Working Memory and Cross-Frequency Coupling of Neuronal Oscillations
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
34744934
PubMed Central
PMC8566716
DOI
10.3389/fpsyg.2021.756661
Knihovny.cz E-zdroje
- Klíčová slova
- cross-frequency coupling, neuronal oscillations, phase-amplitude coupling, theta-gamma coupling, working memory,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Working memory (WM) is the active retention and processing of information over a few seconds and is considered an essential component of cognitive function. The reduced WM capacity is a common feature in many diseases, such as schizophrenia, attention deficit hyperactivity disorder (ADHD), mild cognitive impairment (MCI), and Alzheimer's disease (AD). The theta-gamma neural code is an essential component of memory representations in the multi-item WM. A large body of studies have examined the association between cross-frequency coupling (CFC) across the cerebral cortices and WM performance; electrophysiological data together with the behavioral results showed the associations between CFC and WM performance. The oscillatory entrainment (sensory, non-invasive electrical/magnetic, and invasive electrical) remains the key method to investigate the causal relationship between CFC and WM. The frequency-tuned non-invasive brain stimulation is a promising way to improve WM performance in healthy and non-healthy patients with cognitive impairment. The WM performance is sensitive to the phase and rhythm of externally applied stimulations. CFC-transcranial-alternating current stimulation (CFC-tACS) is a recent approach in neuroscience that could alter cognitive outcomes. The studies that investigated (1) the association between CFC and WM and (2) the brain stimulation protocols that enhanced WM through modulating CFC by the means of the non-invasive brain stimulation techniques have been included in this review. In principle, this review can guide the researchers to identify the most prominent form of CFC associated with WM processing (e.g., theta/gamma phase-amplitude coupling), and to define the previously published studies that manipulate endogenous CFC externally to improve WM. This in turn will pave the path for future studies aimed at investigating the CFC-tACS effect on WM. The CFC-tACS protocols need to be thoroughly studied before they can be considered as therapeutic tools in patients with WM deficits.
Zobrazit více v PubMed
Aben B., Stapert S., Blokland A. (2012). About the distinction between working memory and short-term memory. Front. Psychol. 3:301. 10.3389/fpsyg.2012.00301 PubMed DOI PMC
Ackerman P. L., Beier M. E., Boyle M. O. (2005). Working memory and intelligence: the same or different constructs? Psychol. Bull. 131, 30–60. 10.1037/0033-2909.131.1.30 PubMed DOI
Albouy P., Baillet S., Zatorre R. J. (2018). Driving working memory with frequency-tuned noninvasive brain stimulation. Ann. N. Y. Acad. Sci. 1423, 126–137. 10.1111/nyas.13664 PubMed DOI
Alegre M. (2016). Cross-frequency coupling in the pathophysiology of Parkinson's disease. Clin. Neurophysiol. 127:e29. 10.1016/j.clinph.2015.11.087 DOI
Alekseichuk I., Pabel S. C., Antal A., Paulus W. (2017). Intrahemispheric theta rhythm desynchronization impairs working memory. Restor. Neurol. Neurosci. 35, 147–158. 10.3233/RNN-160714 PubMed DOI
Alekseichuk I., Turi Z., Amador de Lara G., Antal A., Paulus W. (2016). Spatial working memory in humans depends on theta and high gamma synchronization in the prefrontal cortex. Curr. Biol. 26, 1513–1521. 10.1016/j.cub.2016.04.035 PubMed DOI
Allen E. A., Liu J., Kiehl K. A., Gelernter J., Pearlson G. D., Perrone-Bizzozero N. I., et al. . (2011). Components of cross-frequency modulation in health and disease. Front. Syst. Neurosci. 5:59. 10.3389/fnsys.2011.00059 PubMed DOI PMC
Andersen L. M., Jerbi K., Dalal S. S. (2020). Can EEG and MEG detect signals from the human cerebellum? Neuroimage 215:116817. 10.1016/j.neuroimage.2020.116817 PubMed DOI PMC
Axmacher N., Henseler M. M., Jensen O., Weinreich I., Elger C. E., Fell J. (2010). Cross-frequency coupling supports multi-item working memory in the human hippocampus. Proc. Natl. Acad. Sci. U.S.A. 107, 3228–3233. 10.1073/pnas.0911531107 PubMed DOI PMC
Baddeley A. (1992). Working memory. Science 255, 556–559. 10.1126/science.1736359 PubMed DOI
Baddeley A. D., Bressi S., Della Sala S., Logie R., Spinnler H. (1991). The decline of working memory in alzheimer's disease: a longitudinal study. Brain 114, 2521–2542. 10.1093/brain/114.6.2521 PubMed DOI
Bahramisharif A., Jensen O., Jacobs J., Lisman J. (2018). Serial representation of items during working memory maintenance at letter-selective cortical sites. PLoS Biol. 16:e2003805. 10.1371/journal.pbio.2003805 PubMed DOI PMC
Başar E. (2013). Brain oscillations in neuropsychiatric disease. Dialogues Clin. Neurosci. 15, 291–300. 10.31887/DCNS.2013.15.3/ebasar PubMed DOI PMC
Belluscio M. A., Mizuseki K., Schmidt R., Kempter R., Buzsáki G. (2012). Cross-frequency phase-phase coupling between theta and gamma oscillations in the hippocampus. J. Neurosci. 32, 423–435. 10.1523/JNEUROSCI.4122-11.2012 PubMed DOI PMC
