Cytokinin deficiency confers enhanced tolerance to mild, but decreased tolerance to severe salinity stress in in vitro grown potato
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38362121
PubMed Central
PMC10867153
DOI
10.3389/fpls.2023.1296520
Knihovny.cz E-zdroje
- Klíčová slova
- antioxidant enzymes, chlorophyll, cytokinin oxidase/dehydrogenase, in vitro, potato, salinity, transgenic, water saturation deficit,
- Publikační typ
- časopisecké články MeSH
Cytokinin (CK) is a plant hormone that plays crucial roles in regulating plant growth and development. CK-deficient plants are widely used as model systems for investigating the numerous physiological roles of CK. Since it was previously shown that transgenic or mutant CK-deficient Arabidopsis and Centaurium plants show superior tolerance to salinity, we examined the tolerance of three CK-deficient potato lines overexpressing the Arabidopsis thaliana CYTOKININ OXIDASE/DEHYDROGENASE2 (AtCKX2) gene to 50 mM, 100 mM, 150 mM, and 200 mM NaCl applied in vitro. Quantification of visible salinity injury, rooting and acclimatization efficiency, shoot growth, water saturation deficit, and chlorophyll content confirmed that the CK-deficient potato plants were more tolerant to low (50 mM) and moderate (100 mM) NaCl concentrations, but exhibited increased sensitivity to severe salinity stress (150 and 200 mM NaCl) compared to non-transformed control plants. These findings were corroborated by the data distribution patterns according to principal component analysis. Quantification of the activity of superoxide dismutases, peroxidases, and catalases revealed an impaired ability of AtCKX2-transgenic lines to upregulate the activity of antioxidant enzymes in response to salinity, which might contribute to the enhanced sensitivity of these potato lines to severe salt stress. Our results add complexity to the existing knowledge on the regulation of salinity tolerance by CK, as we show for the first time that CK-deficient plants can exhibit reduced rather than increased tolerance to severe salt stress.
School of Life Science and Engineering Southwest University of Science and Technology Mianyang China
Zobrazit více v PubMed
Abdel Latef A. A. H., Akter A., Tahjib-Ul-Arif M. (2021). Foliar application of auxin or cytokinin can confer salinity stress tolerance in Vicia faba L. Agronomy 11, 790. doi: 10.3390/agronomy11040790 DOI
Abdelrahman M., Nishiyama R., Tran C. D., Kusano M., Nakabayashi R., Okazaki Y., et al. . (2021). Defective cytokinin signaling reprograms lipid and flavonoid gene-to-metabolite networks to mitigate high salinity in Arabidopsis . Proc. Natl. Acad. Sci. U.S.A. 118, e2105021118. doi: 10.1073/pnas.2105021118 PubMed DOI PMC
Ahmad P., Jaleel C. A., Salem M. A., Nabi G., Sharma S. (2010). Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Crit. Rev. Biotechnol. 30, 161–175. doi: 10.3109/07388550903524243 PubMed DOI
Ahmadu T., Abdullahi A., Ahmad K. (2021). “The role of crop protection in sustainable potato (Solanum tuberosum L.) production to alleviate global starvation problem: An overview,” in Solanum tuberosum - A Promising Crop for Starvation Problem. Eds. Yildiz M., Ozgen Y. (London, UK: IntechOpen Limited; ), 19–51. doi: 10.5772/intechopen.100058 DOI
Barrs H. D. (1968). “Determination of water deficit in plant tissues,” in Water Deficits and Plant Growth, vol. 1 . Ed. Kozlowski T. T. (Clayton, Australia: CSIRO Publishing; ), 235–368.
