Working Memory and Cross-Frequency Coupling of Neuronal Oscillations

. 2021 ; 12 () : 756661. [epub] 20211021

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34744934

Working memory (WM) is the active retention and processing of information over a few seconds and is considered an essential component of cognitive function. The reduced WM capacity is a common feature in many diseases, such as schizophrenia, attention deficit hyperactivity disorder (ADHD), mild cognitive impairment (MCI), and Alzheimer's disease (AD). The theta-gamma neural code is an essential component of memory representations in the multi-item WM. A large body of studies have examined the association between cross-frequency coupling (CFC) across the cerebral cortices and WM performance; electrophysiological data together with the behavioral results showed the associations between CFC and WM performance. The oscillatory entrainment (sensory, non-invasive electrical/magnetic, and invasive electrical) remains the key method to investigate the causal relationship between CFC and WM. The frequency-tuned non-invasive brain stimulation is a promising way to improve WM performance in healthy and non-healthy patients with cognitive impairment. The WM performance is sensitive to the phase and rhythm of externally applied stimulations. CFC-transcranial-alternating current stimulation (CFC-tACS) is a recent approach in neuroscience that could alter cognitive outcomes. The studies that investigated (1) the association between CFC and WM and (2) the brain stimulation protocols that enhanced WM through modulating CFC by the means of the non-invasive brain stimulation techniques have been included in this review. In principle, this review can guide the researchers to identify the most prominent form of CFC associated with WM processing (e.g., theta/gamma phase-amplitude coupling), and to define the previously published studies that manipulate endogenous CFC externally to improve WM. This in turn will pave the path for future studies aimed at investigating the CFC-tACS effect on WM. The CFC-tACS protocols need to be thoroughly studied before they can be considered as therapeutic tools in patients with WM deficits.

Zobrazit více v PubMed

Aben B., Stapert S., Blokland A. (2012). About the distinction between working memory and short-term memory. Front. Psychol. 3:301. 10.3389/fpsyg.2012.00301 PubMed DOI PMC

Ackerman P. L., Beier M. E., Boyle M. O. (2005). Working memory and intelligence: the same or different constructs? Psychol. Bull. 131, 30–60. 10.1037/0033-2909.131.1.30 PubMed DOI

Albouy P., Baillet S., Zatorre R. J. (2018). Driving working memory with frequency-tuned noninvasive brain stimulation. Ann. N. Y. Acad. Sci. 1423, 126–137. 10.1111/nyas.13664 PubMed DOI

Alegre M. (2016). Cross-frequency coupling in the pathophysiology of Parkinson's disease. Clin. Neurophysiol. 127:e29. 10.1016/j.clinph.2015.11.087 DOI

Alekseichuk I., Pabel S. C., Antal A., Paulus W. (2017). Intrahemispheric theta rhythm desynchronization impairs working memory. Restor. Neurol. Neurosci. 35, 147–158. 10.3233/RNN-160714 PubMed DOI

Alekseichuk I., Turi Z., Amador de Lara G., Antal A., Paulus W. (2016). Spatial working memory in humans depends on theta and high gamma synchronization in the prefrontal cortex. Curr. Biol. 26, 1513–1521. 10.1016/j.cub.2016.04.035 PubMed DOI

Allen E. A., Liu J., Kiehl K. A., Gelernter J., Pearlson G. D., Perrone-Bizzozero N. I., et al. . (2011). Components of cross-frequency modulation in health and disease. Front. Syst. Neurosci. 5:59. 10.3389/fnsys.2011.00059 PubMed DOI PMC

Andersen L. M., Jerbi K., Dalal S. S. (2020). Can EEG and MEG detect signals from the human cerebellum? Neuroimage 215:116817. 10.1016/j.neuroimage.2020.116817 PubMed DOI PMC

Axmacher N., Henseler M. M., Jensen O., Weinreich I., Elger C. E., Fell J. (2010). Cross-frequency coupling supports multi-item working memory in the human hippocampus. Proc. Natl. Acad. Sci. U.S.A. 107, 3228–3233. 10.1073/pnas.0911531107 PubMed DOI PMC

Baddeley A. (1992). Working memory. Science 255, 556–559. 10.1126/science.1736359 PubMed DOI

Baddeley A. D., Bressi S., Della Sala S., Logie R., Spinnler H. (1991). The decline of working memory in alzheimer's disease: a longitudinal study. Brain 114, 2521–2542. 10.1093/brain/114.6.2521 PubMed DOI

Bahramisharif A., Jensen O., Jacobs J., Lisman J. (2018). Serial representation of items during working memory maintenance at letter-selective cortical sites. PLoS Biol. 16:e2003805. 10.1371/journal.pbio.2003805 PubMed DOI PMC

Başar E. (2013). Brain oscillations in neuropsychiatric disease. Dialogues Clin. Neurosci. 15, 291–300. 10.31887/DCNS.2013.15.3/ebasar PubMed DOI PMC

Belluscio M. A., Mizuseki K., Schmidt R., Kempter R., Buzsáki G. (2012). Cross-frequency phase-phase coupling between theta and gamma oscillations in the hippocampus. J. Neurosci. 32, 423–435. 10.1523/JNEUROSCI.4122-11.2012 PubMed DOI PMC

Beynel L., Davis S. W., Crowell C. A., Dannhauer M., Lim W., Palmer H., et al. . (2020). Site-specific effects of online rTMS during a working memory task in healthy older adults. Brain Sci. 10:255. 10.3390/BRAINSCI10050255 PubMed DOI PMC

Biel A. L., Minarik T., Sauseng P. (2021). EEG cross-frequency phase synchronization as an index of memory matching in visual search. Neuroimage 235:117971. 10.1016/j.neuroimage.2021.117971 PubMed DOI

