothesis. Brain Res. Rev. 53 63–88. 10.1016/j.brainresrev.2006.06.003 PubMed DOI
Klimke A., Nitsche M. A., Maurer K., Voss U. (2016). Case Report: successful Treatment of Therapy-Resistant OCD With Application of Transcranial Alternating Current Stimulation (tACS). Brain Stimul. Basic Transl. Clin. Res. Neuromodulation 9 463–465. 10.1016/J.BRS.2016.03.005 PubMed DOI
Knyazev G. G. (2007). Motivation, emotion, and their inhibitory control mirrored in brain oscillations. Neurosci. Biobehav. Rev. 31 377–395. 10.1016/J.NEUBIOREV.2006.10.004 PubMed DOI
Kopell N., Ermentrout G. B., Whittington M. A., Traub R. D. (2000). Gamma rhythms and beta rhythms have different synchronization properties. Proc. Natl. Acad. Sci. U. S. A. 97 1867–1872. 10.1073/pnas.97.4.1867 PubMed DOI PMC
Kramer A. F., Erickson K. I. (2007). Capitalizing on cortical plasticity: influence of physical activity on cognition and brain function. Trends Cogn. Sci. 11 342–348. 10.1016/J.TICS.2007.06.009 PubMed DOI
Kuo M.-F., Nitsche M. A. (2012). Effects of Transcranial Electrical Stimulation on Cognition. Clin. EEG Neurosci. 43 192–199. 10.1177/1550059412444975 PubMed DOI
Lakatos P., Shah A. S., Knuth K. H., Ulbert I., Karmos G., Schroeder C. E. (2005). An Oscillatory Hierarchy Controlling Neuronal Excitability and Stimulus Processing in the Auditory Cortex. J. Neurophysiol. 94 1904–1911. 10.1152/JN.00263.2005 PubMed DOI
Lara G. A. D., Alekseichuk I., Turi Z., Lehr A., Antal A., Paulus W. (2018). Perturbation of theta-gamma coupling at the temporal lobe hinders verbal declarative memory. Brain Stimul. 11 509–517. 10.1016/J.BRS.2017.12.007 PubMed DOI
Le T. M., Borghi J. A., Kujawa A. J., Klein D. N., Leung H. C. (2017). Alterations in visual cortical activation and connectivity with prefrontal cortex during working memory updating in major depressive disorder. NeuroImage Clin. 14 43–53. 10.1016/j.nicl.2017.01.004 PubMed DOI PMC
Lee H., Fell J., Axmacher N. (2013). Electrical engram: how deep brain stimulation affects memory. Trends Cogn. Sci. 17 574–584. 10.1016/j.tics.2013.09.002 PubMed DOI
Lisman J. E., Idiart M. A. P. (1995). Storage of 7 ± 2 short-term memories in oscillatory subcycles. Science 267 1512–1515. 10.1126/science.7878473 PubMed DOI
Lisman J. E., Jensen O. (2013). The Theta-Gamma Neural Code. Neuron 77 1002–1016. 10.1016/j.neuron.2013.03.007 PubMed DOI PMC
Liu W., Leng Y. S., Zou X. H., Cheng Z. Q., Yang W., Li B. J. (2017). Affective processing in non-invasive brain stimulation over prefrontal cortex. Front. Hum. Neurosci. 11:439. 10.3389/fnhum.2017.00439 PubMed DOI PMC
Logie R. H. (2011). The Functional Organization and Capacity Limits of Working Memory. Curr. Dir. Psychol. Sci. 20 240–245. 10.1177/0963721411415340 DOI
Maehler C., Schuchardt K. (2016). Working memory in children with specific learning disorders and/or attention deficits. Learn. Individ. Differ. 49 341–347. 10.1016/j.lindif.2016.05.007 DOI
Markram H., Lübke J., Frotscher M., Sakmann B. (1997). Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275 213–215. 10.1126/science.275.5297.213 PubMed DOI
Marshall L., Helgadóttir H., Mölle M., Born J. (2006). Boosting slow oscillations during sleep potentiates memory. Nature 444 610–613. 10.1038/nature05278 PubMed DOI
Meiron O., Lavidor M. (2014). Prefrontal oscillatory stimulation modulates access to cognitive control references in retrospective metacognitive commentary. Clin. Neurophysiol. 125 77–82. 10.1016/J.CLINPH.2013.06.013 PubMed DOI
