brain oscillations
Dotaz
Zobrazit nápovědu
OBJECTIVE: The pre-surgical evaluation of epilepsy relies on the electrophysiological recordings of spontaneous seizures. During this period drug dose decreases increase the likelihood of seizures transitioning the brain from a low to high seizure likelihood state, so-called pro-ictal state. This study aimed to identify the dynamic brain changes characteristic of this transition from 386 ten-minute segments of intracranial EEG recordings of 29 patients with drug-refractory temporal lobe epilepsy. METHODS: We studied brain dynamics through mean phase locking value and relative power in gamma band, and autocorrelation function width. We further explored interactions with pro-ictal factors, such as rate of interictal spikes and high frequency oscillations, circadian and multi-day cycles, and clinical outcomes. RESULTS: We observed significant increases in gamma power in the epileptogenic zone, and critical slowing in both the epileptogenic zone and presumably healthy cortex. These changes were linked with increases in spike and high frequency oscillations rate. CONCLUSIONS: Brain dynamics changed on the slow time scale - from the beginning to the end of the multi-day interval - but did not change in the short-term during the pre-ictal interval, thus could reflect pro-ictal changes. SIGNIFICANCE: We highlight gamma power and critical slowing indices as markers of pro-ictal brain states, as well as their potential to track the seizure-related brain mechanisms during the presurgical evaluation of epilepsy patients.
- MeSH
- dospělí MeSH
- elektroencefalografie metody MeSH
- elektrokortikografie metody MeSH
- epilepsie temporálního laloku * patofyziologie diagnóza MeSH
- gama rytmus EEG * fyziologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mozek * patofyziologie MeSH
- refrakterní epilepsie * patofyziologie MeSH
- záchvaty * patofyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
In drug-resistant focal epilepsy, planning surgical resection can involve presurgical intracranial EEG (iEEG) recordings to detect seizures and other iEEG patterns to improve postsurgical seizure outcome. We hypothesized that resection of tissue generating interictal high-frequency oscillations (HFOs, 80-500 Hz) in the iEEG predicts surgical outcome. In eight international epilepsy centres, iEEG was recorded during the presurgical evaluation of patients. The patients were of all ages, had epilepsy of all types, and underwent surgical resection of a single focus aiming at seizure freedom. In a prospective analysis, we applied a fully automated definition of HFO that was independent of the dataset. Using an observational cohort design that was blinded to postsurgical seizure outcome, we analysed HFO rates during non-rapid-eye-movement sleep. If channels had consistently high rates over multiple epochs, they were labelled the 'HFO area'. After HFO analysis, centres provided the electrode contacts located in the resected volume and the seizure outcome at follow-up ≥24 months after surgery. The study was registered at www.clinicaltrials.gov (NCT05332990). We received 160 iEEG datasets. In 146 datasets (91%), the HFO area could be defined. The patients with a completely resected HFO area were more likely to achieve seizure freedom in comparison to those without [odds ratio 2.61, 95% confidence interval (CI) 1.15-5.91, P = 0.02]. Among seizure-free patients, the HFO area was completely resected in 31 and not completely resected in 43. Among patients with recurrent seizures, the HFO area was completely resected in 14 and not completely resected in 58. When predicting seizure freedom, the negative predictive value of the HFO area (68%, CI 52-81) was higher than that for the resected volume as a predictor by itself (51%, CI 42-59, P = 4 × 10-5). The sensitivity and specificity for complete HFO area resection were 0.88 (CI 0.72-0.98) and 0.39 (CI 0.25-0.54), respectively, and the area under the curve was 0.83 (CI 0.58-0.97), indicating good predictive performance. In a blinded cohort study from independent epilepsy centres, applying a previously validated algorithm for HFO marking without the need for adjusting to new datasets allowed us to validate the clinical relevance of HFOs to plan the surgical resection.
