Endogenous levels of cytokinins, indole-3-acetic acid and abscisic acid in in vitro grown potato: A contribution to potato hormonomics

. 2020 Feb 26 ; 10 (1) : 3437. [epub] 20200226

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32103086
Odkazy

PubMed 32103086
PubMed Central PMC7044434
DOI 10.1038/s41598-020-60412-9
PII: 10.1038/s41598-020-60412-9
Knihovny.cz E-zdroje

A number of scientific reports published to date contain data on endogenous levels of various phytohormones in potato (Solanum tuberosum L.) but a complete cytokinin profile of potato tissues, that would include data on all particular molecular forms of cytokinin, has still been missing. In this work, endogenous levels of all analytically detectable isoprenoid cytokinins, as well as the auxin indole-3-acetic acid (IAA), and abscisic acid (ABA) have been determined in shoots and roots of 30 day old in vitro grown potato (cv. Désirée). The results presented here are generally similar to other data reported for in vitro grown potato plants, whereas greenhouse-grown plants typically contain lower levels of ABA, possibly indicating that in vitro grown potato is exposed to chronic stress. Cytokinin N-glucosides, particularly N7-glucosides, are the dominant cytokinin forms in both shoots and roots of potato, whereas nucleobases, as the bioactive forms of cytokinins, comprise a low proportion of cytokinin levels in tissues of potato. Differences in phytohormone composition between shoots and roots of potato suggest specific patterns of transport and/or differences in tissue-specific metabolism of plant hormones. These results represent a contribution to understanding the hormonomics of potato, a crop species of extraordinary economic importance.

Zobrazit více v PubMed

Santner A, Calderon-Villalobos LIA, Estelle M. Plant hormones are versatile chemical regulators of plant growth. Nat. Chem. Biol. 2009;5:301–307. doi: 10.1038/nchembio.165. PubMed DOI

Hagihara S, Yamada R, Itami K, Torii KU. Dissecting plant hormone signaling with synthetic molecules: perspective from the chemists. Curr. Opin. Plant Biol. 2019;47:32–37. doi: 10.1016/j.pbi.2018.09.002. PubMed DOI

Mok DWS, Mok MC. Cytokinin metabolism and action. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001;52:89–118. doi: 10.1146/annurev.arplant.52.1.89. PubMed DOI

Sakakibara H. Cytokinins: Activity, biosynthesis, and translocation. Annu. Rev. Plant Biol. 2006;57:431–449. doi: 10.1146/annurev.arplant.57.032905.105231. PubMed DOI

Bajguz A, Piotrowska A. Conjugates of auxin and cytokinin. Phytochemistry. 2009;70:957–969. doi: 10.1016/j.phytochem.2009.05.006. PubMed DOI

Kamínek M, et al. Purine cytokinins: a proposal of abbreviations. Plant Growth Regul. 2000;32:253–256. doi: 10.1023/A:1010743522048. DOI

Stirk WA, et al. Involvement of cis-zeatin, dihydrozeatin, and aromatic cytokinins in germination and seedling establishment of maize, oats, and lucerne. J. Plant Growth Regul. 2012;31:392–405. doi: 10.1007/s00344-011-9249-1. DOI

Lomin SN, et al. Plant membrane assays with cytokinin receptors underpin the unique role of free cytokinin bases as biologically active ligands. J. Exp. Bot. 2015;66:1851–1863. doi: 10.1093/jxb/eru522. PubMed DOI PMC

Kamínek M, Motyka V, Vaňková R. Regulation of cytokinin content in plant cells. Physiol. Plant. 1997;101:689–700. doi: 10.1111/j.1399-3054.1997.tb01053.x. DOI

Gu J, et al. Roles of nitrogen and cytokinin signals in root and shoot communications in maximizing of plant productivity and their agronomic applications. Plant Sci. 2018;274:320–331. doi: 10.1016/j.plantsci.2018.06.010. PubMed DOI

Romanov GA, Lomin SN, Schmülling T. Cytokinin signaling: from the ER or from the PM? That is the question! New Phytol. 2018;218:41–53. doi: 10.1111/nph.14991. PubMed DOI

Veach YK, et al. O-glucosylation of cis-zeatin in maize. Characterization of genes, enzymes, and endogenous cytokinins. Plant Physiol. 2003;131:1374–1380. doi: 10.1104/pp.017210. PubMed DOI PMC

Strnad M. The aromatic cytokinins. Physiol. Plant. 1997;101:674–688. doi: 10.1111/j.1399-3054.1997.tb01052.x. DOI

Tarkowská D, et al. Identification of new aromatic cytokinins in Arabidopsis thaliana and Populus x canadensis leaves by LC-(+)ESI-MS and capillary liquid chromatography/frit-fast atom bombardment mass spectrometry. Physiol. Plant. 2003;117:579–590. doi: 10.1034/j.1399-3054.2003.00071.x. PubMed DOI