Borghini G., Candini M., Filannino C., Hussain M., Walsh V., Romei V., et al. . (2018). Alpha oscillations are causally linked to inhibitory abilities in ageing. J. Neurosci. 38, 4418–4429. 10.1523/JNEUROSCI.1285-17.2018 PubMed DOI PMC

Botvinick M., Watanabe T. (2007). From numerosity to ordinal rank: A gain-field model of serial order representation in cortical working memory. J. Neurosci. 27, 8636–8642. 10.1523/JNEUROSCI.2110-07.2007 PubMed DOI PMC

Brooks H., Goodman M. S., Bowie C. R., Zomorrodi R., Blumberger D. M., Butters M. A., et al. . (2020). Theta–gamma coupling and ordering information: a stable brain–behavior relationship across cognitive tasks and clinical conditions. Neuropsychopharmacology 45, 2038–2047. 10.1038/s41386-020-0759-z PubMed DOI PMC

Bruns A., Eckhorn R. (2004). Task-related coupling from high- to low-frequency signals among visual cortical areas in human subdural recordings. Int. J. Psychophysiol. 51, 97–116. 10.1016/j.ijpsycho.2003.07.001 PubMed DOI

Buckner R. L., Andrews-Hanna J. R., Schacter D. L. (2008). The brain's default network: anatomy, function, and relevance to disease. Ann. N. Y. Acad. Sci. 1124, 1–38. 10.1196/annals.1440.011 PubMed DOI

Buschman T. J., Miller E. K. (2007). Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 315, 1860–1864. 10.1126/science.1138071 PubMed DOI

Buzsáki G., Draguhn A. (2004). Neuronal olscillations in cortical networks. Science 304, 1926–1929. 10.1126/science.1099745 PubMed DOI

Calderone D. J., Lakatos P., Butler P. D., Castellanos F. X. (2014). Entrainment of neural oscillations as a modifiable substrate of attention. Trends Cogn. Sci. 18, 300–309. 10.1016/j.tics.2014.02.005 PubMed DOI PMC

Canolty R. T., Edwards E., Dalal S. S., Soltani M., Nagarajan S. S., Kirsch H. E., et al. . (2006). High gamma power is phase-locked to theta oscillations in human neocortex. Science 313, 1626–1628. 10.1126/science.1128115 PubMed DOI PMC

Canolty R. T., Knight R. T. (2010). The functional role of cross-frequency coupling. Trends Cogn. Sci. 14, 506–515. 10.1016/j.tics.2010.09.001 PubMed DOI PMC

Chai W. J., Abd Hamid A. I., Abdullah J. M. (2018). Working memory from the psychological and neurosciences perspectives: a review. Front. Psychol. 9, 401. 10.3389/fpsyg.2018.00401 PubMed DOI PMC

Chaieb L., Leszczynski M., Axmacher N., Höhne M., Elger C. E., Fell J. (2015). Theta-gamma phase-phase coupling during working memory maintenance in the human hippocampus. Cogn. Neurosci. 6, 149–157. 10.1080/17588928.2015.1058254 PubMed DOI

Chander B. S., Witkowski M., Braun C., Robinson S. E., Born J., Cohen L. G., et al. . (2016). tACS phase locking of frontal midline theta oscillations disrupts working memory performance. Front. Cell. Neurosci. 10:120. 10.3389/fncel.2016.00120 PubMed DOI PMC

Chuderski A. (2016). Fluid intelligence and the cross-frequency coupling of neuronal oscillations. Span. J. Psychol. 19:E91. 10.1017/sjp.2016.86 PubMed DOI

Cohen M. X. (2014). A neural microcircuit for cognitive conflict detection and signaling. Trends Neurosci. 37, 480–490. 10.1016/j.tins.2014.06.004 PubMed DOI

Colgin L. L. (2015). Theta-gamma coupling in the entorhinal-hippocampal system. Curr. Opin. Neurobiol. 31, 45–50. 10.1016/j.conb.2014.08.001 PubMed DOI PMC

Colom R., Shih P. C., Flores-Mendoza C., Quiroga M. Á. (2006). The real relationship between short-term memory and working memory. Memory 14, 804–813. 10.1080/09658210600680020 PubMed DOI

Constantinidis C., Klingberg T. (2016). The neuroscience of working memory capacity and training. Nat. Rev. Neurosci. 17, 438–449. 10.1038/nrn.2016.43 PubMed DOI

Conway A. R. A., Kane M. J., Bunting M. F., Hambrick D. Z., Wilhelm O., Engle R. W. (2005). Working memory span tasks: A methodological review and user's guide. Psychon. Bull. Rev. 12, 769–786. 10.3758/BF03196772 PubMed DOI

Cowan N. (2001). The magical number 4 in short-term memory: a reconsideration of mental storage capacity. Behav. Brain Sci. 24, 87–114. 10.1017/S0140525X01003922 PubMed DOI

Cowan N. (2014). Working memory underpins cognitive development, learning, and education. Educ. Psychol. Rev. 26, 197–223. 10.1007/s10648-013-9246-y PubMed DOI PMC

Cowan N. (2017). The many faces of working memory and short-term storage. Psychon. Bull. Rev. 24, 1158–1170. 10.3758/s13423-016-1191-6 PubMed DOI

Dallmer-Zerbe I., Popp F., Lam A. P., Philipsen A., Herrmann C. S. (2020). Transcranial alternating current stimulation (tACS) as a tool to modulate p300 amplitude in attention deficit hyperactivity disorder (ADHD): preliminary findings. Brain Topogr. 33, 191–207. 10.1007/s10548-020-00752-x PubMed DOI PMC