- MeSH
- dítě MeSH
- dospělí MeSH
- elektroencefalografie metody MeSH
- elektrokortikografie * metody MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- prospektivní studie MeSH
- refrakterní epilepsie * chirurgie patofyziologie MeSH
- výsledek terapie MeSH
- záchvaty * chirurgie patofyziologie diagnóza MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- pozorovací studie MeSH
Epilepsy is a neurological disease characterized by epileptic seizures, which commonly manifest with pronounced frequency and amplitude changes in the EEG signal. In the case of focal seizures, initially localized pathological activity spreads from a so-called "onset zone" to a wider network of brain areas. Chimeras, defined as states of simultaneously occurring coherent and incoherent dynamics in symmetrically coupled networks are increasingly invoked for characterization of seizures. In particular, chimera-like states have been observed during the transition from a normal (asynchronous) to a seizure (synchronous) network state. However, chimeras in epilepsy have only been investigated with respect to the varying phases of oscillators. We propose a novel method to capture the characteristic pronounced changes in the recorded EEG amplitude during seizures by estimating chimera-like states directly from the signals in a frequency- and time-resolved manner. We test the method on a publicly available intracranial EEG dataset of 16 patients with focal epilepsy. We show that the proposed measure, titled Amplitude Entropy, is sensitive to the altered brain dynamics during seizure, demonstrating its significant increases during seizure as compared to before and after seizure. This finding is robust across patients, their seizures, and different frequency bands. In the future, Amplitude Entropy could serve not only as a feature for seizure detection, but also help in characterizing amplitude chimeras in other networked systems with characteristic amplitude dynamics.
BACKGROUND: Temporal interference stimulation (TIS) is a novel noninvasive electrical stimulation technique to focally modulate deep brain regions; a minimum of two high-frequency signals (f1 and f2 > 1 kHz) interfere to create an envelope-modulated signal at a deep brain target with the frequency of modulation equal to the difference frequency: Δf = |f2 - f1|. OBJECTIVE: The goals of this study were to verify the capability of TIS to modulate the subthalamic nucleus (STN) with Δf and to compare the effect of TIS and conventional deep brain stimulation (DBS) on the STN beta oscillations in patients with Parkinson's disease (PD). METHODS: DBS leads remained externalized after implantation, allowing local field potentials (LFPs) recordings in eight patients with PD. TIS was performed initially by two pairs (f1 = 9.00 kHz; f2 = 9.13 kHz, 4 mA peak-peak per pair maximum) of scalp electrodes placed in temporoparietal regions to focus the envelope signal maximum (Δf = 130 Hz) at the motor part of the STN target. RESULTS: The comparison between the baseline LFPs and recordings after TIS and conventional DBS sessions showed substantial suppression of high beta power peak after both types of stimulation in all patients. CONCLUSIONS: TIS has the potential to effectively modulate the STN and reduce the beta oscillatory activity in a completely noninvasive manner, as is traditionally possible only with intracranial DBS. Future studies should confirm the clinical effectiveness of TIS and determine whether TIS could be used to identify optimal DBS candidates and individualize DBS targets. © 2025 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
- MeSH
- beta rytmus EEG * fyziologie MeSH
- hluboká mozková stimulace * metody MeSH
- lidé středního věku MeSH
- lidé MeSH
- nucleus subthalamicus * patofyziologie MeSH
- Parkinsonova nemoc * terapie patofyziologie MeSH
- senioři MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Social withdrawal and deficits in social cognition are hallmarks of Alzheimer's disease (AD). While early deficits in social behavior and memory have been documented in mouse AD models, they remain understudied in rat models. Early-stage AD is accompanied by dysfunction of parvalbumin-positive (PV+) interneurons, implicating their potential connection to early symptoms. In this study, we employed a 5-trial social memory task to investigate early deficits in social cognition in 6-month-old TgF344-AD male and female rats. We counted the number of PV+ interneurons and recorded local field potentials during social interactions in the hippocampal CA2 - a region critical for social information processing. Our results show decreased social interest and novelty preference in TgF344-AD male and female rats. However, reduced PV+ interneuron numbers were observed only in female rats and specific to the CA2 area. The electrophysiological recordings revealed reduced theta-gamma phase-amplitude coupling in the CA2 during direct social interactions. We conclude that deficits in social cognition accompany early-stage AD in TgF344-AD rats and are potentially linked to PV+ interneuron and brain oscillatory dysfunction in the CA2 region of the hippocampus.