Beynel L., Davis S. W., Crowell C. A., Dannhauer M., Lim W., Palmer H., et al. . (2020). Site-specific effects of online rTMS during a working memory task in healthy older adults. Brain Sci. 10:255. 10.3390/BRAINSCI10050255 PubMed DOI PMC
Biel A. L., Minarik T., Sauseng P. (2021). EEG cross-frequency phase synchronization as an index of memory matching in visual search. Neuroimage 235:117971. 10.1016/j.neuroimage.2021.117971 PubMed DOI
Borghini G., Candini M., Filannino C., Hussain M., Walsh V., Romei V., et al. . (2018). Alpha oscillations are causally linked to inhibitory abilities in ageing. J. Neurosci. 38, 4418–4429. 10.1523/JNEUROSCI.1285-17.2018 PubMed DOI PMC
Botvinick M., Watanabe T. (2007). From numerosity to ordinal rank: A gain-field model of serial order representation in cortical working memory. J. Neurosci. 27, 8636–8642. 10.1523/JNEUROSCI.2110-07.2007 PubMed DOI PMC
Brooks H., Goodman M. S., Bowie C. R., Zomorrodi R., Blumberger D. M., Butters M. A., et al. . (2020). Theta–gamma coupling and ordering information: a stable brain–behavior relationship across cognitive tasks and clinical conditions. Neuropsychopharmacology 45, 2038–2047. 10.1038/s41386-020-0759-z PubMed DOI PMC
Bruns A., Eckhorn R. (2004). Task-related coupling from high- to low-frequency signals among visual cortical areas in human subdural recordings. Int. J. Psychophysiol. 51, 97–116. 10.1016/j.ijpsycho.2003.07.001 PubMed DOI
Buckner R. L., Andrews-Hanna J. R., Schacter D. L. (2008). The brain's default network: anatomy, function, and relevance to disease. Ann. N. Y. Acad. Sci. 1124, 1–38. 10.1196/annals.1440.011 PubMed DOI
Buschman T. J., Miller E. K. (2007). Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 315, 1860–1864. 10.1126/science.1138071 PubMed DOI
Buzsáki G., Draguhn A. (2004). Neuronal olscillations in cortical networks. Science 304, 1926–1929. 10.1126/science.1099745 PubMed DOI
Calderone D. J., Lakatos P., Butler P. D., Castellanos F. X. (2014). Entrainment of neural oscillations as a modifiable substrate of attention. Trends Cogn. Sci. 18, 300–309. 10.1016/j.tics.2014.02.005 PubMed DOI PMC
Canolty R. T., Edwards E., Dalal S. S., Soltani M., Nagarajan S. S., Kirsch H. E., et al. . (2006). High gamma power is phase-locked to theta oscillations in human neocortex. Science 313, 1626–1628. 10.1126/science.1128115 PubMed DOI PMC
Canolty R. T., Knight R. T. (2010). The functional role of cross-frequency coupling. Trends Cogn. Sci. 14, 506–515. 10.1016/j.tics.2010.09.001 PubMed DOI PMC
Chai W. J., Abd Hamid A. I., Abdullah J. M. (2018). Working memory from the psychological and neurosciences perspectives: a review. Front. Psychol. 9, 401. 10.3389/fpsyg.2018.00401 PubMed DOI PMC
Chaieb L., Leszczynski M., Axmacher N., Höhne M., Elger C. E., Fell J. (2015). Theta-gamma phase-phase coupling during working memory maintenance in the human hippocampus. Cogn. Neurosci. 6, 149–157. 10.1080/17588928.2015.1058254 PubMed DOI
Chander B. S., Witkowski M., Braun C., Robinson S. E., Born J., Cohen L. G., et al. . (2016). tACS phase locking of frontal midline theta oscillations disrupts working memory performance. Front. Cell. Neurosci. 10:120. 10.3389/fncel.2016.00120 PubMed DOI PMC
Chuderski A. (2016). Fluid intelligence and the cross-frequency coupling of neuronal oscillations. Span. J. Psychol. 19:E91. 10.1017/sjp.2016.86 PubMed DOI
Cohen M. X. (2014). A neural microcircuit for cognitive conflict detection and signaling. Trends Neurosci. 37, 480–490. 10.1016/j.tins.2014.06.004 PubMed DOI
Colgin L. L. (2015). Theta-gamma coupling in the entorhinal-hippocampal system. Curr. Opin. Neurobiol. 31, 45–50. 10.1016/j.conb.2014.08.001 PubMed DOI PMC
Colom R., Shih P. C., Flores-Mendoza C., Quiroga M. Á. (2006). The real relationship between short-term memory and working memory. Memory 14, 804–813. 10.1080/09658210600680020 PubMed DOI
Constantinidis C., Klingberg T. (2016). The neuroscience of working memory capacity and training. Nat. Rev. Neurosci. 17, 438–449. 10.1038/nrn.2016.43 PubMed DOI
Conway A. R. A., Kane M. J., Bunting M. F., Hambrick D. Z., Wilhelm O., Engle R. W. (2005). Working memory span tasks: A methodological review and user's guide. Psychon. Bull. Rev. 12, 769–786. 10.3758/BF03196772 PubMed DOI
Cowan N. (2001). The magical number 4 in short-term memory: a reconsideration of mental storage capacity. Behav. Brain Sci. 24, 87–114. 10.1017/S0140525X01003922 PubMed DOI
Cowan N. (2014). Working memory underpins cognitive development, learning, and education. Educ. Psychol. Rev. 26, 197–223. 10.1007/s10648-013-9246-y PubMed DOI PMC
Cowan N. (2017). The many faces of working memory and short-term storage. Psychon. Bull. Rev. 24, 1158–1170. 10.3758/s13423-016-1191-6 PubMed DOI
Dallmer-Zerbe I., Popp F., Lam A. P., Philipsen A., Herrmann C. S. (2020). Transcranial alternating current stimulation (tACS) as a tool to modulate p300 amplitude in attention deficit hyperactivity disorder (ADHD): preliminary findings. Brain Topogr. 33, 191–207. 10.1007/s10548-020-00752-x PubMed DOI PMC