Žižková E, et al. Control of cytokinin and auxin homeostasis in cyanobacteria and algae. Ann. Bot. Lond. 2017;119:151–166. doi: 10.1093/aob/mcw194. PubMed DOI PMC

Záveská Drábková L, Dobrev PI, Motyka V. Phytohormone profiling across the Bryophytes. PloS ONE. 2015;10:e0125411. doi: 10.1371/journal.pone.0125411. PubMed DOI PMC

Gajdošová S, et al. Distribution, biological activities, metabolism and the conceivable function of cis-zeatin-type cytokinins in plants. J. Exp. Bot. 2011;62:2827–2840. doi: 10.1093/jxb/erq457. PubMed DOI

Romanov GA, et al. Effect of indole-3-acetic acid and kinetin on tuberisation parameters of different cultivars and transgenic lines of potato in vitro. Plant Growth Regul. 2000;32:245–251. doi: 10.1023/A:1010771510526. DOI

Sarkar D, Pandey SK, Sharma S. Cytokinins antagonize the jasmonates action on the regulation of potato (Solanum tuberosum) tuber formation in vitro. Plant Cell Tiss. Organ Cult. 2006;87:285–295. doi: 10.1007/s11240-006-9166-3. DOI

Malkawi A, Jensen BL, Langille AR. Plant hormones isolated from “Katahdin” potato plant tissues and the influence of photoperiod and temperature on their levels in relation to tuber induction. J. Plant Growth Regul. 2007;26:308–317. doi: 10.1007/s00344-007-9010-y. DOI

Hartmann A, Senning M, Hedden P, Sonnewald U, Sonnewald S. Reactivation of meristem activity and sprout growth of potato tubers require both cytokinin and gibberellin. Plant Physiol. 2011;155:776–796. doi: 10.1104/pp.110.168252. PubMed DOI PMC

Raspor M, et al. Cytokinin profiles of AtCKX2-overexpressing potato plants and the impact of altered cytokinin homeostasis on tuberization in vitro. J. Plant Growth Regul. 2012;31:460–470. doi: 10.1007/s00344-011-9255-3. DOI

Raspor, M. et al. Overexpressing AtCKX1 in potato plants grown in vitro: The effects on cytokinin composition and tuberization. J. Plant Growth Regul., 10.1007/s00344-020-10080-w(2020).

Schmülling T, Fladung M, Grossmann K, Schell J. Hormonal content and sensitivity of transgenic tobacco and potato plants expressing single rol genes of Agrobacterium rhizogenes T-DNA. Plant J. 1993;3:371–382. doi: 10.1046/j.1365-313X.1993.t01-20-00999.x. DOI

Dermastia M, Ravnikar M, Kovač M. Morphology of potato (Solanum tuberosum L. cv. Sante) stem node cultures in relation to the level of endogenous cytokinins. J. Plant Growth Regul. 1996;15:105–108. doi: 10.1007/BF00198923. DOI

Yakovleva LA, Cheredova EP, Karavaiko NN. Cytokinins and cytokinin-binding sites in transgenic potato plants. Plant Growth Regul. 1997;21:71–73. doi: 10.1023/A:1005745510883. DOI

Macháčková I, et al. Growth pattern, tuber formation and hormonal balance in in vitro potato plants carrying ipt gene. Plant Growth Regul. 1997;21:27–36. doi: 10.1023/A:1005724006568. DOI

Macháčková I, et al. Photoperiodic control of growth, development and phytohormone balance in Solanum tuberosum. Physiol. Plant. 1998;102:272–278. doi: 10.1034/j.1399-3054.1998.1020215.x. DOI

De Jong H, et al. Development and characterization of an adapted form of Droopy, a diploid potato mutant deficient in abscisic acid. Amer. J. Potato Res. 2001;78:279–290. doi: 10.1007/BF02875693. DOI

Muñiz García MN, Stritzler M, Capiati DA. Heterologous expression of Arabidopsis ABF4 gene in potato enhances tuberization through ABA-GA crosstalk regulation. Planta. 2014;239:615–631. doi: 10.1007/s00425-013-2001-2. PubMed DOI

Kolachevskaya OO, et al. Expression of auxin synthesis gene tms1 under control of tuber-specific promoter enhances potato tuberization in vitro. J. Integr. Plant Biol. 2015;57:734–744. doi: 10.1111/jipb.12314. PubMed DOI

Kolachevskaya OO, et al. Auxin synthesis gene tms1 driven by tuber-specific promoter alters hormonal status of transgenic potato plants and their responses to exogenous phytohormones. Plant Cell Rep. 2017;36:419–435. doi: 10.1007/s00299-016-2091-y. PubMed DOI

Kolachevskaya OO, et al. Core features of the hormonal status in in vitro grown potato plants. Plant Signal. Behav. 2018;13:e1467697. doi: 10.1080/15592324.2018.1467697. PubMed DOI PMC

Baroja-Fernández E, Aguirreolea J, Martínková H, Hanuš J, Strnad M. Aromatic cytokinins in micropropagated potato plants. Plant Physiol. Biochem. 2002;40:217–224. doi: 10.1016/S0981-9428(02)01362-1. DOI

Barrs, H. D. Determination of water deficit in plant tissues in Water deficits and plant growth (ed. Kozlowski, T. T.) 235–368 (CSIRO Publishing, 1968).