- MeSH
- Alzheimerova nemoc * patofyziologie patologie metabolismus MeSH
- hipokampální oblast CA2 * patofyziologie metabolismus patologie MeSH
- interneurony * metabolismus patologie MeSH
- krysa rodu rattus MeSH
- modely nemocí na zvířatech MeSH
- parvalbuminy * metabolismus MeSH
- pohlavní dimorfismus MeSH
- potkani inbrední F344 MeSH
- potkani transgenní MeSH
- sociální chování * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Brain imaging studies in complex regional pain syndrome (CRPS) have found mixed evidence for functional and structural changes in CRPS. In this cross-sectional study, we evaluated two patient cohorts from different centers and examined functional connectivity (rsFC) in 51 CRPS patients and 50 matched controls. rsFC was compared in predefined ROI pairs, but also in non-hypothesis driven analyses. Resting state (rs)fMRI changes in default mode network (DMN) and the degree rank order disruption index (kD) were additionally evaluated. Finally, imaging parameters were correlated with clinical severity and somatosensory function. Among predefined pairs, we found only weakly to moderately lower functional connectivity between the right nucleus accumbens and bilateral ventromedial prefrontal cortex in the infra-slow oscillations (ISO) band. The unconstrained ROI-to-ROI analysis revealed lower rsFC between the periaqueductal gray matter (PAG) and left anterior insula, and higher rsFC between the right sensorimotor thalamus and nucleus accumbens. In the correlation analysis, pain was positively associated with insulo-prefrontal rsFC, whereas sensorimotor thalamo-cortical rsFC was positively associated with tactile spatial resolution of the affected side. In contrast to previous reports, we found no group differences for kD or rsFC in the DMN, but detected overall lower data quality in patients. In summary, while some of the previous results were not replicated despite the larger sample size, novel findings from two independent cohorts point to potential down-regulated antinociceptive modulation by the PAG and increased connectivity within the reward system as pathophysiological mechanisms in CRPS. However, in light of the detected systematic differences in data quality between patients and healthy subjects, validity of rsFC abnormalities in CRPS should be carefully scrutinized in future replication studies.
- MeSH
- default mode network diagnostické zobrazování patofyziologie MeSH
- dospělí MeSH
- komplexní regionální syndromy bolesti * patofyziologie diagnostické zobrazování MeSH
- konektom metody MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie * MeSH
- mozek patofyziologie diagnostické zobrazování MeSH
- nervová síť patofyziologie diagnostické zobrazování MeSH
- průřezové studie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
The relationship between working memory (WM) and neuronal oscillations can be studied in detail using brain stimulation techniques, which provide a method for modulating these oscillations and thus influencing WM. The endogenous coupling between the amplitude of gamma oscillations and the phase of theta oscillations is crucial for cognitive control. Theta/gamma peak-coupled transcranial alternating current stimulation (TGCp-tACS) can modulate this coupling and thus influence WM performance. This study investigated the effects of TGCp-tACS on WM in older adults and compared their responses with those of younger participants from our previous work who underwent the same experimental design. Twenty-eight older subjects underwent both TGCp-tACS and sham stimulation sessions at least 72 h apart. Resting-state electroencephalography (EEG) was recorded before and after the interventions, and a WM task battery with five different WM tasks was performed during the interventions to assess various WM components. Outcomes measured included WM task performance (e.g., accuracy, reaction time (RT)) and changes in power spectral density (PSD) in different frequency bands. TGCp-tACS significantly decreased accuracy and RT on the 10- and 14-point Sternberg tasks and increased RT on the Digit Symbol Substitution Test in older adults. In contrast, younger participants showed a significant increase in accuracy only on the 14-item Sternberg task. Electrophysiological analysis revealed a decrease in delta and theta PSD and an increase in high gamma PSD in both younger and older participants after verum stimulation. In conclusion, theta-gamma coupling is essential for WM and modulation of this coupling affects WM performance. The effects of TGCp-tACS on WM vary with age due to natural brain changes. To better support older adults, the study suggests several strategies to improve cognitive function, including: Adjusting stimulation parameters, applying stimulation to two sites, conducting multiple sessions, and using brain imaging techniques for precise targeting.