Mellin J. M., Alagapan S., Lustenberger C., Lugo C. E., Alexander M. L., Gilmore J. H., et al. (2018). Randomized trial of transcranial alternating current stimulation for treatment of auditory hallucinations in schizophrenia. Eur. Psychiatry 51 25–33. 10.1016/J.EURPSY.2018.01.004 PubMed DOI PMC
Mishra B. R., Sarkar S., Praharaj S. K., Mehta V. S., Diwedi S., Haque Nizamie S. (2011). Repetitive transcranial magnetic stimulation in psychiatry. Ann. Indian Acad. Neurol. 14 245–251. 10.4103/0972-2327.91935 PubMed DOI PMC
Misselhorn J., Göschl F., Higgen F. L., Hummel F. C., Gerloff C., Engel A. K. (2020). Sensory capability and information integration independently explain the cognitive status of healthy older adults. Sci. Rep. 101:22437. 10.1038/s41598-020-80069-8 PubMed DOI PMC
Möhler H. (2006). GABAA receptor diversity and pharmacology. Cell Tissue Res. 326 505–516. 10.1007/S00441-006-0284-3 PubMed DOI
Möller A., Nemmi F., Karlsson K., Klingberg T. (2017). Transcranial Electric Stimulation Can Impair Gains during Working Memory Training and Affects the Resting State Connectivity. Front. Hum. Neurosci. 11:364. 10.3389/FNHUM.2017.00364 PubMed DOI PMC
Moore A. B., Li Z., Tyner C. E., Hu X., Crosson B. (2013). Bilateral basal ganglia activity in verbal working memory. Brain Lang. 125 316–323. 10.1016/J.BANDL.2012.05.003 PubMed DOI
Mormann F., Fell J., Axmacher N., Weber B., Lehnertz K., Elger C. E., et al. (2005). Phase/amplitude reset and theta–gamma interaction in the human medial temporal lobe during a continuous word recognition memory task. Hippocampus 15 890–900. 10.1002/HIPO.20117 PubMed DOI
Moussavi Z., Kimura K., Kehler L., de Oliveira Francisco C., Lithgow B. (2021). A Novel Program to Improve Cognitive Function in Individuals With Dementia Using Transcranial Alternating Current Stimulation (tACS) and Tutored Cognitive Exercises. Front. Aging 2:632545. 10.3389/FRAGI.2021.632545 PubMed DOI PMC
Müller-Dahlhaus J. F. M., Orekhov Y., Liu Y., Ziemann U. (2008). Interindividual variability and age-dependency of motor cortical plasticity induced by paired associative stimulation. Exp. Brain Res. 187 467–475. 10.1007/S00221-008-1319-7 PubMed DOI
Naro A., Corallo F., De Salvo S., Marra A., Di Lorenzo G., Muscarà N., et al. (2016). Promising Role of Neuromodulation in Predicting the Progression of Mild Cognitive Impairment to Dementia. J. Alzheimers Dis. 53 1375–1388. 10.3233/JAD-160305 PubMed DOI
Ng B. S. W., Logothetis N. K., Kayser C. (2013). EEG phase patterns reflect the selectivity of neural firing. Cereb. Cortex 23 389–398. 10.1093/cercor/bhs031 PubMed DOI
Osaka M., Osaka N., Kondo H., Morishita M., Fukuyama H., Aso T., et al. (2003). The neural basis of individual differences in working memory capacity: an fMRI study. Neuroimage 18 789–797. 10.1016/S1053-8119(02)00032-0 PubMed DOI
Owen A. M., McMillan K. M., Laird A. R., Bullmore E. (2005). N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Hum. Brain Mapp. 25:46. 10.1002/HBM.20131 PubMed DOI PMC
Pahor A., Jaušovec N. (2018). The effects of theta and gamma tacs on working memory and electrophysiology. Front. Hum. Neurosci. 11:651. 10.3389/fnhum.2017.00651 PubMed DOI PMC
Palva J. M., Palva S., Kaila K. (2005). Phase Synchrony among Neuronal Oscillations in the Human Cortex. J. Neurosci. 25 3962–3972. 10.1523/JNEUROSCI.4250-04.2005 PubMed DOI PMC