Daselaar S. M., Prince S. E., Dennis N. A., Hayes S. M., Kim H., Cabeza R. (2009). Posterior midline and ventral parietal activity is associated with retrieval success and encoding failure. Front. Hum. Neurosci. 3:2009. 10.3389/neuro.09.013.2009 PubMed DOI PMC
Daume J., Graetz S., Gruber T., Engel A. K., Friese U. (2017b). Cognitive control during audiovisual working memory engages frontotemporal theta-band interactions. Sci. Rep. 7:12585. 10.1038/s41598-017-12511-3 PubMed DOI PMC
Daume J., Gruber T., Engel A. K., Friese U. (2017a). Phase-amplitude coupling and long-range phase synchronization reveal frontotemporal interactions during visual working memory. J. Neurosci. 37, 313–322. 10.1523/JNEUROSCI.2130-16.2017 PubMed DOI PMC
Davoudi S., Dezfouli M. P., Knight R. T., Daliri M. R., Johnson E. L. (2021). Prefrontal lesions disrupt posterior alpha–gamma coordination of visual working memory representations. J. Cogn. Neurosci. 33, 1798–1810. 10.1162/jocn_a_01715 PubMed DOI PMC
De Hemptinne C., Ryapolova-Webb E. S., Air E. L., Garcia P. A., Miller K. J., Ojemann J. G., et al. . (2013). Exaggerated phase-amplitude coupling in the primary motor cortex in Parkinson disease. Proc. Natl. Acad. Sci. U.S.A. 110, 4780–4785. 10.1073/pnas.1214546110 PubMed DOI PMC
Demiralp T., Bayraktaroglu Z., Lenz D., Junge S., Busch N. A., Maess B., et al. . (2007). Gamma amplitudes are coupled to theta phase in human EEG during visual perception. Int. J. Psychophysiol. 64, 24–30. 10.1016/j.ijpsycho.2006.07.005 PubMed DOI
DeStefano D., LeFevre J. (2010). The role of working memory in mental arithmetic. Cogn. Psychol. 16, 353–386. 10.1080/09541440244000328 PubMed DOI
Dimitriadis S. I., Sun Y., Thakor N. V., Bezerianos A. (2016). Causal Interactions between frontalθ – parieto-occipitalα2 predict performance on a mental arithmetic task. Front. Hum. Neurosci. 10:454. 10.3389/fnhum.2016.00454 PubMed DOI PMC
Düzel E., Penny W. D., Burgess N. (2010). Brain oscillations and memory. Curr. Opin. Neurobiol. 20, 143–149. 10.1016/j.conb.2010.01.004 PubMed DOI
Edin F., Klingberg T., Johansson P., McNab F., Tegnér J., Compte A. (2009). Mechanism for top-down control of working memory capacity. Proc. Natl. Acad. Sci. U.S.A. 106, 6802–6807. 10.1073/pnas.0901894106 PubMed DOI PMC
Egner T., Gruzelier J. H. (2004). EEG Biofeedback of low beta band components: frequency-specific effects on variables of attention and event-related brain potentials. Clin. Neurophysiol. 115, 131–139. 10.1016/S1388-2457(03)00353-5 PubMed DOI
Engel A. K., Fries P., Singer W. (2001). Dynamic predictions: Oscillations and synchrony in top–down processing. Nat. Rev. Neurosci. 2, 704–716. 10.1038/35094565 PubMed DOI
Engle R. W., Tuholski S. W., Laughlin J. E., Conway A. R. A. (1999). Working memory, short-term memory, and general fluid intelligence: a latent-variable approach. J. Exp. Psychol. Gen. 128, 309–331. 10.1037/0096-3445.128.3.309 PubMed DOI
Fernández A., Pinal D., Díaz F., Zurrón M. (2021). Working memory load modulates oscillatory activity and the distribution of fast frequencies across frontal theta phase during working memory maintenance. Neurobiol. Learn. Mem. 183, 107476. 10.1016/j.nlm.2021.107476 PubMed DOI
Feurra M., Galli G., Pavone E. F., Rossi A., Rossi S. (2016). Frequency-specific insight into short-term memory capacity. J. Neurophysiol. 116, 153–158. 10.1152/jn.01080.2015 PubMed DOI PMC
Fougnie D., Zughni S., Godwin D., Marois R. (2015). Working memory storage is intrinsically domain specific. J. Exp. Psychol. Gen. 144, 30–47. 10.1037/a0038211 PubMed DOI
Freunberger R., Werkle-Bergner M., Griesmayr B., Lindenberger U., Klimesch W. (2011). Brain oscillatory correlates of working memory constraints. Brain Res. 1375, 93–102. 10.1016/j.brainres.2010.12.048 PubMed DOI
Fries P. (2009). Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu. Rev. Neurosci. 32, 209–224. 10.1146/annurev.neuro.051508.135603 PubMed DOI
Fries P. (2015). Rhythms for cognition: communication through coherence. Neuron 88, 220–235. 10.1016/j.neuron.2015.09.034 PubMed DOI PMC
Fries P., Nikolić D., Singer W. (2007). The gamma cycle. Trends Neurosci. 30, 309–316. 10.1016/j.tins.2007.05.005 PubMed DOI
Fries P., Reynolds J. H., Rorie A. E., Desimone R. (2001). Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291, 1560–1563. 10.1126/science.1055465 PubMed DOI
Friese U., Köster M., Hassler U., Martens U., Trujillo-Barreto N., Gruber T. (2013). Successful memory encoding is associated with increased cross-frequency coupling between frontal theta and posterior gamma oscillations in human scalp-recorded EEG. Neuroimage 66, 642–647. 10.1016/j.neuroimage.2012.11.002 PubMed DOI
Gagnon L. G., Belleville S. (2011). Working memory in mild cognitive impairment and Alzheimer's disease: contribution of forgetting and predictive value of complex span tasks. Neuropsychology 25, 226–236. 10.1037/a0020919 PubMed DOI
Gathercole S., Brown L., Pickering S. (2003). Working memory assessments at school entry as longitudinal predictors of National Curriculum attainment levels. Educ. Child Psychol. 20, 109–122. Available at: https://research-information.bris.ac.uk/en/publications/working-memory-assessments-at-school-entry-as-longitudinal-predic (accessed February 5, 2021).