- MeSH
- dospělí MeSH
- elektroencefalografie MeSH
- gama rytmus EEG * fyziologie MeSH
- krátkodobá paměť * fyziologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- přímá transkraniální stimulace mozku * MeSH
- reakční čas fyziologie MeSH
- senioři MeSH
- stárnutí fyziologie MeSH
- theta rytmus EEG * fyziologie MeSH
- zdraví MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Working memory (WM) is essential for the temporary storage and processing of information required for complex cognitive tasks and relies on neuronal theta and gamma oscillations. Given the limited capacity of WM, researchers have investigated various methods to improve it, including transcranial alternating current stimulation (tACS), which modulates brain activity at specific frequencies. One particularly promising approach is theta-gamma peak-coupled-tACS (TGCp-tACS), which simulates the natural interaction between theta and gamma oscillations that occurs during cognitive control in the brain. The aim of this study was to improve WM in healthy young adults with TGCp-tACS, focusing on both behavioral and neurophysiological outcomes. Thirty-one participants completed five WM tasks under both sham and verum stimulation conditions. Electroencephalography (EEG) recordings before and after stimulation showed that TGCp-tACS increased power spectral density (PSD) in the high-gamma region at the stimulation site, while PSD decreased in the theta and delta regions throughout the cortex. From a behavioral perspective, although no significant changes were observed in most tasks, there was a significant improvement in accuracy in the 14-item Sternberg task, indicating an improvement in phonological WM. In conclusion, TGCp-tACS has the potential to promote and improve the phonological component of WM. To fully realize the cognitive benefits, further research is needed to refine the stimulation parameters and account for individual differences, such as baseline cognitive status and hormonal factors.
- MeSH
- chování fyziologie MeSH
- dospělí MeSH
- elektrická stimulace MeSH
- elektroencefalografie MeSH
- gama rytmus EEG fyziologie MeSH
- krátkodobá paměť * fyziologie MeSH
- lidé MeSH
- mladý dospělý MeSH
- přímá transkraniální stimulace mozku * metody MeSH
- theta rytmus EEG fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Antagonistic activity of brain networks likely plays a fundamental role in how the brain optimizes its performance by efficient allocation of computational resources. A prominent example involves externally/internally oriented attention tasks, implicating two anticorrelated, intrinsic brain networks: the default mode network (DMN) and the dorsal attention network (DAN). To elucidate electrophysiological underpinnings and causal interplay during attention switching, we recorded intracranial EEG (iEEG) from 25 epilepsy patients with electrode contacts localized in the DMN and DAN. We show antagonistic network dynamics of activation-related changes in high-frequency (> 50 Hz) and low-frequency (< 30 Hz) power. The temporal profile of information flow between the networks estimated by functional connectivity suggests that the activated network inhibits the other one, gating its activity by increasing the amplitude of the low-frequency oscillations. Insights about inter-network communication may have profound implications for various brain disorders in which these dynamics are compromised.
- MeSH
- dospělí MeSH
- elektroencefalografie MeSH
- elektrofyziologické jevy MeSH
- epilepsie patofyziologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mozek * fyziologie patofyziologie MeSH
- nervová síť * fyziologie MeSH
- pozornost * fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation method that, through its manipulation of endogenous oscillations, can affect cognition in healthy adults. Given the fact that both endogenous oscillations and cognition are impaired in various psychiatric diagnoses, tACS might represent a suitable intervention. We conducted a search of Pubmed and Web of Science databases and reviewed 27 studies where tACS is used in psychiatric diagnoses and cognition change is evaluated. TACS is a safe and well-tolerated intervention method, suitable for multiple-sessions protocols. It can be administered at home, individualized according to the patient''s anatomical and functional characteristics, or used as a marker of disease progression. The results are varying across diagnoses and applied protocols, with some protocols showing a long-term effect. However, the overall number of studies is small with a great variety of diagnoses and tACS parameters, such as electrode montage or used frequency. Precise mechanisms of tACS interaction with pathophysiological processes are only partially described and need further research. Currently, tACS seems to be a feasible method to alleviate cognitive impairment in psychiatric patients; however, a more robust confirmation of efficacy of potential protocols is needed to introduce it into clinical practise.
- MeSH
- duševní poruchy * terapie patofyziologie MeSH
- kognitivní dysfunkce * patofyziologie etiologie terapie MeSH
- lidé MeSH
- přímá transkraniální stimulace mozku * metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH