Accumulation and toxicity of biologically produced gold nanoparticles in different types of specialized mammalian cells

. 2024 Aug ; 71 (4) : 766-778. [epub] 20240313

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38480514

Grantová podpora
CZ.02.1.01/0.0/0.0/18_046/0016045 European Regional Development Fund
CZ.02.1.01/0.0/0.0/18_046/0015974 European Regional Development Fund
LM2023042 MEYS CR
LM2023050 Czech-BioImaging MEYS CR
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.01.01/00/22_010/0002357 OP JAK - MSCA Fellowships CZ (Institute of Microbiology of the CAS)
68081715 Institutional Research Plan no. RVO

The biologically produced gold nanoparticles (AuNPs) are novel carriers with promising use in targeted tumor therapy. Still, there are no studies regarding the efficacy of nanoparticle internalization by cancer and noncancer cells. In this study, AuNPs were produced by Fusarium oxysporum and analyzed by spectrophotometry, transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDS), and Zetasizer. Obtained AuNPs were about 15 nm in size with a zeta potential of -35.8 mV. The AuNPs were added to cancer cells (4T1), noncancer cells (NIH/3T3), and macrophages (RAW264.7). The viability decreased in 4T1 (77 ± 3.74%) in contrast to NIH/3T3 and RAW264.7 cells (89 ± 4.9% and 90 ± 3.5%, respectively). The 4T1 cancer cells also showed the highest uptake and accumulation of Au (∼80% of AuNPs was internalized) as determined by graphite furnace atomic absorption spectroscopy. The lowest amount of AuNPs was internalized by the NIH/3T3 cells (∼30%). The NIH/3T3 cells exhibited prominent reorganization of F-actin filaments as examined by confocal microscopy. In RAW264.7, we analyzed the release of proinflammatory cytokines by flow cytometry and we found the AuNP interaction triggered transient secretion of tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ). In summary, we proved the biologically produced AuNPs entered all the tested cell types and triggered cell-specific responses. High AuNP uptake by tumor cells was related to decreased cell viability, while low nanoparticle uptake by fibroblasts triggered F-actin reorganization without remarkable toxicity. Thus, the biologically produced AuNPs hold promising potential as cancer drug carriers and likely require proper surface functionalization to shield phagocytizing cells.

Zobrazit více v PubMed

Karakoçak BB, Raliya R, Davis JT, Chavalmane S, Wang W‐N, Ravi N, et al. Biocompatibility of gold nanoparticles in retinal pigment epithelial cell line. Toxicol In Vitro. 2016;37:61–69.

Ko W‐C, Wang S‐J, Hsiao C‐Y, Hung C‐T, Hsu Y‐J, Chang D‐C, et al. Pharmacological role of functionalized gold nanoparticles in disease applications. Molecules. 2022;27(5):1551.

Sanna V, Pala N, Sechi M. Targeted therapy using nanotechnology: focus on cancer. Int J Nanomed. 2014;9:467.

Pourali P, Dzmitruk V, Pátek M, Neuhöferová E, Svoboda M, Benson V. Fate of the capping agent of biologically produced gold nanoparticles and adsorption of enzymes onto their surface. Sci Rep. 2023;13(1):4916.

Zhu X‐M, et al. Enhanced cellular uptake of aminosilane‐coated superparamagnetic iron oxide nanoparticles in mammalian cell lines. Int J Nanomed. 2012;7:953.

Narayanan KB, Sakthivel N. .Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci. 2010;156(1–2):1–13.

Pourali P, Benada O, Pátek M, Neuhöferová E, Dzmitruk V, Benson V. Response of biological gold nanoparticles to different pH values: Is it possible to prepare both negatively and positively charged nanoparticles? Appl Sci. 2021;11(23):11559.

Pourali P, Nouri M, Ameri F, Heidari T, Kheirkhahan N, Arabzadeh S, et al. Histopathological study of the maternal exposure to the biologically produced silver nanoparticles on different organs of the offspring. Naunyn‐Schmiedeberg Arch Pharmacol. 2020;393(5):867–878.

Pourali P, Badiee SH, Manafi S, Noorani T, Rezaei A, Yahyaei B. Biosynthesis of gold nanoparticles by two bacterial and fungal strains, Bacillus cereus and Fusarium oxysporum, and assessment and comparison of their nanotoxicity in vitro by direct and indirect assays. Electron J Biotechnol. 2017;29:86–93.

Singh P, Kim Y‐J, Zhang D, Yang D‐C. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 2016;34(7):588–599.

Chithrani BD, Ghazani AA, Chan WCW. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett, 2006;6(4):662–668.

Dykman LA, Khlebtsov NG. Uptake of engineered gold nanoparticles into mammalian cells. Chem Rev. 2014;114(2):1258–1288.

Yahyaei B, Pourali P. One step conjugation of some chemotherapeutic drugs to the biologically produced gold nanoparticles and assessment of their anticancer effects. Sci Rep. 2019;9(1):1–15.

Pourali P, Neuhöferová E, Dzmitruk V, Benson V. Investigation of protein corona formed around biologically produced gold nanoparticles. Materials. 2022;15(13):4615.

Yahyaei B, Nouri M, Bakherad S, Hassani M, Pourali P. Effects of biologically produced gold nanoparticles: toxicity assessment in different rat organs after intraperitoneal injection. AMB Expr, 2019;9(1):1–12.

Yahyaei B, Arabzadeh S, Pourali P. An alternative method for biological production of silver and gold nanoparticles. JPAM, 2014;8:4495–01.

Pourali P, Yahyaei B, Afsharnezhad S. Bio‐synthesis of gold nanoparticles by Fusarium oxysporum and assessment of their conjugation possibility with two types of β‐lactam antibiotics without any additional linkers. Microbiology, 2018;87(2): 229–37.