Daselaar S. M., Prince S. E., Dennis N. A., Hayes S. M., Kim H., Cabeza R. (2009). Posterior midline and ventral parietal activity is associated with retrieval success and encoding failure. Front. Hum. Neurosci. 3:2009. 10.3389/neuro.09.013.2009 PubMed DOI PMC

Daume J., Graetz S., Gruber T., Engel A. K., Friese U. (2017b). Cognitive control during audiovisual working memory engages frontotemporal theta-band interactions. Sci. Rep. 7:12585. 10.1038/s41598-017-12511-3 PubMed DOI PMC

Daume J., Gruber T., Engel A. K., Friese U. (2017a). Phase-amplitude coupling and long-range phase synchronization reveal frontotemporal interactions during visual working memory. J. Neurosci. 37, 313–322. 10.1523/JNEUROSCI.2130-16.2017 PubMed DOI PMC

Davoudi S., Dezfouli M. P., Knight R. T., Daliri M. R., Johnson E. L. (2021). Prefrontal lesions disrupt posterior alpha–gamma coordination of visual working memory representations. J. Cogn. Neurosci. 33, 1798–1810. 10.1162/jocn_a_01715 PubMed DOI PMC

De Hemptinne C., Ryapolova-Webb E. S., Air E. L., Garcia P. A., Miller K. J., Ojemann J. G., et al. . (2013). Exaggerated phase-amplitude coupling in the primary motor cortex in Parkinson disease. Proc. Natl. Acad. Sci. U.S.A. 110, 4780–4785. 10.1073/pnas.1214546110 PubMed DOI PMC

Demiralp T., Bayraktaroglu Z., Lenz D., Junge S., Busch N. A., Maess B., et al. . (2007). Gamma amplitudes are coupled to theta phase in human EEG during visual perception. Int. J. Psychophysiol. 64, 24–30. 10.1016/j.ijpsycho.2006.07.005 PubMed DOI

DeStefano D., LeFevre J. (2010). The role of working memory in mental arithmetic. Cogn. Psychol. 16, 353–386. 10.1080/09541440244000328 PubMed DOI

Dimitriadis S. I., Sun Y., Thakor N. V., Bezerianos A. (2016). Causal Interactions between frontalθ – parieto-occipitalα2 predict performance on a mental arithmetic task. Front. Hum. Neurosci. 10:454. 10.3389/fnhum.2016.00454 PubMed DOI PMC

Düzel E., Penny W. D., Burgess N. (2010). Brain oscillations and memory. Curr. Opin. Neurobiol. 20, 143–149. 10.1016/j.conb.2010.01.004 PubMed DOI

Edin F., Klingberg T., Johansson P., McNab F., Tegnér J., Compte A. (2009). Mechanism for top-down control of working memory capacity. Proc. Natl. Acad. Sci. U.S.A. 106, 6802–6807. 10.1073/pnas.0901894106 PubMed DOI PMC

Egner T., Gruzelier J. H. (2004). EEG Biofeedback of low beta band components: frequency-specific effects on variables of attention and event-related brain potentials. Clin. Neurophysiol. 115, 131–139. 10.1016/S1388-2457(03)00353-5 PubMed DOI

Engel A. K., Fries P., Singer W. (2001). Dynamic predictions: Oscillations and synchrony in top–down processing. Nat. Rev. Neurosci. 2, 704–716. 10.1038/35094565 PubMed DOI

Engle R. W., Tuholski S. W., Laughlin J. E., Conway A. R. A. (1999). Working memory, short-term memory, and general fluid intelligence: a latent-variable approach. J. Exp. Psychol. Gen. 128, 309–331. 10.1037/0096-3445.128.3.309 PubMed DOI

Fernández A., Pinal D., Díaz F., Zurrón M. (2021). Working memory load modulates oscillatory activity and the distribution of fast frequencies across frontal theta phase during working memory maintenance. Neurobiol. Learn. Mem. 183, 107476. 10.1016/j.nlm.2021.107476 PubMed DOI

Feurra M., Galli G., Pavone E. F., Rossi A., Rossi S. (2016). Frequency-specific insight into short-term memory capacity. J. Neurophysiol. 116, 153–158. 10.1152/jn.01080.2015 PubMed DOI PMC

Fougnie D., Zughni S., Godwin D., Marois R. (2015). Working memory storage is intrinsically domain specific. J. Exp. Psychol. Gen. 144, 30–47. 10.1037/a0038211 PubMed DOI

Freunberger R., Werkle-Bergner M., Griesmayr B., Lindenberger U., Klimesch W. (2011). Brain oscillatory correlates of working memory constraints. Brain Res. 1375, 93–102. 10.1016/j.brainres.2010.12.048 PubMed DOI

Fries P. (2009). Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu. Rev. Neurosci. 32, 209–224. 10.1146/annurev.neuro.051508.135603 PubMed DOI

Fries P. (2015). Rhythms for cognition: communication through coherence. Neuron 88, 220–235. 10.1016/j.neuron.2015.09.034 PubMed DOI PMC

Fries P., Nikolić D., Singer W. (2007). The gamma cycle. Trends Neurosci. 30, 309–316. 10.1016/j.tins.2007.05.005 PubMed DOI

Fries P., Reynolds J. H., Rorie A. E., Desimone R. (2001). Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291, 1560–1563. 10.1126/science.1055465 PubMed DOI

Friese U., Köster M., Hassler U., Martens U., Trujillo-Barreto N., Gruber T. (2013). Successful memory encoding is associated with increased cross-frequency coupling between frontal theta and posterior gamma oscillations in human scalp-recorded EEG. Neuroimage 66, 642–647. 10.1016/j.neuroimage.2012.11.002 PubMed DOI

Gagnon L. G., Belleville S. (2011). Working memory in mild cognitive impairment and Alzheimer's disease: contribution of forgetting and predictive value of complex span tasks. Neuropsychology 25, 226–236. 10.1037/a0020919 PubMed DOI

Gathercole S., Brown L., Pickering S. (2003). Working memory assessments at school entry as longitudinal predictors of National Curriculum attainment levels. Educ. Child Psychol. 20, 109–122. Available at: https://research-information.bris.ac.uk/en/publications/working-memory-assessments-at-school-entry-as-longitudinal-predic (accessed February 5, 2021).