Barrs H. D., Weatherley P. E. (1962). A re-examination of the relative turgidity technique for estimating water deficits in leaves. Austral. J. Biol. Sci. 15, 413–428. doi: 10.1071/BI9620413 DOI
Bradford M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254. doi: 10.1016/0003-2697(76)90527-3 PubMed DOI
Campos J. F., Cara B., Pérez-Martín F., Pineda B., Egea I., Flores F. B., et al. . (2016). The tomato mutant ars1 (altered response to salt stress 1) identifies an R1-type MYB transcription factor involved in stomatal closure under salt acclimation. Plant Biotechnol. J. 14, 1345–1356. doi: 10.1111/pbi.12498 PubMed DOI PMC
Chele K. H., Tinte M. M., Piater L. A., Dubery I. A., Tugizimana F. (2021). Soil salinity, a serious environmental issue and plant responses: A metabolomics perspective. Metabolites 11, 724. doi: 10.3390/metabo11110724 PubMed DOI PMC
Chourasia K. N., Lal M. K., Tiwari R. K., Dev D., Kardile H. B., Patil V. U., et al. . (2021). Salinity stress in potato: Understanding physiological, biochemical and molecular responses. Life 11, 545. doi: 10.3390/life11060545 PubMed DOI PMC
Cingel A., Savić J., Ćosić T., Raspor M., Ghalawenji N., Smigocki A., et al. . (2015). Phenotypic performance of transgenic potato (Solanum tuberosum L.) plants with pyramided rice cystatin genes (OCI and OCII). Arch. Biol. Sci. 67, 957–964. doi: 10.2298/ABS141201058C DOI
Ciura J., Kruk J. (2018). Phytohormones as targets for improving plant productivity and stress tolerance. J. Plant Physiol. 229, 32–40. doi: 10.1016/j.jplph.2018.06.013 PubMed DOI
Diaz-Vivancos P., Faize M., Barba-Espin G., Faize L., Petri C., Hernández J. A., et al. . (2013). Ectopic expression of cytosolic superoxide dismutase and ascorbate peroxidase leads to salt stress tolerance in transgenic plums. Plant Biotechnol. J. 11, 976–985. doi: 10.1111/pbi.12090 PubMed DOI
Flowers T. J., Munns R., Colmer T. D. (2015). Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Ann. Bot. 115, 419–431. doi: 10.1093/aob/mcu217 PubMed DOI PMC
Hanin M., Ebel C., Ngom M., Laplaze L., Masmoudi K. (2016). New insights on plant salt tolerance mechanisms and their potential use for breeding. Front. Plant Sci. 7 1787. doi: 10.3389/fpls.2016.01787 PubMed DOI PMC
Hartmann A., Senning M., Hedden P., Sonnewald U., Sonnewald S. (2011). Reactivation of meristem activity and sprout growth in potato tubers require both cytokinin and gibberellin. Plant Physiol. 155, 776–796. doi: 10.1104/pp.110.168252 PubMed DOI PMC
Inskeep W. P., Bloom P. R. (1985). Extinction coefficients of chlorophyll a and b in N,N-dimethylformamide and 80% acetone. Plant Physiol. 77, 483–485. doi: 10.1104/pp.77.2.483 PubMed DOI PMC
Joshi R., Sahoo K. K., Tripathi A. K., Kumar R., Gupta B. K., Pareek A., et al. . (2018). Knockdown of an inflorescence meristem-specific cytokinin oxidase - OsCKX2 in rice reduces yield penalty under salinity stress condition. Plant Cell Environ. 41, 936–946. doi: 10.1111/pce.12947 PubMed DOI
Jung C., Seo J. S., Han S. W., Koo Y. J., Kim C. H., Song S. I., et al. . (2008). Overexpression of AtMYB44 enhances stomatal closure to conifer abiotic stress tolerance in transgenic Arabidopsis . Plant Physiol. 146, 623–635. doi: 10.1104/pp.107.110981 PubMed DOI PMC
Kassambara A., Mundt F. (2020). “Factoextra: Extract and visualize the results of multivariate data analyses,” in R Package Version 1.0.7. Vienna, Austria: R Foundation for Statistical Computing. Available at: https://CRAN.R-project.org/package=factoextra.