Ciura J, Kruk J. Phytohormones as targets for improving plant productivity and stress tolerance. J. Plant Physiol. 2018;229:32–40. doi: 10.1016/j.jplph.2018.06.013. PubMed DOI

Potato Genome Sequencing Consortium Genome sequence and analysis of the tuber crop potato. Nature. 2011;475:189–195. doi: 10.1038/nature10158. PubMed DOI

Jackson SD. Multiple signaling pathways control tuber induction in potato. Plant Physiol. 1999;119:1–8. doi: 10.1104/pp.119.1.1. PubMed DOI PMC

Lomin SN, et al. Cytokinin perception in potato: new features of canonical players. J. Exp. Bot. 2018;69:3839–3853. doi: 10.1093/jxb/ery199. PubMed DOI PMC

Ćosić T, et al. In vitro shoot organogenesis and comparative analysis of endogenous phytohormones in kohlrabi (Brassica oleracea var. gongylodes): effects of genotype, explant type and applied cytokinins. Plant Cell Tiss. Organ Cult. 2015;121:741–760. doi: 10.1007/s11240-015-0742-2. DOI

Trifunović-Momčilov M, et al. Endogenous phytohormones in spontaneously regenerated Centaurium erythraea Rafn. plants grown in vitro. J. Plant Growth Regul. 2016;35:543–552. doi: 10.1007/s00344-015-9558-x. DOI

Letham, D. S. Cytokinins as phytohormones – sites of biosynthesis, translocation, and function of translocated cytokinin in Cytokinins: Chemistry, activity and function (eds. Mok, D. W. S. & Mok, M. C.) 57–80 (CRC Press, 1994).

Corbesier L, et al. Cytokinin levels in leaves, leaf exudate and shoot apical meristem of Arabidopsis thaliana during floral transition. J. Exp. Bot. 2003;54:2511–2517. doi: 10.1093/jxb/erg276. PubMed DOI

Takei K, Sakakibara H, Taniguchi M, Sugiyama T. Nitrogen-dependent accumulation of cytokinins in root and the translocation to leaf: Implication of cytokinin species that induces gene expression of Maize Response Regulator. Plant Cell Physiol. 2001;42:85–93. doi: 10.1093/pcp/pce009. PubMed DOI

Takei K, Yamaya T, Sakakibara H. Arabidopsis CYP735A1 and CYP735A2 encode cytokinin hydroxylases that catalyze the biosynthesis of trans-zeatin. J. Biol. Chem. 2004;279:41866–41872. doi: 10.1074/jbc.M406337200. PubMed DOI

Kiba T, Takei K, Kojima M, Sakakibara H. Side-chain modification of cytokinins controls shoot growth in Arabidopsis. Dev. Cell. 2013;27:452–461. doi: 10.1016/j.devcel.2013.10.004. PubMed DOI

Noodén LD, Letham DS. Cytokinin metabolism and signalling in the soybean plant. Aust. J. Plant Physiol. 1993;20:639–653.

Osugi A, et al. Systemic transport of trans-zeatin and its precursor have differing roles in Arabidopsis shoots. Nat. Plants. 2017;3:17112. doi: 10.1038/nplants.2017.112. PubMed DOI

Ko D, et al. Arabidopsis ABCG14 is essential for the root-to-shoot translocation of cytokinin. Proc. Natl. Acad. Sci. USA. 2014;111:7150–7155. doi: 10.1073/pnas.1321519111. PubMed DOI PMC

Zhang K, et al. Arabidopsis ABCG14 protein controls the acropetal translocation of root-synthesized cytokinins. Nat. Commun. 2014;5:3274. doi: 10.1038/ncomms4274. PubMed DOI

Mok MC, et al. Topolins and hydroxylated thidiazuron derivatives are substrates of cytokinin O-glucosyltransferase with position specificity related to receptor recognition. Plant Physiol. 2005;137:1057–1066. doi: 10.1104/pp.104.057174. PubMed DOI PMC

Eklöf S, et al. Auxin-cytokinin interactions in wild-type and transgenic tobacco. Plant Cell Physiol. 1997;38:225–235. doi: 10.1093/oxfordjournals.pcp.a029157. DOI