Palva S., Linkenkaer-Hansen K., Näätänen R., Palva J. M. (2005). Early neural correlates of conscious somatosensory perception. J. Neurosci. 25 5248–5258. 10.1523/JNEUROSCI.0141-05.2005 PubMed DOI PMC
Papazova I., Strube W., Hoffmann L., Schwippel T., Padberg F., Palm U., et al. (2020). T54. Effects of gamma transcranial alternating current stimulation to the left dorsolateral prefrontal cortex on working memory in schizophrenia patients. Schizophr. Bull. 46 S251–S252. 10.1093/schbul/sbaa029.614 PubMed DOI
Park S. H., Seo J. H., Kim Y. H., Ko M. H. (2014). Long-term effects of transcranial direct current stimulation combined with computer-assisted cognitive training in healthy older adults. Neuroreport 25 122–126. 10.1097/WNR.0000000000000080 PubMed DOI
Paulus W., Nitsche M. A., Antal A. (2016). Application of transcranial electric stimulation (tDCS, tACS, tRNS): from motor-evoked potentials towards modulation of behaviour. Eur. Psychol. 21 4–14. 10.1027/1016-9040/a000242 DOI
Pfurtscheller G., Neuper C., Andrew C., Edlinger G. (1997). Foot and hand area mu rhythms. Int. J. Psychophysiol. 26 121–135. 10.1016/S0167-8760(97)00760-5 PubMed DOI
Phillips N. L., Parry L., Mandalis A., Lah S. (2017). Working memory outcomes following traumatic brain injury in children: a systematic review with meta-analysis. Child Neuropsychol. 23 26–66. 10.1080/09297049.2015.1085500 PubMed DOI
Polanía R., Nitsche M. A., Korman C., Batsikadze G., Paulus W. (2012). The importance of timing in segregated theta phase-coupling for cognitive performance. Curr. Biol. 22 1314–1318. 10.1016/j.cub.2012.05.021 PubMed DOI
Polanía R., Nitsche M. A., Ruff C. C. (2018). Studying and modifying brain function with non-invasive brain stimulation. Nat. Neurosci. 21 174–187. 10.1038/s41593-017-0054-4 PubMed DOI
Popov T., Jensen O., Schoffelen J. M. (2018). Dorsal and ventral cortices are coupled by cross-frequency interactions during working memory. Neuroimage 178 277–286. 10.1016/j.neuroimage.2018.05.054 PubMed DOI
Pozdniakov I., Vorobiova A. N., Galli G., Rossi S., Feurra M. (2021). Online and offline effects of transcranial alternating current stimulation of the primary motor cortex. Sci. Rep. 11:3854. 10.1038/s41598-021-83449-w PubMed DOI PMC
Raghavachari S., Lisman J. E., Tully M., Madsen J. R., Bromfield E. B., Kahana M. J. (2006). Theta oscillations in human cortex during a working-memory task: evidence for local generators. J. Neurophysiol. 95 1630–1638. 10.1152/jn.00409.2005 PubMed DOI
Raghubar K. P., Barnes M. A., Hecht S. A., Barnes M. A. (2010). Working memory and mathematics: a review of developmental, individual difference, and cognitive approaches. Learn. Individ. Differ. 20 110–122. 10.1016/j.lindif.2009.10.005 DOI
Reinhart R. M. G., Nguyen J. A. (2019). Working memory revived in older adults by synchronizing rhythmic brain circuits. Nat. Neurosci. 22 820–827. 10.1038/s41593-019-0371-x PubMed DOI PMC
RepovŠ G., Baddeley A. (2006). The multi-component model of working memory: explorations in experimental cognitive psychology. Neuroscience 139 5–21. 10.1016/J.NEUROSCIENCE.2005.12.061 PubMed DOI
Ridding M. C., Ziemann U. (2010). Determinants of the induction of cortical plasticity by non-invasive brain stimulation in healthy subjects. J. Physiol. 588:2291. 10.1113/JPHYSIOL.2010.190314 PubMed DOI PMC
Riddle J., McFerren A., Frohlich F. (2021). Causal role of cross-frequency coupling in distinct components of cognitive control. Prog. Neurobiol. 202:102033. 10.1016/J.PNEUROBIO.2021.102033 PubMed DOI PMC