Gathercole S. E., Alloway T. P. (2006). Practitioner review: Short-term and working memory impairments in neurodevelopmental disorders: diagnosis and remedial support. J. Child Psychol. Psychiatry Allied Discip. 47, 4–15. 10.1111/j.1469-7610.2005.01446.x PubMed DOI
Gignac G. E. (2015). The magical numbers 7 and 4 are resistant to the flynn effect: no evidence for increases in forward or backward recall across 85 years of data. Intelligence 48, 85–95. 10.1016/j.intell.2014.11.001 DOI
Goodman M. S., Kumar S., Zomorrodi R., Ghazala Z., Cheam A. S. M., Barr M. S., et al. . (2018). Theta-Gamma coupling and working memory in Alzheimer's dementia and mild cognitive impairment. Front. Aging Neurosci. 10:101. 10.3389/fnagi.2018.00101 PubMed DOI PMC
Graetz S., Daume J., Friese U., Gruber T. (2019). Alterations in oscillatory cortical activity indicate changes in mnemonic processing during continuous item recognition. Exp. Brain Res. 237, 573–583. 10.1007/s00221-018-5439-4 PubMed DOI
Griesmayr B., Gruber W. R., Klimesch W., Sauseng P. (2010). Human frontal midline theta and its synchronization to gamma during a verbal delayed match to sample task. Neurobiol. Learn. Mem. 93, 208–215. 10.1016/j.nlm.2009.09.013 PubMed DOI
Hacker C. D., Snyder A. Z., Pahwa M., Corbetta M., Leuthardt E. C. (2017). Frequency-specific electrophysiologic correlates of resting state fMRI networks. Neuroimage 149, 446–457. 10.1016/j.neuroimage.2017.01.054 PubMed DOI PMC
Hahn B., Ross T. J., Stein E. A. (2007). Cingulate activation increases dynamically with response speed under stimulus unpredictability. Cereb. Cortex 17, 1664–1671. 10.1093/cercor/bhl075 PubMed DOI PMC
Hanslmayr S., Axmacher N., Inman C. S. (2019). Modulating human memory via entrainment of brain oscillations. Trends Neurosci. 42, 485–499. 10.1016/j.tins.2019.04.004 PubMed DOI
Helfrich R. F., Herrmann C. S., Engel A. K., Schneider T. R. (2016). Different coupling modes mediate cortical cross-frequency interactions. Neuroimage 140, 76–82. 10.1016/j.neuroimage.2015.11.035 PubMed DOI
Herman P. A., Lundqvist M., Lansner A. (2013). Nested theta to gamma oscillations and precise spatiotemporal firing during memory retrieval in a simulated attractor network. Brain Res. 1536, 68–87. 10.1016/j.brainres.2013.08.002 PubMed DOI
Herrmann C. S., Strüber D., Helfrich R. F., Engel A. K. (2016). EEG oscillations: from correlation to causality. Int. J. Psychophysiol. 103, 12–21. 10.1016/j.ijpsycho.2015.02.003 PubMed DOI
Hiltunen T., Kantola J., Elseoud A. A., Lepola P., Suominen K., Starck T., et al. . (2014). Infra-slow EEG fluctuations are correlated with resting-state network dynamics in fMRI. J. Neurosci. 34, 356–362. 10.1523/JNEUROSCI.0276-13.2014 PubMed DOI PMC
Holz E. M., Glennon M., Prendergast K., Sauseng P. (2010). Theta-gamma phase synchronization during memory matching in visual working memory. Neuroimage 52, 326–335. 10.1016/j.neuroimage.2010.04.003 PubMed DOI
Hoy K. E., Bailey N., Arnold S., Windsor K., John J., Daskalakis Z. J., et al. . (2015). The effect of γ-tACS on working memory performance in healthy controls. Brain Cogn. 101, 51–56. 10.1016/j.bandc.2015.11.002 PubMed DOI
Hoy K. E., Whitty D., Bailey N., Fitzgerald P. B. (2016). Preliminary investigation of the effects of γ -tACS on working memory in schizophrenia. J. Neural Transm. 123, 1205–1212. 10.1007/s00702-016-1554-1 PubMed DOI
Hsieh L. T., Ranganath C. (2014). Frontal midline theta oscillations during working memory maintenance and episodic encoding and retrieval. Neuroimage 85, 721–729. 10.1016/j.neuroimage.2013.08.003 PubMed DOI PMC
Hulme C., Melby-Lervåg M. (2012). Current evidence does not support the claims made for CogMed working memory training. J. Appl. Res. Mem. Cogn. 1, 197–200. 10.1016/j.jarmac.2012.06.006 DOI
Jaeggi S. M., Buschkuehl M., Jonides J., Perrig W. J. (2008). Improving fluid intelligence with training on working memory. Proc. Natl. Acad. Sci. U.S.A. 105, 6829–6833. 10.1073/pnas.0801268105 PubMed DOI PMC
Jaušovec N., Jaušovec K. (2014). Increasing working memory capacity with theta transcranial alternating current stimulation (tACS). Biol. Psychol. 96, 42–47. 10.1016/j.biopsycho.2013.11.006 PubMed DOI
Jaušovec N., Jaušovec K., Pahor A. (2014). The influence of theta transcranial alternating current stimulation (tACS) on working memory storage and processing functions. Acta Psychol. 146, 1–6. 10.1016/j.actpsy.2013.11.011 PubMed DOI
Jensen O., Colgin L. L. (2007). Cross-frequency coupling between neuronal oscillations. Trends Cogn. Sci. 11, 267–269. 10.1016/j.tics.2007.05.003 PubMed DOI