Pourali P, et al. Biological production of gold nanoparticles at different temperatures: efficiency assessment. Part Syst Charact. 2023;40(12):2200182.

Pacheco NIN, et al. Understanding the toxicity mechanism of CuO nanoparticles: the intracellular view of exposed earthworm cells. Environ Sci Nano. 2021;8(9):2464–2477.

Naimi‐Shamel N, Pourali P, Dolatabadi S. Green synthesis of gold nanoparticles using Fusarium oxysporum and antibacterial activity of its tetracycline conjugant. J Mycol Med. 2019;29(1):7–13.

Pourali P, Dzmitruk V, Benada O, Svoboda M, Benson V, Conjugation of microbial‐derived gold nanoparticles to different types of nucleic acids: evaluation of transfection efficiency. Sci Rep. 2023;13(1):14669.

Patel S, et al. In‐vitro cytotoxicity activity of Solanum nigrum extract against Hela cell line and Vero cell line. Int J Pharm Sci. 2009;1(1):38–46.

Hazekawa M, Nishinakagawa, T., Kawakubo‐Yasukochi, T., & Nakashima, M. Evaluation of IC50 levels immediately after treatment with anticancer reagents using a real‑time cell monitoring device. Exp Ther Med. 2019;18(4):3197–3205.

Sangabathuni S, Vasudeva Murthy R, Chaudhary PM, Surve M, Banerjee A, Kikkeri R. Glyco‐gold nanoparticle shapes enhance carbohydrate–protein interactions in mammalian cells. Nanoscale. 2016;8(25):12729–12735.

Welz B, Sperling M. Atomic absorption spectrometry. Weinheim, Germany: Wiley. 2008.

Laksmitawati DR, Widyastuti A, Karami N, Afifah E, Rihibiha DD, Nufus H, et al. Anti‐inflammatory effects of Anredera cordifolia and Piper crocatum extracts on lipopolysaccharide‐stimulated macrophage cell line. Bangladesh J Pharmacol., 2017;12(1):35–40.

Křivohlavá R, Neuhöferová E, Jakobsen KQ, Benson V, Knockdown of microRNA‐135b in mammary carcinoma by targeted nanodiamonds: potentials and pitfalls of in vivo applications. Nanomaterials. 2019;9(6):866.

Schindelin J, Arganda‐Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open‐source platform for biological‐image analysis. Nat Methods. 2012;9(7):676–682.

Horzum U, Ozdil B, Pesen‐Okvur D. Step‐by‐step quantitative analysis of focal adhesions. MethodsX. 2014;1:56–59.

Maguire CM, Rösslein M, Wick P, Prina‐Mello A. Characterisation of particles in solution—a perspective on light scattering and comparative technologies. Sci Technol Adv Mater, 2018;19(1):732–745.

Aybay C, Imir T. Comparison of the effects of Salmonella Minnesota Re595 lipopolysaccharide, lipid A and monophosphoryl lipid A on nitric oxide, TNF‐α, and IL‐6 induction from RAW 264.7 macrophages. Immunol Med Microbiol. 1998;22(3):263–273.

Khan HA, Abdelhalim MAK, Alhomida AS, Al‐Ayed MS. Effects of naked gold nanoparticles on proinflammatory cytokines mRNA expression in rat liver and kidney. BioMed Res Int. 2013;2013:590730.

Elson EL, Genin GM. The role of mechanics in actin stress fiber kinetics. Exp Cell Res, 2013;319(16):2490–2500.

Zhao F, Zhao Y, Liu Y, Chang X, Chen C, Zhao Y. Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small. 2011;7(10):1322–1337.

Mironava T, Hadjiargyrou M, Simon M, Jurukovski V, Rafailovich MH. Gold nanoparticles cellular toxicity and recovery: effect of size, concentration and exposure time. Nanotoxicology. 2010;4(1):120–137.

Wang X, Hu X, Li J, Russe ACM, Kawazoe N, Yang Y, et al. Influence of cell size on cellular uptake of gold nanoparticles. Biomater Sci., 2016;4(6):970–978.

Yahyaei B, Pourali P, Hassani M. Morphological change of kidney after injection of the biological gold nanoparticles in Wistar rats. J Anim Biol. 2020;13(1):109–119.

Ponti J, Colognato R, Franchini F, Gioria S, Simonelli F, Abbas K, Uboldi C, James Kirkpatrick C, Holzwarth U, Rossi F A quantitative in vitro approach to study the intracellular fate of gold nanoparticles:From synthesis to cytotoxicity. Nanotoxicology. 2009; 3:296–306.

Hauck TS, Ghazani AA, Chan WCW. Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells. Small. 2008;4(1):153–159.

Yu Y, Yang T, Sun T. New insights into the synthesis, toxicity and applications of gold nanoparticles in CT imaging and treatment of cancer. Nanomedicine. 2020;15(11):1127–1145.

Borkowska M, Siek M, Kolygina DV, Sobolev YI, Lach S, Kumar S, et al. Targeted crystallization of mixed‐charge nanoparticles in lysosomes induces selective death of cancer cells. Nat Nanotechnol. 2020;15(4):331–341.

Walia S, Sharma C, Acharya A. Biocompatible fluorescent nanomaterials for molecular imaging applications. In: Nanomaterial‐based biomedical applications in molecular imaging, diagnostics and therapy. Cham: Springer; 2020. pp. 27–53

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Bioproduced Nanoparticles Deliver Multiple Cargoes via Targeted Tumor Therapy In Vivo

. 2024 Aug 06 ; 9 (31) : 33789-33804. [epub] 20240723

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...