Riddle J., Scimeca J. M., Cellier D., Dhanani S., D’Esposito M. (2020b). Causal Evidence for a Role of Theta and Alpha Oscillations in the Control of Working Memory. Curr. Biol. 30 1748–1754.e4. 10.1016/j.cub.2020.02.065 PubMed DOI PMC
Riddle J., Rubinow D. R., Frohlich F. (2020a). A case study of weekly tACS for the treatment of major depressive disorder. Brain Stimul. Basic Transl. Clin. Res. Neuromodulation 13 576–577. 10.1016/J.BRS.2019.12.016 PubMed DOI PMC
Riva-Posse P., Choi K. S., Holtzheimer P. E., Crowell A. L., Garlow S. J., Rajendra J. K., et al. (2018). A connectomic approach for subcallosal cingulate deep brain stimulation surgery: prospective targeting in treatment-resistant depression. Mol. Psychiatry 23 843–849. 10.1038/mp.2017.59 PubMed DOI PMC
Röhner F., Breitling C., Rufener K. S., Heinze H.-J., Hinrichs H., Krauel K., et al. (2018). Modulation of Working Memory Using Transcranial Electrical Stimulation: a Direct Comparison Between TACS and TDCS. Front. Neurosci. 12:761. 10.3389/FNINS.2018.00761 PubMed DOI PMC
Romo R., Salinas E. (2003). Cognitive neuroscience: flutter Discrimination: neural codes, perception, memory and decision making. Nat. Rev. Neurosci. 4 203–218. 10.1038/nrn1058 PubMed DOI
Rossini P. M., Burke D., Chen R., Cohen L. G., Daskalakis Z., Di Iorio R., et al. (2015). Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin. Neurophysiol. 126 1071–1107. 10.1016/J.CLINPH.2015.02.001 PubMed DOI PMC
Roux F., Uhlhaas P. J. (2014). Working memory and neural oscillations: alpha-gamma versus theta-gamma codes for distinct WM information? Trends Cogn. Sci. 18 16–25. 10.1016/j.tics.2013.10.010 PubMed DOI
Sahlem G. L., Badran B. W., Halford J. J., Williams N. R., Korte J. E., Leslie K., et al. (2015). Oscillating square wave transcranial direct current stimulation (tDCS) delivered during slow wave sleep does not improve declarative memory more than sham: a randomized sham controlled crossover study. Brain Stimul. 8 528–534. 10.1016/j.brs.2015.01.414 PubMed DOI PMC
Sahu P. P., Tseng P. (2021). Frontoparietal theta tACS nonselectively enhances encoding, maintenance, and retrieval stages in visuospatial working memory. Neurosci. Res. 172 41–50. 10.1016/J.NEURES.2021.05.005 PubMed DOI
Santarnecchi E., Muller T., Rossi S., Sarkar A., Polizzotto N. R., Rossi A., et al. (2016). Individual differences and specificity of prefrontal gamma frequency-tACS on fluid intelligence capabilities. Cortex 75 33–43. 10.1016/j.cortex.2015.11.003 PubMed DOI
Santarnecchi E., Polizzotto N. R., Godone M., Giovannelli F., Feurra M., Matzen L., et al. (2013). Frequency-dependent enhancement of fluid intelligence induced by transcranial oscillatory potentials. Curr. Biol. 23 1449–1453. 10.1016/j.cub.2013.06.022 PubMed DOI
Sauseng P., Klimesch W., Heise K. F., Gruber W. R., Holz E., Karim A. A., et al. (2009). Brain Oscillatory Substrates of Visual Short-Term Memory Capacity. Curr. Biol. 19 1846–1852. 10.1016/j.cub.2009.08.062 PubMed DOI
Sauseng P., Peylo C., Biel A. L., Friedrich E. V. C., Romberg-Taylor C. (2019). Does cross-frequency phase coupling of oscillatory brain activity contribute to a better understanding of visual working memory? Br. J. Psychol. 110 245–255. 10.1111/BJOP.12340 PubMed DOI
Schaal N. K., Pfeifer J., Krause V., Pollok B. (2015). From amusic to musical?-Improving pitch memory in congenital amusia with transcranial alternating current stimulation. Behav. Brain Res. 294 141–148. 10.1016/j.bbr.2015.08.003 PubMed DOI