Jensen O., Lisman J. E. (1996). Novel lists of 7±2 known items can be reliably stored in an oscillatory short-term memory network: interaction with long-term memory. Learn. Mem. 3, 257–263. 10.1101/lm.3.2-3.257 PubMed DOI
Jensen O., Spaak E., Zumer J. M. (2014). Human brain oscillations: From physiological mechanisms to analysis and cognition, in Magnetoencephalography: From Signals to Dynamic Cortical Networks, eds Supek S., Aine C. J. (Berlin: Springer-Verlag; ), 359–403. 10.1007/978-3-642-33045-2_17 DOI
Jeong J. (2004). EEG dynamics in patients with Alzheimer's disease. Clin. Neurophysiol. 115, 1490–1505. 10.1016/j.clinph.2004.01.001 PubMed DOI
Jirsa V., Müller V. (2013). Cross-frequency coupling in real and virtual brain networks. Front. Comput. Neurosci. 7:78. 10.3389/fncom.2013.00078 PubMed DOI PMC
Jones K. T., Arciniega H., Berryhill M. E. (2019). Replacing tDCS with theta tACS provides selective, but not general WM benefits. Brain Res. 1720:146324. 10.1016/j.brainres.2019.146324 PubMed DOI
Jones K. T., Johnson E. L., Berryhill M. E. (2020). Frontoparietal theta-gamma interactions track working memory enhancement with training and tDCS. Neuroimage 211:116615. 10.1016/j.neuroimage.2020.116615 PubMed DOI PMC
Kamiński J., Brzezicka A., Wróbel A. (2011). Short-term memory capacity (7±2) predicted by theta to gamma cycle length ratio. Neurobiol. Learn. Mem. 95, 19–23. 10.1016/j.nlm.2010.10.001 PubMed DOI
Kane M. J., Brown L. H., McVay J. C., Silvia P. J., Myin-Germeys I., Kwapil T. R. (2007). For whom the mind wanders, and when: an experience-sampling study of working memory and executive control in daily life. Psychol. Sci. 18, 614–621. 10.1111/j.1467-9280.2007.01948.x PubMed DOI
Kane M. J., Tuholski S. W., Hambrick D. Z., Wilhelm O., Payne T. W., Engle R. W. (2004). The generality of working memory capacity: a latent-variable approach to verbal and visuospatial memory span and reasoning. J. Exp. Psychol. Gen. 133, 189–217. 10.1037/0096-3445.133.2.189 PubMed DOI
Kehler L., Francisco C. O., Uehara M. A., Moussavi Z. (2020). The effect of transcranial alternating current stimulation (tACS) on cognitive function in older adults with dementia, in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS (Institute of Electrical and Electronics Engineers Inc.), 3649–3653. 10.1109/EMBC44109.2020.9175903 PubMed DOI
Klimesch W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res. Rev. 29, 169–195. 10.1016/S0165-0173(98)00056-3 PubMed DOI
Klimesch W. (2018). The frequency architecture of brain and brain body oscillations: an analysis. Eur. J. Neurosci. 48, 2431–2453. 10.1111/ejn.14192 PubMed DOI PMC
Klingberg T. (2010). Training and plasticity of working memory. Trends Cogn. Sci. 14, 317–324. 10.1016/j.tics.2010.05.002 PubMed DOI
Klingberg T., Forssberg H., Westerberg H. (2002). Training of working memory in children with ADHD. J. Clin. Exp. Neuropsychol. 24, 781–791. 10.1076/jcen.24.6.781.8395 PubMed DOI
Knyazev G. G., Slobodskoj-Plusnin J. Y., Bocharov A. V., Pylkova L. V. (2011). The default mode network and EEG alpha oscillations: an independent component analysis. Brain Res. 1402, 67–79. 10.1016/j.brainres.2011.05.052 PubMed DOI
Köster M., Friese U., Schöne B., Trujillo-Barreto N., Gruber T. (2014). Theta-gamma coupling during episodic retrieval in the human EEG. Brain Res. 1577, 57–68. 10.1016/j.brainres.2014.06.028 PubMed DOI
Kuhnke P., Meyer L., Friederici A. D., Hartwigsen G. (2017). Left posterior inferior frontal gyrus is causally involved in reordering during sentence processing. Neuroimage 148, 254–263. 10.1016/j.neuroimage.2017.01.013 PubMed DOI
Lakatos P., Shah A. S., Knuth K. H., Ulbert I., Karmos G., Schroeder C. E. (2005). An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. J. Neurophysiol. 94, 1904–1911. 10.1152/jn.00263.2005 PubMed DOI
Lara G. A., Alekseichuk I., Turi Z., Lehr A., Antal A., Paulus W. (2018). Perturbation of theta-gamma coupling at the temporal lobe hinders verbal declarative memory. Brain Stimul. 11, 509–517. 10.1016/j.brs.2017.12.007 PubMed DOI
Lee Y. Y., Yang C. Y. (2014). Utilizing the extent of theta–gamma synchronization to estimate visuospatial memory ability. Australas. Phys. Eng. Sci. Med. 37, 665–672. 10.1007/s13246-014-0299-0 PubMed DOI
Leszczyński M., Fell J., Axmacher N. (2015). Rhythmic working memory activation in the human hippocampus. Cell Rep. 13, 1272–1282. 10.1016/j.celrep.2015.09.081 PubMed DOI
Lisman J. E., Idiart M. A. P. (1995). Storage of 7 ± 2 short-term memories in oscillatory subcycles. Science 267, 1512–1515. 10.1126/science.7878473 PubMed DOI