Gathercole S. E., Alloway T. P. (2006). Practitioner review: Short-term and working memory impairments in neurodevelopmental disorders: diagnosis and remedial support. J. Child Psychol. Psychiatry Allied Discip. 47, 4–15. 10.1111/j.1469-7610.2005.01446.x PubMed DOI

Gignac G. E. (2015). The magical numbers 7 and 4 are resistant to the flynn effect: no evidence for increases in forward or backward recall across 85 years of data. Intelligence 48, 85–95. 10.1016/j.intell.2014.11.001 DOI

Goodman M. S., Kumar S., Zomorrodi R., Ghazala Z., Cheam A. S. M., Barr M. S., et al. . (2018). Theta-Gamma coupling and working memory in Alzheimer's dementia and mild cognitive impairment. Front. Aging Neurosci. 10:101. 10.3389/fnagi.2018.00101 PubMed DOI PMC

Graetz S., Daume J., Friese U., Gruber T. (2019). Alterations in oscillatory cortical activity indicate changes in mnemonic processing during continuous item recognition. Exp. Brain Res. 237, 573–583. 10.1007/s00221-018-5439-4 PubMed DOI

Griesmayr B., Gruber W. R., Klimesch W., Sauseng P. (2010). Human frontal midline theta and its synchronization to gamma during a verbal delayed match to sample task. Neurobiol. Learn. Mem. 93, 208–215. 10.1016/j.nlm.2009.09.013 PubMed DOI

Hacker C. D., Snyder A. Z., Pahwa M., Corbetta M., Leuthardt E. C. (2017). Frequency-specific electrophysiologic correlates of resting state fMRI networks. Neuroimage 149, 446–457. 10.1016/j.neuroimage.2017.01.054 PubMed DOI PMC

Hahn B., Ross T. J., Stein E. A. (2007). Cingulate activation increases dynamically with response speed under stimulus unpredictability. Cereb. Cortex 17, 1664–1671. 10.1093/cercor/bhl075 PubMed DOI PMC

Hanslmayr S., Axmacher N., Inman C. S. (2019). Modulating human memory via entrainment of brain oscillations. Trends Neurosci. 42, 485–499. 10.1016/j.tins.2019.04.004 PubMed DOI

Helfrich R. F., Herrmann C. S., Engel A. K., Schneider T. R. (2016). Different coupling modes mediate cortical cross-frequency interactions. Neuroimage 140, 76–82. 10.1016/j.neuroimage.2015.11.035 PubMed DOI

Herman P. A., Lundqvist M., Lansner A. (2013). Nested theta to gamma oscillations and precise spatiotemporal firing during memory retrieval in a simulated attractor network. Brain Res. 1536, 68–87. 10.1016/j.brainres.2013.08.002 PubMed DOI

Herrmann C. S., Strüber D., Helfrich R. F., Engel A. K. (2016). EEG oscillations: from correlation to causality. Int. J. Psychophysiol. 103, 12–21. 10.1016/j.ijpsycho.2015.02.003 PubMed DOI

Hiltunen T., Kantola J., Elseoud A. A., Lepola P., Suominen K., Starck T., et al. . (2014). Infra-slow EEG fluctuations are correlated with resting-state network dynamics in fMRI. J. Neurosci. 34, 356–362. 10.1523/JNEUROSCI.0276-13.2014 PubMed DOI PMC

Holz E. M., Glennon M., Prendergast K., Sauseng P. (2010). Theta-gamma phase synchronization during memory matching in visual working memory. Neuroimage 52, 326–335. 10.1016/j.neuroimage.2010.04.003 PubMed DOI

Hoy K. E., Bailey N., Arnold S., Windsor K., John J., Daskalakis Z. J., et al. . (2015). The effect of γ-tACS on working memory performance in healthy controls. Brain Cogn. 101, 51–56. 10.1016/j.bandc.2015.11.002 PubMed DOI

Hoy K. E., Whitty D., Bailey N., Fitzgerald P. B. (2016). Preliminary investigation of the effects of γ -tACS on working memory in schizophrenia. J. Neural Transm. 123, 1205–1212. 10.1007/s00702-016-1554-1 PubMed DOI

Hsieh L. T., Ranganath C. (2014). Frontal midline theta oscillations during working memory maintenance and episodic encoding and retrieval. Neuroimage 85, 721–729. 10.1016/j.neuroimage.2013.08.003 PubMed DOI PMC

Hulme C., Melby-Lervåg M. (2012). Current evidence does not support the claims made for CogMed working memory training. J. Appl. Res. Mem. Cogn. 1, 197–200. 10.1016/j.jarmac.2012.06.006 DOI

Jaeggi S. M., Buschkuehl M., Jonides J., Perrig W. J. (2008). Improving fluid intelligence with training on working memory. Proc. Natl. Acad. Sci. U.S.A. 105, 6829–6833. 10.1073/pnas.0801268105 PubMed DOI PMC

Jaušovec N., Jaušovec K. (2014). Increasing working memory capacity with theta transcranial alternating current stimulation (tACS). Biol. Psychol. 96, 42–47. 10.1016/j.biopsycho.2013.11.006 PubMed DOI