Schack B., Vath N., Petsche H., Geissler H. G., Möller E. (2002). Phase-coupling of theta–gamma EEG rhythms during short-term memory processing. Int. J. Psychophysiol. 44 143–163. 10.1016/S0167-8760(01)00199-4 PubMed DOI
Seager M. A., Johnson L. D., Chabot E. S., Asaka Y., Berry S. D. (2002). Oscillatory brain states and learning: impact of hippocampal theta-contingent training. Proc. Natl. Acad. Sci. U. S. A. 99 1616–1620. 10.1073/PNAS.032662099 PubMed DOI PMC
Siebenhühner F., Wang S. H., Arnulfo G., Lampinen A., Nobili L., Palva J. M., et al. (2020). Genuine cross-frequency coupling networks in human resting-state electrophysiological recordings. PLoS Biol. 18:e3000685. 10.1371/journal.pbio.3000685 PubMed DOI PMC
Siegel M., Donner T. H., Engel A. K. (2012). Spectral fingerprints of large-scale neuronal interactions. Nat. Rev. Neurosci. 13 121–134. 10.1038/nrn3137 PubMed DOI
Sirota A., Montgomery S., Fujisawa S., Isomura Y., Zugaro M., Buzsáki G. (2008). Entrainment of Neocortical Neurons and Gamma Oscillations by the Hippocampal Theta Rhythm. Neuron 60 683–697. 10.1016/j.neuron.2008.09.014 PubMed DOI PMC
Smith E. H., Banks G. P., Mikell C. B., Cash S. S., Patel S. R., Eskandar E. N., et al. (2015). Frequency-Dependent Representation of Reinforcement-Related Information in the Human Medial and Lateral Prefrontal Cortex. J. Neurosci. 35:15827. 10.1523/JNEUROSCI.1864-15.2015 PubMed DOI PMC
Sotero R. C. (2016). Topology, Cross-Frequency, and Same-Frequency Band Interactions Shape the Generation of Phase-Amplitude Coupling in a Neural Mass Model of a Cortical Column. PLoS Comput. Biol. 12:1005180. 10.1371/journal.pcbi.1005180 PubMed DOI PMC
Sreeraj V. S., Shanbhag V., Nawani H., Shivakumar V., Damodharan D., Bose A., et al. (2017). Feasibility of online neuromodulation using transcranial alternating current stimulation in schizophrenia. Indian J. Psychol. Med. 39 92–95. 10.4103/0253-7176.198937 PubMed DOI PMC
Sreeraj V. S., Shivakumar V., Sowmya S., Bose A., Nawani H., Narayanaswamy J. C., et al. (2019). Online theta frequency transcranial alternating current stimulation for cognitive remediation in schizophrenia: a case report and review of literature. J. ECT 35 139–143. 10.1097/YCT.0000000000000523 PubMed DOI
Sreeraj V. S., Suhas S., Parlikar R., Selvaraj S., Dinakaran D., Shivakumar V., et al. (2020). Effect of add-on transcranial alternating current stimulation (tACS) on persistent delusions in schizophrenia. Psychiatry Res. 290:113106. 10.1016/J.PSYCHRES.2020.113106 PubMed DOI
Stegmayer K., Usher J., Trost S., Henseler I., Tost H., Rietschel M., et al. (2015). Disturbed cortico–amygdalar functional connectivity as pathophysiological correlate of working memory deficits in bipolar affective disorder. Eur. Arch. Psychiatry Clin. Neurosci. 265 303–311. 10.1007/s00406-014-0517-5 PubMed DOI
Tallon-Baudry C., Bertrand O., Peronnet F., Pernier J. (1998). Induced γ-band activity during the delay of a visual short-term memory task in humans. J. Neurosci. 18 4244–4254. 10.1523/jneurosci.18-11-04244.1998 PubMed DOI PMC
Tavakoli A. V., Yun K. (2017). Transcranial alternating current stimulation (tACS) mechanisms and protocols. Front. Cell. Neurosci. 11:214. 10.3389/fncel.2017.00214 PubMed DOI PMC