Lisman J. E., Jensen O. (2013). The theta-gamma neural code. Neuron 77, 1002–1016. 10.1016/j.neuron.2013.03.007 PubMed DOI PMC
López-Alonso V., Cheeran B., Río-Rodríguez D., Fernández-Del-Olmo M. (2014). Inter-individual variability in response to non-invasive brain stimulation paradigms. Brain Stimul. 7, 372–380. 10.1016/j.brs.2014.02.004 PubMed DOI
Luo W., Guan J.-S. (2018). Do brain oscillations orchestrate memory? Brain Sci. Adv. 4, 16–33. 10.26599/BSA.2018.9050008 DOI
Lynn P. A., Sponheim S. R. (2016). Disturbed theta and gamma coupling as a potential mechanism for visuospatial working memory dysfunction in people with schizophrenia. Neuropsychiatr. Electrophysiol. 2, 1–30. 10.1186/s40810-016-0022-3 DOI
MacOveanu J., Klingberg T., Tegnér J. (2007). Neuronal firing rates account for distractor effects on mnemonic accuracy in a visuo-spatial working memory task. Biol. Cybern. 96, 407–419. 10.1007/s00422-006-0139-8 PubMed DOI
Malenínská K., Rudolfová V., Šulcová K., Koudelka V., Brunovský M., Horáček J., et al. . (2021). Is short-term memory capacity (7±2) really predicted by theta to gamma cycle length ratio? Behav. Brain Res. 414:113465. 10.1016/j.bbr.2021.113465 PubMed DOI
Mann E. O., Paulsen O. (2005). Mechanisms underlying gamma ('40 Hz') network oscillations in the hippocampus - a mini-review. Prog. Biophys. Mol. Biol. 87, 67–76. 10.1016/j.pbiomolbio.2004.06.004 PubMed DOI
Maris E., van Vugt M., Kahana M. (2011). Spatially distributed patterns of oscillatory coupling between high-frequency amplitudes and low-frequency phases in human iEEG. Neuroimage 54, 836–850. 10.1016/j.neuroimage.2010.09.029 PubMed DOI
Marzetti L., Basti A., Chella F., D'Andrea A., Syrjälä J., Pizzella V. (2019). Brain functional connectivity through phase coupling of neuronal oscillations: a perspective from magnetoencephalography. Front. Neurosci. 13:964. 10.3389/fnins.2019.00964 PubMed DOI PMC
Merker B. (2013). Cortical gamma oscillations: the functional key is activation, not cognition. Neurosci. Biobehav. Rev. 37, 401–417. 10.1016/j.neubiorev.2013.01.013 PubMed DOI
Miniussi C., Ruzzoli M. (2013). Transcranial stimulation and cognition. Handb. Clin. Neurol. 116, 739–750. 10.1016/B978-0-444-53497-2.00056-5 PubMed DOI
Mizuhara H., Yamaguchi Y. (2011). Neuronal ensemble for visual working memory via interplay of slow and fast oscillations. Eur. J. Neurosci. 33, 1925–1934. 10.1111/j.1460-9568.2011.07681.x PubMed DOI
Mormann F., Fell J., Axmacher N., Weber B., Lehnertz K., Elger C. E., et al. . (2005). Phase/amplitude reset and theta–gamma interaction in the human medial temporal lobe during a continuous word recognition memory task. Hippocampus 15, 890–900. 10.1002/hipo.20117 PubMed DOI
Nadel L., Hardt O. (2011). Update on memory systems and processes. Neuropsychopharmacology 36, 251–273. 10.1038/npp.2010.169 PubMed DOI PMC
Niebur E. (2002). Electrophysiological correlates of synchronous neural activity and attention: a short review. BioSystems 67, 157–166. 10.1016/S0303-2647(02)00102-8 PubMed DOI
Papazova I., Strube W., Hoffmann L., Schwippel T., Padberg F., Palm U., et al. . (2020). T54 effects of gamma transcranial alternating current stimulation to the left dorsolateral prefrontal cortex on working memory in schizophrenia patients. Schizophr. Bull. 46, S251–S252. 10.1093/schbul/sbaa029.614 DOI
Park H., Lee D. S., Kang E., Kang H., Hahm J., Kim J. S., et al. . (2016). Formation of visual memories controlled by gamma power phase-locked to alpha oscillations. Sci. Rep. 6:28092. 10.1038/srep28092 PubMed DOI PMC
Park J. Y., Jhung K., Lee J., An S. K. (2013). Theta-gamma coupling during a working memory task as compared to a simple vigilance task. Neurosci. Lett. 532, 39–43. 10.1016/j.neulet.2012.10.061 PubMed DOI
Park J. Y., Lee Y. R., Lee J. (2011). The relationship between theta-gamma coupling and spatial memory ability in older adults. Neurosci. Lett. 498, 37–41. 10.1016/j.neulet.2011.04.056 PubMed DOI
Persuh M., Larock E., Berger J. (2018). Working memory and consciousness: the current state of play. Front. Hum. Neurosci. 12:78. 10.3389/fnhum.2018.00078 PubMed DOI PMC
Pinal D., Zurrón M., Díaz F., Sauseng P. (2015). Stuck in default mode: inefficient cross-frequency synchronization may lead to age-related short-term memory decline. Neurobiol. Aging 36, 1611–1618. 10.1016/j.neurobiolaging.2015.01.009 PubMed DOI
Popov T., Jensen O., Schoffelen J. M. (2018). Dorsal and ventral cortices are coupled by cross-frequency interactions during working memory. Neuroimage 178, 277–286. 10.1016/j.neuroimage.2018.05.054 PubMed DOI