Kolachevskaya O. O., Myakushina Y. A., Getman I. A., Lomin S. N., Deyneko I. V., Deigraf S. V., et al. . (2021). Hormonal regulation and crosstalk of auxin/cytokinin signaling pathways in potatoes in vitro and in relation to vegetation or tuberization stages. Int. J. Mol. Sci. 22, 8207. doi: 10.3390/ijms22158207 PubMed DOI PMC
Kronzucker H. J., Britto D. T. (2011). Sodium transport in plants: A critical review. New Phytol. 189, 54–81. doi: 10.1111/j.1469-8137.2010.03540.x PubMed DOI
Lê S., Josse J., Husson F. (2008). FactoMineR: An R package for multivariate analysis. J. Stat. Software 25, 1. doi: 10.18637/jss.v025.i01 DOI
Li S., An Y., Hailati S., Zhang J., Cao Y., Liu Y., et al. . (2019). Overexpression of the cytokinin oxidase/dehydrogenase (CKX) from Medicago sativa enhanced salt stress tolerance of Arabidopsis . J. Plant Biol. 62, 374–386. doi: 10.1007/s12374-019-0141-z DOI
Linsmaier E. M., Skoog F. (1965). Organic growth factor requirements of tobacco tissue cultures. Physiol. Plantarum 18, 100–127. doi: 10.1111/j.1399-3054.1965.tb06874.x DOI
Liu Z., Lv Y., Zhang M., Liu Y., Kong L., Zou M., et al. . (2013). Identification, expression, and comparative genomic analysis of the IPT and CKX gene families in Chinese cabbage (Brassica rapa ssp. pekinensis). BMC Genomics 14, 594. doi: 10.1186/1471-2164-14-594 PubMed DOI PMC
Liu M., Pan T., Allakhverdiev S. I., Yu M., Shabala S. (2020). Crop halophytism: An environmentally sustainable solution for global food security. Trends Plant Sci. 25, 630–634. doi: 10.1016/j.tplants.2020.04.008 PubMed DOI
Ma X., Zhang J., Huang B. (2016). Cytokinin-mitigation of salt-induced leaf senescence in perennial ryegrass involving the activation of antioxidant systems and ionic balance. Environ. Exp. Bot. 125, 1–11. doi: 10.1016/j.envexpbot.2016.01.002 DOI
MaChado R. M. A., Serralheiro R. P. (2017). Soil salinity: Effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 3, 30. doi: 10.3390/horticulturae3020030 DOI
Matzke M. A., Matzke A. J. M. (1998). Epigenetic silencing of plant transgenes as a consequence of diverse cellular defence responses. Cell. Mol. Life Sci. 54, 94–103. doi: 10.1007/s000180050128 PubMed DOI PMC
Muhammad I., Shalmani A., Ali M., Yang Q. H., Ahmad H., Li F. B. (2021). Mechanisms regulating the dynamics of photosynthesis under abiotic stresses. Front. Plant Sci. 11. doi: 10.3389/fpls.2020.615942 PubMed DOI PMC
Munns R., Tester M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651–681. doi: 10.1146/annurev.arplant.59.032607.092911 PubMed DOI
Murashige T., Skoog F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plantarum 15, 473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x DOI
Mýtinová Z., Motyka V., Haisel D., Gaudinová A., Lubovská Z., Wilhelmová N. (2010). Effect of abiotic stresses on the activity of antioxidative enzymes and contents of phytohormones in wild type and AtCKX2 transgenic tobacco plants. Biol. Plantarum 54, 461–470. doi: 10.1007/s10535-010-0082-3 DOI
Napar W. P. F., Kaleri A. R., Ahmed A., Nabi F., Sajid S., Ćosić T., et al. . (2022). The anthocyanin-rich tomato genotype LA-1996 displays superior efficiency of mechanisms of tolerance to salinity and drought. J. Plant Physiol. 271, 153662. doi: 10.1016/j.jplph.2022.153662 PubMed DOI
Nishiyama R., Le D. T., Watanabe Y., Matsui A., Tanaka M., Seki M., et al. . (2012). Transcriptome analyses of a salt-tolerant cytokinin-deficient mutant reveal differential regulation of salt stress response by cytokinin deficiency. PloS One 7, e32124. doi: 10.1371/journal.pone.0032124 PubMed DOI PMC
Nishiyama R., Watanabe Y., Fujita Y., Le D. T., Kojima M., Werner T., et al. . (2011). Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell 23, 2169–2183. doi: 10.1105/tpc.111.087395 PubMed DOI PMC
Pardo J. M., Quintero F. J. (2002). Plants and sodium ions: Keeping company with the enemy. Genome Biol. 3, reviews1017. doi: 10.1186/gb-2002-3-6-reviews1017 PubMed DOI PMC
Raspor M., Motyka V., Ninković S., Dobrev P. I., Malbeck J., Ćosić T., et al. . (2020). Endogenous levels of cytokinins, indole-3-acetic acid and abscisic acid in in vitro grown potato: A contribution to potato hormonomics. Sci. Rep. 10 3437. doi: 10.1038/s41598-020-60412-9 PubMed DOI PMC
Raspor M., Motyka V., Ninković S., Malbeck J., Dobrev P. I., Zdravković-Korać S., et al. . (2021). Overexpressing AtCKX1 in potato plants grown in vitro: The effects on cytokinin composition and tuberization. J. Plant Growth Regul. 40, 37–47. doi: 10.1007/s00344-020-10080-w DOI
Raspor M., Motyka V., Žižková E., Dobrev P. I., Trávníčková A., Zdravković-Korać S., et al. . (2012). Cytokinin profiles of AtCKX2-overexpressing potato plants and the impact of altered cytokinin homeostasis on tuberization in vitro . J. Plant Growth Regul. 31, 460–470. doi: 10.1007/s00344-011-9255-3 DOI
R Core Team (2022). R: A language and environment for statistical computing (Vienna, Austria: R Foundation for Statistical Computing; ). Available at: https://www.R-project.org/.