Terranova C., Rizzo V., Cacciola A., Chillemi G., Calamuneri A., Milardi D., et al. (2019). Is there a future for non-invasive brain stimulation as a therapeutic tool? Front. Neurol. 10:1146. 10.3389/fneur.2018.01146 PubMed DOI PMC
Thompson L., Khuc J., Saccani M. S., Zokaei N., Cappelletti M. (2021). Gamma oscillations modulate working memory recall precision. Exp. Brain Res. 239 2711–2724. 10.1007/S00221-021-06051-6 PubMed DOI PMC
Thut G., Veniero D., Romei V., Miniussi C., Schyns P., Gross J. (2011b). Rhythmic TMS causes local entrainment of natural oscillatory signatures. Curr. Biol. 21 1176–1185. 10.1016/j.cub.2011.05.049 PubMed DOI PMC
Thut G., Schyns P. G., Gross J. (2011a). Entrainment of Perceptually Relevant Brain Oscillations by Non-Invasive Rhythmic Stimulation of the Human Brain. Front. Psychol. 2:170. 10.3389/fpsyg.2011.00170 PubMed DOI PMC
Tseng P., Chang Y. T., Chang C. F., Liang W. K., Juan C. H. (2016). The critical role of phase difference in gamma oscillation within the temporoparietal network for binding visual working memory. Sci. Rep. 6 1–15. 10.1038/srep32138 PubMed DOI PMC
Tseng P., Iu K. C., Juan C. H. (2018). The critical role of phase difference in theta oscillation between bilateral parietal cortices for visuospatial working memory. Sci. Rep. 8 1–9. 10.1038/s41598-017-18449-w PubMed DOI PMC
Tsujimoto T., Shimazu H., Isomura Y. (2006). Direct recording of theta oscillations in primate prefrontal and anterior cingulate cortices. J. Neurophysiol. 95 2987–3000. 10.1152/jn.00730.2005 PubMed DOI
Turi Z., Mittner M., Lehr A., Bürger H., Antal A., Paulus W. (2020). θ−γ Cross-Frequency Transcranial Alternating Current Stimulation over the Trough Impairs Cognitive Control. eNeuro 7 1–12. 10.1523/ENEURO.0126-20.2020 PubMed DOI PMC
Uhlhaas P. J., Haenschel C., Nikolić D., Singer W. (2008). The Role of Oscillations and Synchrony in Cortical Networks and Their Putative Relevance for the Pathophysiology of Schizophrenia. Schizophr. Bull. 34:927. 10.1093/SCHBUL/SBN062 PubMed DOI PMC
Uhlhaas P. J., Singer W. (2006). Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 52 155–168. 10.1016/J.NEURON.2006.09.020 PubMed DOI
Uhlhaas P. J., Singer W. (2012). Neuronal Dynamics and Neuropsychiatric Disorders: toward a Translational Paradigm for Dysfunctional Large-Scale Networks. Neuron 75 963–980. 10.1016/J.NEURON.2012.09.004 PubMed DOI
Valero-Cabré A., Amengual J. L., Stengel C., Pascual-Leone A., Coubard O. A. (2017). Transcranial magnetic stimulation in basic and clinical neuroscience: a comprehensive review of fundamental principles and novel insights. Neurosci. Biobehav. Rev. 83 381–404. 10.1016/J.NEUBIOREV.2017.10.006 PubMed DOI
Van Vugt M. K., Chakravarthi R., Lachaux J.-P. (2014). For whom the bell tolls: periodic reactivation of sensory cortex in the gamma band as a substrate of visual working memory maintenance. Front. Hum. Neurosci. 8:696. 10.3389/fnhum.2014.00696 PubMed DOI PMC
Vartanian O., Jobidon M. E., Bouak F., Nakashima A., Smith I., Lam Q., et al. (2013). Working memory training is associated with lower prefrontal cortex activation in a divergent thinking task. Neuroscience 236 186–194. 10.1016/J.NEUROSCIENCE.2012.12.060 PubMed DOI
Veniero D., Vossen A., Gross J., Thut G. (2015). Lasting EEG/MEG aftereffects of rhythmic transcranial brain stimulation: level of control over oscillatory network activity. Front. Cell. Neurosci. 9:477. 10.3389/fncel.2015.00477 PubMed DOI PMC
Vertes R. P. (2005). Hippocampal theta rhythm: a tag for short-term memory. Hippocampus 15 923–935. 10.1002/hipo.20118 PubMed DOI