Rajji T. K., Zomorrodi R., Barr M. S., Blumberger D. M., Mulsant B. H., Daskalakis Z. J. (2017). Ordering information in working memory and modulation of gamma by theta oscillations in humans. Cereb. Cortex 27, 1482–1490. 10.1093/cercor/bhv326 PubMed DOI
Riddle J., McFerren A., Frohlich F. (2021). Causal role of cross-frequency coupling in distinct components of cognitive control. Prog. Neurobiol. 202:102033. 10.1016/j.pneurobio.2021.102033 PubMed DOI PMC
Rizzuto D. S., Madsen J. R., Bromfield E. B., Schulze-Bonhage A., Kahana M. J. (2006). Human neocortical oscillations exhibit theta phase differences between encoding and retrieval. Neuroimage 31, 1352–1358. 10.1016/j.neuroimage.2006.01.009 PubMed DOI
Roberts B. M., Hsieh L. T., Ranganath C. (2013). Oscillatory activity during maintenance of spatial and temporal information in working memory. Neuropsychologia 51, 349–357. 10.1016/j.neuropsychologia.2012.10.009 PubMed DOI PMC
Rodriguez-Larios J., Alaerts K. (2019). Tracking transient changes in the neural frequency architecture: harmonic relationships between theta and alpha peaks facilitate cognitive performance. J. Neurosci. 39, 6291–6298. 10.1523/JNEUROSCI.2919-18.2019 PubMed DOI PMC
Romei V., Driver J., Schyns P. G., Thut G. (2011). Rhythmic TMS over parietal cortex links distinct brain frequencies to global versus local visual processing. Curr. Biol. 21, 334–337. 10.1016/j.cub.2011.01.035 PubMed DOI PMC
Roux F., Uhlhaas P. J. (2014). Working memory and neural oscillations: Alpha-gamma versus theta-gamma codes for distinct WM information? Trends Cogn. Sci. 18, 16–25. 10.1016/j.tics.2013.10.010 PubMed DOI
Salimpour Y., Anderson W. S. (2019). Cross-Frequency coupling based neuromodulation for treating neurological disorders. Front. Neurosci. 13:125. 10.3389/fnins.2019.00125 PubMed DOI PMC
Sauseng P., Griesmayr B., Freunberger R., Klimesch W. (2010). Control mechanisms in working memory: a possible function of EEG theta oscillations. Neurosci. Biobehav. Rev. 34, 1015–1022. 10.1016/j.neubiorev.2009.12.006 PubMed DOI
Sauseng P., Klimesch W., Doppelmayr M., Pecherstorfer T., Freunberger R., Hanslmayr S. (2005). EEG alpha synchronization and functional coupling during top-down processing in a working memory task. Hum. Brain Mapp. 26, 148–155. 10.1002/hbm.20150 PubMed DOI PMC
Sauseng P., Klimesch W., Heise K. F., Gruber W. R., Holz E., Karim A. A., et al. . (2009). Brain oscillatory substrates of visual short-term memory capacity. Curr. Biol. 19, 1846–1852. 10.1016/j.cub.2009.08.062 PubMed DOI
Sauseng P., Peylo C., Biel A. L., Friedrich E. V. C., Romberg-Taylor C. (2019). Does cross-frequency phase coupling of oscillatory brain activity contribute to a better understanding of visual working memory? Br. J. Psychol. 110, 245–255. 10.1111/bjop.12340 PubMed DOI
Schack B., Vath N., Petsche H., Geissler H. G., Möller E. (2002). Phase-coupling of theta-gamma EEG rhythms during short-term memory processing. Int. J. Psychophysiol. 44, 143–163. 10.1016/S0167-8760(01)00199-4 PubMed DOI
Sederberg P. B., Kahana M. J., Howard M. W., Donner E. J., Madsen J. R. (2003). Theta and gamma oscillations during encoding predict subsequent recall. J. Neurosci. 23, 10809–10814. 10.1523/JNEUROSCI.23-34-10809.2003 PubMed DOI PMC
Siebenhühner F., Wang S. H., Arnulfo G., Lampinen A., Nobili L., Palva J. M., et al. . (2020). Genuine cross-frequency coupling networks in human resting-state electrophysiological recordings. PLoS Biol. 18:e3000685. 10.1371/journal.pbio.3000685 PubMed DOI PMC
Siebenhühner F., Wang S. H., Palva J. M., Palva S. (2016). Cross-frequency synchronization connects networks of fast and slow oscillations during visual working memory maintenance. Elife 5:e36. 10.7554/eLife.13451.036 PubMed DOI PMC
Siegel M., Donner T. H., Engel A. K. (2012). Spectral fingerprints of large-scale neuronal interactions. Nat. Rev. Neurosci. 13, 121–134. 10.1038/nrn3137 PubMed DOI
Siems M., Siegel M. (2020). Dissociated neuronal phase- and amplitude-coupling patterns in the human brain. Neuroimage 209:116538. 10.1016/j.neuroimage.2020.116538 PubMed DOI PMC
Smith E. H., Banks G. P., Mikell C. B., Cash S. S., Patel S. R., Eskandar E. N., et al. . (2015). Frequency-Dependent representation of reinforcement-related information in the human medial and lateral prefrontal cortex. J. Neurosci. 35:15827. 10.1523/JNEUROSCI.1864-15.2015 PubMed DOI PMC
Sotero R. C. (2016). Topology, cross-frequency, and same-frequency band interactions shape the generation of phase-amplitude coupling in a neural mass model of a cortical column. PLoS Comput. Biol. 12:1005180. 10.1371/journal.pcbi.1005180 PubMed DOI PMC