Romanov G. A., Aksenova N. P., Konstantinova T. N., Golyanovskaya S. A., Kossmann J., Willmitzer L. (2000). Effect of indole-3-acetic acid and kinetin on tuberisation parameters of different cultivars and transgenic lines of potato in vitro . Plant Growth Regul. 32, 245–251. doi: 10.1023/A:1010771510526 DOI
Rudić J., Dragićević M. B., Momčilović I., Simonović A. D., Pantelić D. (2022). In silico study of superoxidase dismutase gene family in potato and effects of elevated temperature and salicylic acid on gene expression. Antioxidants 11, 488. doi: 10.3390/antiox11030488 PubMed DOI PMC
Savić J., Nikolić R., Banjac N., Zdravković-Korać S., Stupar S., Cingel A., et al. . (2019). Beneficial implications of sugar beet proteinase inhibitor BvSTI on plant architecture and salt stress tolerance in Lotus corniculatus L. J. Plant Physiol. 243, 153055. doi: 10.1016/j.jplph.2019.153055 PubMed DOI
Sharma A., Shahzad B., Kumar V., Kohli S. K., Sidhu G. P. S., Bali A. S., et al. . (2019). Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules 9, 285. doi: 10.3390/biom9070285 PubMed DOI PMC
Tan C., Kalhoro M. T., Faqir Y., Ma J., Osei M. D., Khaliq G. (2022). Climate-resilient microbial biotechnology: A perspective on sustainable agriculture. Sustainability 14, 5574. doi: 10.3390/su14095574 DOI
Teo H. M., Aziz A., Wahizatul A. A., Bhubalan K., Nordahliawate M. S. S., Syazlie C. I. M., et al. . (2022). Setting a plausible route for saline soil-based crop cultivations by application of beneficial halophyte-associated bacteria: A review. Microorganisms 10, 657. doi: 10.3390/microorganisms10030657 PubMed DOI PMC
Trifunović-Momčilov M., Motyka V., Dobrev P. I., Marković M., Milošević S., Jevremović S., et al. . (2021). Phytohormone profiles in non-transformed and AtCKX transgenic centaury (Centaurium erythraea Rafn) shoots and roots in response to salinity stress in vitro . Sci. Rep. 11, 21471. doi: 10.1038/s41598-021-00866-7 PubMed DOI PMC
Trifunović-Momčilov M., Paunović D., Milošević S., Marković M., Jevremović S., Dragićević I.Č., et al. . (2020). Salinity stress response of non-transformed and AtCKX transgenic centaury (Centaurium erythraea Rafn.) shoots and roots grown in vitro . Ann. Appl. Biol. 177, 74–89. doi: 10.1111/aab.12593 DOI
van Leeuwen W., Ruttink T., Borst-Vrenssen A. W. M., van der Plas L. H. W., van der Krol A. R. (2001). Characterization of position-induced spatial and temporal regulation of transgene promoter activity in plants. J. Exp. Bot. 52, 949–959. doi: 10.1093/jexbot/52.358.949 PubMed DOI
Verslues P. E., Agarwal M., Katiyar-Agarwal S., Zhu J., Zhu J. K. (2006). Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J. 45, 523–539. doi: 10.1111/j.1365-313X.2005.02593.x PubMed DOI
Wu X., Zhu Z., Li X., Zha D. (2012). Effects of cytokinin on photosynthetic gas exchange, chlorophyll fluorescence parameters and antioxidative system in seedlings of eggplant (Solanum melongena L.) under salinity stress. Acta Physiol. Plant 34, 2105–2114. doi: 10.1007/s11738-012-1010-2 DOI
Yildiz M., Poyraz İ., Çavdar A., Özgen Y., Beyaz R. (2021). “Plant responses to salt stress,” in Plant Breeding - Current and Future Views. Ed. Abdurakhmonov I. Y. (London, UK: IntechOpen Limited; ), 143–160. doi: 10.5772/intechopen.93920 DOI
Zhu Y., Jiang X., Zhang J., He Y., Zhu X., Zhou X., et al. . (2020). Silicon confers cucumber resistance to salinity stress through regulation of proline and cytokinins. Plant Physiol. Biochem. 156, 209–220. doi: 10.1016/j.plaphy.2020.09.014 PubMed DOI