Jaušovec N., Jaušovec K., Pahor A. (2014). The influence of theta transcranial alternating current stimulation (tACS) on working memory storage and processing functions. Acta Psychol. 146, 1–6. 10.1016/j.actpsy.2013.11.011 PubMed DOI

Jensen O., Colgin L. L. (2007). Cross-frequency coupling between neuronal oscillations. Trends Cogn. Sci. 11, 267–269. 10.1016/j.tics.2007.05.003 PubMed DOI

Jensen O., Lisman J. E. (1996). Novel lists of 7±2 known items can be reliably stored in an oscillatory short-term memory network: interaction with long-term memory. Learn. Mem. 3, 257–263. 10.1101/lm.3.2-3.257 PubMed DOI

Jensen O., Spaak E., Zumer J. M. (2014). Human brain oscillations: From physiological mechanisms to analysis and cognition, in Magnetoencephalography: From Signals to Dynamic Cortical Networks, eds Supek S., Aine C. J. (Berlin: Springer-Verlag; ), 359–403. 10.1007/978-3-642-33045-2_17 DOI

Jeong J. (2004). EEG dynamics in patients with Alzheimer's disease. Clin. Neurophysiol. 115, 1490–1505. 10.1016/j.clinph.2004.01.001 PubMed DOI

Jirsa V., Müller V. (2013). Cross-frequency coupling in real and virtual brain networks. Front. Comput. Neurosci. 7:78. 10.3389/fncom.2013.00078 PubMed DOI PMC

Jones K. T., Arciniega H., Berryhill M. E. (2019). Replacing tDCS with theta tACS provides selective, but not general WM benefits. Brain Res. 1720:146324. 10.1016/j.brainres.2019.146324 PubMed DOI

Jones K. T., Johnson E. L., Berryhill M. E. (2020). Frontoparietal theta-gamma interactions track working memory enhancement with training and tDCS. Neuroimage 211:116615. 10.1016/j.neuroimage.2020.116615 PubMed DOI PMC

Kamiński J., Brzezicka A., Wróbel A. (2011). Short-term memory capacity (7±2) predicted by theta to gamma cycle length ratio. Neurobiol. Learn. Mem. 95, 19–23. 10.1016/j.nlm.2010.10.001 PubMed DOI

Kane M. J., Brown L. H., McVay J. C., Silvia P. J., Myin-Germeys I., Kwapil T. R. (2007). For whom the mind wanders, and when: an experience-sampling study of working memory and executive control in daily life. Psychol. Sci. 18, 614–621. 10.1111/j.1467-9280.2007.01948.x PubMed DOI

Kane M. J., Tuholski S. W., Hambrick D. Z., Wilhelm O., Payne T. W., Engle R. W. (2004). The generality of working memory capacity: a latent-variable approach to verbal and visuospatial memory span and reasoning. J. Exp. Psychol. Gen. 133, 189–217. 10.1037/0096-3445.133.2.189 PubMed DOI

Kehler L., Francisco C. O., Uehara M. A., Moussavi Z. (2020). The effect of transcranial alternating current stimulation (tACS) on cognitive function in older adults with dementia, in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS (Institute of Electrical and Electronics Engineers Inc.), 3649–3653. 10.1109/EMBC44109.2020.9175903 PubMed DOI

Klimesch W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res. Rev. 29, 169–195. 10.1016/S0165-0173(98)00056-3 PubMed DOI

Klimesch W. (2018). The frequency architecture of brain and brain body oscillations: an analysis. Eur. J. Neurosci. 48, 2431–2453. 10.1111/ejn.14192 PubMed DOI PMC

Klingberg T. (2010). Training and plasticity of working memory. Trends Cogn. Sci. 14, 317–324. 10.1016/j.tics.2010.05.002 PubMed DOI

Klingberg T., Forssberg H., Westerberg H. (2002). Training of working memory in children with ADHD. J. Clin. Exp. Neuropsychol. 24, 781–791. 10.1076/jcen.24.6.781.8395 PubMed DOI

Knyazev G. G., Slobodskoj-Plusnin J. Y., Bocharov A. V., Pylkova L. V. (2011). The default mode network and EEG alpha oscillations: an independent component analysis. Brain Res. 1402, 67–79. 10.1016/j.brainres.2011.05.052 PubMed DOI

Köster M., Friese U., Schöne B., Trujillo-Barreto N., Gruber T. (2014). Theta-gamma coupling during episodic retrieval in the human EEG. Brain Res. 1577, 57–68. 10.1016/j.brainres.2014.06.028 PubMed DOI

Kuhnke P., Meyer L., Friederici A. D., Hartwigsen G. (2017). Left posterior inferior frontal gyrus is causally involved in reordering during sentence processing. Neuroimage 148, 254–263. 10.1016/j.neuroimage.2017.01.013 PubMed DOI

Lakatos P., Shah A. S., Knuth K. H., Ulbert I., Karmos G., Schroeder C. E. (2005). An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. J. Neurophysiol. 94, 1904–1911. 10.1152/jn.00263.2005 PubMed DOI

Lara G. A., Alekseichuk I., Turi Z., Lehr A., Antal A., Paulus W. (2018). Perturbation of theta-gamma coupling at the temporal lobe hinders verbal declarative memory. Brain Stimul. 11, 509–517. 10.1016/j.brs.2017.12.007 PubMed DOI

Lee Y. Y., Yang C. Y. (2014). Utilizing the extent of theta–gamma synchronization to estimate visuospatial memory ability. Australas. Phys. Eng. Sci. Med. 37, 665–672. 10.1007/s13246-014-0299-0 PubMed DOI

Leszczyński M., Fell J., Axmacher N. (2015). Rhythmic working memory activation in the human hippocampus. Cell Rep. 13, 1272–1282. 10.1016/j.celrep.2015.09.081 PubMed DOI