Violante I. R., Li L. M., Carmichael D. W., Lorenz R., Leech R., Hampshire A., et al. (2017). Externally induced frontoparietal synchronization modulates network dynamics and enhances working memory performance. Elife 6:e22001. 10.7554/eLife.22001 PubMed DOI PMC
Vossen A., Gross J., Thut G. (2015). Alpha power increase after transcranial alternating current stimulation at alpha frequency (a-tACS) reflects plastic changes rather than entrainment. Brain Stimul. 8 499–508. 10.1016/j.brs.2014.12.004 PubMed DOI PMC
Vosskuhl J., Huster R. J., Herrmann C. S. (2015). Increase in short-term memory capacity induced by down-regulating individual theta frequency via transcranial alternating current stimulation. Front. Hum. Neurosci. 9:257. 10.3389/fnhum.2015.00257 PubMed DOI PMC
Vosskuhl J., Strüber D., Herrmann C. S. (2018). Non-invasive Brain Stimulation: a Paradigm Shift in Understanding Brain Oscillations. Front. Hum. Neurosci. 12:211. 10.3389/fnhum.2018.00211 PubMed DOI PMC
Wang H. X., Wang K., Zhang W. R., Zhao W. F., Yang X. T., Wang L., et al. (2020). Protocol on transcranial alternating current stimulation for the treatment of major depressive disorder: a randomized controlled trial. Chin. Med. J. 133 61–67. 10.1097/CM9.0000000000000589 PubMed DOI PMC
Wang H., Zhang W., Zhao W., Wang K., Wang Z., Wang L., et al. (2020). The efficacy of transcranial alternating current stimulation for treating post-stroke depression: study Protocol Clinical Trial (SPIRIT Compliant). Medicine 99:e19671. 10.1097/MD.0000000000019671 PubMed DOI PMC
Whittingstall K., Logothetis N. K. (2009). Frequency-Band Coupling in Surface EEG Reflects Spiking Activity in Monkey Visual Cortex. Neuron 64 281–289. 10.1016/j.neuron.2009.08.016 PubMed DOI
Widhalm M. L., Rose N. S. (2019). How can transcranial magnetic stimulation be used to causally manipulate memory representations in the human brain? Wiley Interdiscip. Rev. Cogn. Sci. 10:e1469. 10.1002/WCS.1469 PubMed DOI
Wilkening A., Kurzeck A., Dechantsreiter E., Padberg F., Palm U. (2019). Transcranial alternating current stimulation for the treatment of major depression during pregnancy. Psychiatry Res. 279 399–400. 10.1016/J.PSYCHRES.2019.06.009 PubMed DOI
Wolinski N., Cooper N. R., Sauseng P., Romei V. (2018). The speed of parietal theta frequency drives visuospatial working memory capacity. PLoS Biol. 16:e2005348. 10.1371/journal.pbio.2005348 PubMed DOI PMC
Xing Y., Wei P., Wang C., Shan Y., Yu Y., Qiao Y., et al. (2020). TRanscranial AlterNating current Stimulation FOR patients with Mild Alzheimer’s Disease (TRANSFORM-AD study): protocol for a randomized controlled clinical trial. Alzheimers Dement. 6:e12005. 10.1002/TRC2.12005 PubMed DOI PMC
Yao S., Liu Y., Zheng X., Zhang Y., Cui S., Tang C., et al. (2020). Do nonpharmacological interventions prevent cognitive decline? a systematic review and meta-analysis. Transl. Psychiatry 10 1–11. 10.1038/s41398-020-0690-4 PubMed DOI PMC
Zhang Y., Chen Y., Bressler S. L., Ding M. (2008). Response preparation and inhibition: the role of the cortical sensorimotor beta rhythm. Neuroscience 156 238–246. 10.1016/J.NEUROSCIENCE.2008.06.061 PubMed DOI PMC
Ziaei M., Salami A., Persson J. (2017). Age-related alterations in functional connectivity patterns during working memory encoding of emotional items. Neuropsychologia 94 1–12. 10.1016/j.neuropsychologia.2016.11.012 PubMed DOI