Sreeraj V. S., Shanbhag V., Nawani H., Shivakumar V., Damodharan D., Bose A., et al. . (2017). Feasibility of online neuromodulation using transcranial alternating current stimulation in schizophrenia. Indian J. Psychol. Med. 39:92. 10.4103/0253-7176.198937 PubMed DOI PMC
Tang W., Liu H., Douw L., Kramer M. A., Eden U. T., Hämäläinen M. S., et al. . (2017). Dynamic connectivity modulates local activity in the core regions of the default-mode network. Proc. Natl. Acad. Sci. U.S.A. 114, 9713–9718. 10.1073/pnas.1702027114 PubMed DOI PMC
Thut G., Miniussi C. (2009). New insights into rhythmic brain activity from TMS-EEG studies. Trends Cogn. Sci. 13, 182–189. 10.1016/j.tics.2009.01.004 PubMed DOI
Tseng Y.-L., Liu H.-H., Liou M., Tsai A. C., Chien V. S. C., Shyu S.-T., et al. . (2019). Lingering sound: event-related phase-amplitude coupling and phase-locking in fronto-temporo-parietal functional networks during memory retrieval of music melodies. Front. Hum. Neurosci. 13:150. 10.3389/fnhum.2019.00150 PubMed DOI PMC
Turi Z., Mittner M., Lehr A., Bürger H., Antal A., Paulus W. (2020). θ-γ cross-frequency transcranial alternating current stimulation over the trough impairs cognitive control. eNeuro 7, 1–12. 10.1523/ENEURO.0126-20.2020 PubMed DOI PMC
Unsworth N., Engle R. W. (2007). On the division of short-term and working memory: an examination of simple and complex span and their relation to higher order abilities. Psychol. Bull. 133, 1038–1066. 10.1037/0033-2909.133.6.1038 PubMed DOI
van der Meij R., Kahana M., Maris E. (2012). Phase-amplitude coupling in human electrocorticography is spatially distributed and phase diverse. J. Neurosci. 32, 111–123. 10.1523/JNEUROSCI.4816-11.2012 PubMed DOI PMC
Van Vugt M. K., Chakravarthi R., Lachaux J.-P. (2014). For whom the bell tolls: periodic reactivation of sensory cortex in the gamma band as a substrate of visual working memory maintenance. Front. Hum. Neurosci. 8:696. 10.3389/fnhum.2014.00696 PubMed DOI PMC
Veniero D., Vossen A., Gross J., Thut G. (2015). Lasting EEG/MEG aftereffects of rhythmic transcranial brain stimulation: level of control over oscillatory network activity. Front. Cell. Neurosci. 9:477. 10.3389/fncel.2015.00477 PubMed DOI PMC
Vilberg K. L., Rugg M. D. (2008). Memory retrieval and the parietal cortex: a review of evidence from a dual-process perspective. Neuropsychologia 46, 1787–1799. 10.1016/j.neuropsychologia.2008.01.004 PubMed DOI PMC
Vogel E. K., Woodman G. F., Luck S. J. (2001). Storage of features, conjunctions, and objects in visual working memory. J. Exp. Psychol. Hum. Percept. Perform. 27, 92–114. 10.1037/0096-1523.27.1.92 PubMed DOI
Vosskuhl J., Huster R. J., Herrmann C. S. (2015). Increase in short-term memory capacity induced by down-regulating individual theta frequency via transcranial alternating current stimulation. Front. Hum. Neurosci. 9:257. 10.3389/fnhum.2015.00257 PubMed DOI PMC
Voytek B., Canolty R. T., Shestyuk A., Crone N. E., Parvizi J., Knight R. T. (2010). Shifts in gamma phase-amplitude coupling frequency from theta to alpha over posterior cortex during visual tasks. Front. Hum. Neurosci. 4:191. 10.3389/fnhum.2010.00191 PubMed DOI PMC
Walsh V., Cowey A. (2000). Transcranial magnetic stimulation and cognitive neuroscience. Nat. Rev. Neurosci. 1, 73–80. 10.1038/35036239 PubMed DOI
Wang J., Fang Y., Wang X., Yang H., Yu X., Wang H. (2017). Enhanced gamma activity and cross-frequency interaction of resting-state electroencephalographic oscillations in patients with Alzheimer's disease. Front. Aging Neurosci. 9:243. 10.3389/fnagi.2017.00243 PubMed DOI PMC
Weiler M., Teixeira C. V. L., Nogueira M. H., De Campos B. M., Damasceno B. P., Cendes F., et al. . (2014). Differences and the relationship in default mode network intrinsic activity and functional connectivity in mild alzheimer's disease and amnestic mild cognitive impairment. Brain Connect. 4, 567–574. 10.1089/brain.2014.0234 PubMed DOI PMC
Wolinski N., Cooper N. R., Sauseng P., Romei V. (2018). The speed of parietal theta frequency drives visuospatial working memory capacity. PLoS Biol. 16:e2005348. 10.1371/journal.pbio.2005348 PubMed DOI PMC
Zhang H. Y., Wang S. J., Xing J., Liu B., Ma Z. L., Yang M., et al. . (2009). Detection of PCC functional connectivity characteristics in resting-state fMRI in mild Alzheimer's disease. Behav. Brain Res. 197, 103–108. 10.1016/j.bbr.2008.08.012 PubMed DOI
Ziemann U., Siebner H. R. (2015). Inter-subject and intersession variability of plasticity induction by non-invasive brain stimulation: boon or bane? Brain Stimul. 8, 662–663. 10.1016/j.brs.2015.01.409 PubMed DOI