Lisman J. E., Idiart M. A. P. (1995). Storage of 7 ± 2 short-term memories in oscillatory subcycles. Science 267, 1512–1515. 10.1126/science.7878473 PubMed DOI

Lisman J. E., Jensen O. (2013). The theta-gamma neural code. Neuron 77, 1002–1016. 10.1016/j.neuron.2013.03.007 PubMed DOI PMC

López-Alonso V., Cheeran B., Río-Rodríguez D., Fernández-Del-Olmo M. (2014). Inter-individual variability in response to non-invasive brain stimulation paradigms. Brain Stimul. 7, 372–380. 10.1016/j.brs.2014.02.004 PubMed DOI

Luo W., Guan J.-S. (2018). Do brain oscillations orchestrate memory? Brain Sci. Adv. 4, 16–33. 10.26599/BSA.2018.9050008 DOI

Lynn P. A., Sponheim S. R. (2016). Disturbed theta and gamma coupling as a potential mechanism for visuospatial working memory dysfunction in people with schizophrenia. Neuropsychiatr. Electrophysiol. 2, 1–30. 10.1186/s40810-016-0022-3 DOI

MacOveanu J., Klingberg T., Tegnér J. (2007). Neuronal firing rates account for distractor effects on mnemonic accuracy in a visuo-spatial working memory task. Biol. Cybern. 96, 407–419. 10.1007/s00422-006-0139-8 PubMed DOI

Malenínská K., Rudolfová V., Šulcová K., Koudelka V., Brunovský M., Horáček J., et al. . (2021). Is short-term memory capacity (7±2) really predicted by theta to gamma cycle length ratio? Behav. Brain Res. 414:113465. 10.1016/j.bbr.2021.113465 PubMed DOI

Mann E. O., Paulsen O. (2005). Mechanisms underlying gamma ('40 Hz') network oscillations in the hippocampus - a mini-review. Prog. Biophys. Mol. Biol. 87, 67–76. 10.1016/j.pbiomolbio.2004.06.004 PubMed DOI

Maris E., van Vugt M., Kahana M. (2011). Spatially distributed patterns of oscillatory coupling between high-frequency amplitudes and low-frequency phases in human iEEG. Neuroimage 54, 836–850. 10.1016/j.neuroimage.2010.09.029 PubMed DOI

Marzetti L., Basti A., Chella F., D'Andrea A., Syrjälä J., Pizzella V. (2019). Brain functional connectivity through phase coupling of neuronal oscillations: a perspective from magnetoencephalography. Front. Neurosci. 13:964. 10.3389/fnins.2019.00964 PubMed DOI PMC

Merker B. (2013). Cortical gamma oscillations: the functional key is activation, not cognition. Neurosci. Biobehav. Rev. 37, 401–417. 10.1016/j.neubiorev.2013.01.013 PubMed DOI

Miniussi C., Ruzzoli M. (2013). Transcranial stimulation and cognition. Handb. Clin. Neurol. 116, 739–750. 10.1016/B978-0-444-53497-2.00056-5 PubMed DOI

Mizuhara H., Yamaguchi Y. (2011). Neuronal ensemble for visual working memory via interplay of slow and fast oscillations. Eur. J. Neurosci. 33, 1925–1934. 10.1111/j.1460-9568.2011.07681.x PubMed DOI

Mormann F., Fell J., Axmacher N., Weber B., Lehnertz K., Elger C. E., et al. . (2005). Phase/amplitude reset and theta–gamma interaction in the human medial temporal lobe during a continuous word recognition memory task. Hippocampus 15, 890–900. 10.1002/hipo.20117 PubMed DOI

Nadel L., Hardt O. (2011). Update on memory systems and processes. Neuropsychopharmacology 36, 251–273. 10.1038/npp.2010.169 PubMed DOI PMC

Niebur E. (2002). Electrophysiological correlates of synchronous neural activity and attention: a short review. BioSystems 67, 157–166. 10.1016/S0303-2647(02)00102-8 PubMed DOI

Papazova I., Strube W., Hoffmann L., Schwippel T., Padberg F., Palm U., et al. . (2020). T54 effects of gamma transcranial alternating current stimulation to the left dorsolateral prefrontal cortex on working memory in schizophrenia patients. Schizophr. Bull. 46, S251–S252. 10.1093/schbul/sbaa029.614 DOI

Park H., Lee D. S., Kang E., Kang H., Hahm J., Kim J. S., et al. . (2016). Formation of visual memories controlled by gamma power phase-locked to alpha oscillations. Sci. Rep. 6:28092. 10.1038/srep28092 PubMed DOI PMC

Park J. Y., Jhung K., Lee J., An S. K. (2013). Theta-gamma coupling during a working memory task as compared to a simple vigilance task. Neurosci. Lett. 532, 39–43. 10.1016/j.neulet.2012.10.061 PubMed DOI

Park J. Y., Lee Y. R., Lee J. (2011). The relationship between theta-gamma coupling and spatial memory ability in older adults. Neurosci. Lett. 498, 37–41. 10.1016/j.neulet.2011.04.056 PubMed DOI

Persuh M., Larock E., Berger J. (2018). Working memory and consciousness: the current state of play. Front. Hum. Neurosci. 12:78. 10.3389/fnhum.2018.00078 PubMed DOI PMC

Pinal D., Zurrón M., Díaz F., Sauseng P. (2015). Stuck in default mode: inefficient cross-frequency synchronization may lead to age-related short-term memory decline. Neurobiol. Aging 36, 1611–1618. 10.1016/j.neurobiolaging.2015.01.009 PubMed DOI