Nordström A, et al. Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: A factor of potential importance for auxin-cytokinin-regulated development. Proc. Natl. Acad. Sci. USA. 2004;101:8039–8044. doi: 10.1073/pnas.0402504101. PubMed DOI PMC

Jones B, et al. Cytokinin regulation of auxin synthesis in Arabidopsis involves a homeostatic feedback loop regulated via auxin and cytokinin signal transduction. Plant Cell. 2010;22:2956–2969. doi: 10.1105/tpc.110.074856. PubMed DOI PMC

Liu J, Mehdi S, Topping J, Tarkowski P, Lindsey K. Modelling and experimental analysis of hormonal crosstalk in Arabidopsis. Mol. Syst. Biol. 2010;6:373. doi: 10.1038/msb.2010.26. PubMed DOI PMC

Skoog F, Miller CO. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp. Soc. Exp. Biol. 1957;11:118–130. PubMed

Pal AK, Acharya K, Ahuja PS. Endogenous auxin level is a critical determinant for in vitro adventitious shoot regeneration in potato (Solanum tuberosum L.) J. Plant Biochem. Biotechnol. 2012;21:205–212. doi: 10.1007/s13562-011-0092-z. DOI

López-Carbonell M, Jáuregui O. A rapid method for analysis of abscisic acid (ABA) in crude extracts of water stressed Arabidopsis thaliana plants by liquid chromatography-mass spectrometry in tandem mode. Plant Physiol. Biochem. 2005;43:407–411. doi: 10.1016/j.plaphy.2005.02.006. PubMed DOI

Cutler AJ, Krochko JE. Formation and breakdown of ABA. Trends Plant Sci. 1999;4:472–478. doi: 10.1016/S1360-1385(99)01497-1. PubMed DOI

Kushiro T, et al. The Arabidopsis cytochrome P450 CYP707A encodes ABA 8′-hydroxylases: key enzymes in ABA catabolism. EMBO J. 2004;23:1647–1656. doi: 10.1038/sj.emboj.7600121. PubMed DOI PMC

Vinterhalter D, et al. Diurnal rhythmicity of endogenous phytohormones and phototropic bending capacity in potato (Solanum tuberosum L.) shoot cultures. Plant Growth Regul. 2020;90:151–161. doi: 10.1007/s10725-019-00561-8. DOI

Xiong L, Zhu JK. Regulation of abscisic acid biosynthesis. Plant Physiol. 2003;133:29–36. doi: 10.1104/pp.103.025395. PubMed DOI PMC

Tuteja N. Abscisic acid and abiotic stress signaling. Plant Signal. Behav. 2007;2:135–138. doi: 10.4161/psb.2.3.4156. PubMed DOI PMC

Seabrook JEA. Light effects on the growth and morphogenesis of potato (Solanum tuberosum) in vitro: A review. Amer. J. Potato Res. 2005;82:353–367.

Tanaka K, Fujiwara K, Kozai T. Effects of relative humidity in the culture vessel on the transpiration and net photosynthetic rates of potato plantlets in vitro. Acta Hortic. 1992;319:59–64. doi: 10.17660/ActaHortic.1992.319.3. DOI

Buddendorf-Joosten JMC, Woltering EJ. Controlling the gaseous composition in vitro – description of a flow system and effects of the different gaseous components on in vitro growth of potato plantlets. Sci. Hortic-Amsterdam. 1996;65:11–23. doi: 10.1016/0304-4238(95)00857-8. DOI

Wolf S, Kalman-Rotem N, Yakir D, Ziv M. Autotrophic and heterotrophic carbon assimilation of in vitro grown potato (Solanum tuberosum L.) plants. J. Plant Physiol. 1998;153:574–580. doi: 10.1016/S0176-1617(98)80206-X. DOI

Dragićević I, Konjević R, Vinterhalter B, Vinterhalter D, Nešković M. The effects of IAA and tetcyclacis on tuberization in potato (Solanum tuberosum L.) shoot cultures in vitro. Plant Growth Regul. 2008;54:189–193. doi: 10.1007/s10725-007-9243-6. DOI

Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962;15:473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x. DOI

Linsmaier EM, Skoog F. Organic growth factor requirements of tobacco tissue cultures. Physiol. Plant. 1965;18:100–127. doi: 10.1111/j.1399-3054.1965.tb06874.x. DOI

Dobrev PI, Kamínek M. Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J. Chromatogr. A. 2002;950:21–29. doi: 10.1016/S0021-9673(02)00024-9. PubMed DOI

Dobrev PI, Havlíček L, Vágner M, Malbeck J, Kamínek M. Purification and determination of plant hormones auxin and abscisic acid using solid phase extraction and two-dimensional high performance liquid chromatography. J. Chromatogr. A. 2005;1075:159–166. doi: 10.1016/j.chroma.2005.02.091. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...