Popov T., Jensen O., Schoffelen J. M. (2018). Dorsal and ventral cortices are coupled by cross-frequency interactions during working memory. Neuroimage 178, 277–286. 10.1016/j.neuroimage.2018.05.054 PubMed DOI

Rajji T. K., Zomorrodi R., Barr M. S., Blumberger D. M., Mulsant B. H., Daskalakis Z. J. (2017). Ordering information in working memory and modulation of gamma by theta oscillations in humans. Cereb. Cortex 27, 1482–1490. 10.1093/cercor/bhv326 PubMed DOI

Riddle J., McFerren A., Frohlich F. (2021). Causal role of cross-frequency coupling in distinct components of cognitive control. Prog. Neurobiol. 202:102033. 10.1016/j.pneurobio.2021.102033 PubMed DOI PMC

Rizzuto D. S., Madsen J. R., Bromfield E. B., Schulze-Bonhage A., Kahana M. J. (2006). Human neocortical oscillations exhibit theta phase differences between encoding and retrieval. Neuroimage 31, 1352–1358. 10.1016/j.neuroimage.2006.01.009 PubMed DOI

Roberts B. M., Hsieh L. T., Ranganath C. (2013). Oscillatory activity during maintenance of spatial and temporal information in working memory. Neuropsychologia 51, 349–357. 10.1016/j.neuropsychologia.2012.10.009 PubMed DOI PMC

Rodriguez-Larios J., Alaerts K. (2019). Tracking transient changes in the neural frequency architecture: harmonic relationships between theta and alpha peaks facilitate cognitive performance. J. Neurosci. 39, 6291–6298. 10.1523/JNEUROSCI.2919-18.2019 PubMed DOI PMC

Romei V., Driver J., Schyns P. G., Thut G. (2011). Rhythmic TMS over parietal cortex links distinct brain frequencies to global versus local visual processing. Curr. Biol. 21, 334–337. 10.1016/j.cub.2011.01.035 PubMed DOI PMC

Roux F., Uhlhaas P. J. (2014). Working memory and neural oscillations: Alpha-gamma versus theta-gamma codes for distinct WM information? Trends Cogn. Sci. 18, 16–25. 10.1016/j.tics.2013.10.010 PubMed DOI

Salimpour Y., Anderson W. S. (2019). Cross-Frequency coupling based neuromodulation for treating neurological disorders. Front. Neurosci. 13:125. 10.3389/fnins.2019.00125 PubMed DOI PMC

Sauseng P., Griesmayr B., Freunberger R., Klimesch W. (2010). Control mechanisms in working memory: a possible function of EEG theta oscillations. Neurosci. Biobehav. Rev. 34, 1015–1022. 10.1016/j.neubiorev.2009.12.006 PubMed DOI

Sauseng P., Klimesch W., Doppelmayr M., Pecherstorfer T., Freunberger R., Hanslmayr S. (2005). EEG alpha synchronization and functional coupling during top-down processing in a working memory task. Hum. Brain Mapp. 26, 148–155. 10.1002/hbm.20150 PubMed DOI PMC

Sauseng P., Klimesch W., Heise K. F., Gruber W. R., Holz E., Karim A. A., et al. . (2009). Brain oscillatory substrates of visual short-term memory capacity. Curr. Biol. 19, 1846–1852. 10.1016/j.cub.2009.08.062 PubMed DOI

Sauseng P., Peylo C., Biel A. L., Friedrich E. V. C., Romberg-Taylor C. (2019). Does cross-frequency phase coupling of oscillatory brain activity contribute to a better understanding of visual working memory? Br. J. Psychol. 110, 245–255. 10.1111/bjop.12340 PubMed DOI

Schack B., Vath N., Petsche H., Geissler H. G., Möller E. (2002). Phase-coupling of theta-gamma EEG rhythms during short-term memory processing. Int. J. Psychophysiol. 44, 143–163. 10.1016/S0167-8760(01)00199-4 PubMed DOI

Sederberg P. B., Kahana M. J., Howard M. W., Donner E. J., Madsen J. R. (2003). Theta and gamma oscillations during encoding predict subsequent recall. J. Neurosci. 23, 10809–10814. 10.1523/JNEUROSCI.23-34-10809.2003 PubMed DOI PMC

Siebenhühner F., Wang S. H., Arnulfo G., Lampinen A., Nobili L., Palva J. M., et al. . (2020). Genuine cross-frequency coupling networks in human resting-state electrophysiological recordings. PLoS Biol. 18:e3000685. 10.1371/journal.pbio.3000685 PubMed DOI PMC

Siebenhühner F., Wang S. H., Palva J. M., Palva S. (2016). Cross-frequency synchronization connects networks of fast and slow oscillations during visual working memory maintenance. Elife 5:e36. 10.7554/eLife.13451.036 PubMed DOI PMC

Siegel M., Donner T. H., Engel A. K. (2012). Spectral fingerprints of large-scale neuronal interactions. Nat. Rev. Neurosci. 13, 121–134. 10.1038/nrn3137 PubMed DOI

Siems M., Siegel M. (2020). Dissociated neuronal phase- and amplitude-coupling patterns in the human brain. Neuroimage 209:116538. 10.1016/j.neuroimage.2020.116538 PubMed DOI PMC

Smith E. H., Banks G. P., Mikell C. B., Cash S. S., Patel S. R., Eskandar E. N., et al. . (2015). Frequency-Dependent representation of reinforcement-related information in the human medial and lateral prefrontal cortex. J. Neurosci. 35:15827. 10.1523/JNEUROSCI.1864-15.2015 PubMed DOI PMC

Sotero R. C. (2016). Topology, cross-frequency, and same-frequency band interactions shape the generation of phase-amplitude coupling in a neural mass model of a cortical column. PLoS Comput. Biol. 12:1005180. 10.1371/journal.pcbi.1005180 PubMed DOI PMC

Sreeraj V. S., Shanbhag V., Nawani H., Shivakumar V., Damodharan D., Bose A., et al. . (2017). Feasibility of online neuromodulation using transcranial alternating current stimulation in schizophrenia. Indian J. Psychol. Med. 39:92. 10.4103/0253-7176.198937 PubMed DOI PMC

Tang W., Liu H., Douw L., Kramer M. A., Eden U. T., Hämäläinen M. S., et al. . (2017). Dynamic connectivity modulates local activity in the core regions of the default-mode network. Proc. Natl. Acad. Sci. U.S.A. 114, 9713–9718. 10.1073/pnas.1702027114 PubMed DOI PMC

Thut G., Miniussi C. (2009). New insights into rhythmic brain activity from TMS-EEG studies. Trends Cogn. Sci. 13, 182–189. 10.1016/j.tics.2009.01.004 PubMed DOI

Tseng Y.-L., Liu H.-H., Liou M., Tsai A. C., Chien V. S. C., Shyu S.-T., et al. . (2019). Lingering sound: event-related phase-amplitude coupling and phase-locking in fronto-temporo-parietal functional networks during memory retrieval of music melodies. Front. Hum. Neurosci. 13:150. 10.3389/fnhum.2019.00150 PubMed DOI PMC

Turi Z., Mittner M., Lehr A., Bürger H., Antal A., Paulus W. (2020). θ-γ cross-frequency transcranial alternating current stimulation over the trough impairs cognitive control. eNeuro 7, 1–12. 10.1523/ENEURO.0126-20.2020 PubMed DOI PMC

Unsworth N., Engle R. W. (2007). On the division of short-term and working memory: an examination of simple and complex span and their relation to higher order abilities. Psychol. Bull. 133, 1038–1066. 10.1037/0033-2909.133.6.1038 PubMed DOI

van der Meij R., Kahana M., Maris E. (2012). Phase-amplitude coupling in human electrocorticography is spatially distributed and phase diverse. J. Neurosci. 32, 111–123. 10.1523/JNEUROSCI.4816-11.2012 PubMed DOI PMC

Van Vugt M. K., Chakravarthi R., Lachaux J.-P. (2014). For whom the bell tolls: periodic reactivation of sensory cortex in the gamma band as a substrate of visual working memory maintenance. Front. Hum. Neurosci. 8:696. 10.3389/fnhum.2014.00696 PubMed DOI PMC

Veniero D., Vossen A., Gross J., Thut G. (2015). Lasting EEG/MEG aftereffects of rhythmic transcranial brain stimulation: level of control over oscillatory network activity. Front. Cell. Neurosci. 9:477. 10.3389/fncel.2015.00477 PubMed DOI PMC

Vilberg K. L., Rugg M. D. (2008). Memory retrieval and the parietal cortex: a review of evidence from a dual-process perspective. Neuropsychologia 46, 1787–1799. 10.1016/j.neuropsychologia.2008.01.004 PubMed DOI PMC

Vogel E. K., Woodman G. F., Luck S. J. (2001). Storage of features, conjunctions, and objects in visual working memory. J. Exp. Psychol. Hum. Percept. Perform. 27, 92–114. 10.1037/0096-1523.27.1.92 PubMed DOI

Vosskuhl J., Huster R. J., Herrmann C. S. (2015). Increase in short-term memory capacity induced by down-regulating individual theta frequency via transcranial alternating current stimulation. Front. Hum. Neurosci. 9:257. 10.3389/fnhum.2015.00257 PubMed DOI PMC

Voytek B., Canolty R. T., Shestyuk A., Crone N. E., Parvizi J., Knight R. T. (2010). Shifts in gamma phase-amplitude coupling frequency from theta to alpha over posterior cortex during visual tasks. Front. Hum. Neurosci. 4:191. 10.3389/fnhum.2010.00191 PubMed DOI PMC

Walsh V., Cowey A. (2000). Transcranial magnetic stimulation and cognitive neuroscience. Nat. Rev. Neurosci. 1, 73–80. 10.1038/35036239 PubMed DOI

Wang J., Fang Y., Wang X., Yang H., Yu X., Wang H. (2017). Enhanced gamma activity and cross-frequency interaction of resting-state electroencephalographic oscillations in patients with Alzheimer's disease. Front. Aging Neurosci. 9:243. 10.3389/fnagi.2017.00243 PubMed DOI PMC

Weiler M., Teixeira C. V. L., Nogueira M. H., De Campos B. M., Damasceno B. P., Cendes F., et al. . (2014). Differences and the relationship in default mode network intrinsic activity and functional connectivity in mild alzheimer's disease and amnestic mild cognitive impairment. Brain Connect. 4, 567–574. 10.1089/brain.2014.0234 PubMed DOI PMC

Wolinski N., Cooper N. R., Sauseng P., Romei V. (2018). The speed of parietal theta frequency drives visuospatial working memory capacity. PLoS Biol. 16:e2005348. 10.1371/journal.pbio.2005348 PubMed DOI PMC

Zhang H. Y., Wang S. J., Xing J., Liu B., Ma Z. L., Yang M., et al. . (2009). Detection of PCC functional connectivity characteristics in resting-state fMRI in mild Alzheimer's disease. Behav. Brain Res. 197, 103–108. 10.1016/j.bbr.2008.08.012 PubMed DOI

Ziemann U., Siebner H. R. (2015). Inter-subject and intersession variability of plasticity induction by non-invasive brain stimulation: boon or bane? Brain Stimul. 8, 662–663. 10.1016/j.brs.2015.01.409 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...