Conjugation of microbial-derived gold nanoparticles to different types of nucleic acids: evaluation of transfection efficiency
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37674013
PubMed Central
PMC10482973
DOI
10.1038/s41598-023-41567-7
PII: 10.1038/s41598-023-41567-7
Knihovny.cz E-zdroje
- MeSH
- chemické jevy MeSH
- kovové nanočástice * MeSH
- nukleové kyseliny * MeSH
- RNA MeSH
- zlato MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- nukleové kyseliny * MeSH
- RNA MeSH
- zlato MeSH
In this study, gold nanoparticles produced by eukaryotic cell waste (AuNP), were analyzed as a transfection tool. AuNP were produced by Fusarium oxysporum and analyzed by spectrophotometry, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). Fourier transform infrared spectroscopy (FTIR) and dynamic light scattering (DLS) were used before and after conjugation with different nucleic acid (NA) types. Graphite furnace atomic absorption spectroscopy (GF-AAS) was used to determine the AuNP concentration. Conjugation was detected by electrophoresis. Confocal microscopy and quantitative real-time PCR (qPCR) were used to assess transfection. TEM, SEM, and EDS showed 25 nm AuNP with round shape. The amount of AuNP was 3.75 ± 0.2 µg/µL and FTIR proved conjugation of all NA types to AuNP. All the samples had a negative charge of - 36 to - 46 mV. Confocal microscopy confirmed internalization of the ssRNA-AuNP into eukaryotic cells and qPCR confirmed release and activity of carried RNA.
Institute of Analytical Chemistry Czech Academy of Sciences Brno Czech Republic
Institute of Microbiology Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Pourali P, et al. Histopathological study of the maternal exposure to the biologically produced silver nanoparticles on different organs of the offspring. Naunyn Schmiedebergs Arch. Pharmacol. 2020;393:867–878. doi: 10.1007/s00210-019-01796-y. PubMed DOI
Hainfeld JF, et al. Gold nanoparticle hyperthermia reduces radiotherapy dose. Nanomed. Nanotechnol. Biol. Med. 2014;10:1609–1617. doi: 10.1016/j.nano.2014.05.006. PubMed DOI PMC
Arvizo R, Bhattacharya R, Mukherjee P. Gold nanoparticles: Opportunities and challenges in nanomedicine. Expert Opin. Drug Deliv. 2010;7:753–763. doi: 10.1517/17425241003777010. PubMed DOI PMC
Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science. 2006;311:622–627. doi: 10.1126/science.1114397. PubMed DOI
Pourali P, et al. Biosynthesis of gold nanoparticles by two bacterial and fungal strains, Bacillus cereus and Fusarium oxysporum, and assessment and comparison of their nanotoxicity in vitro by direct and indirect assays. Electron. J. Biotechnol. 2017;29:86–93. doi: 10.1016/j.ejbt.2017.07.005. DOI
Graczyk A, Pawlowska R, Jedrzejczyk D, Chworos A. Gold nanoparticles in conjunction with nucleic acids as a modern molecular system for cellular delivery. Molecules. 2020;25:204. doi: 10.3390/molecules25010204. PubMed DOI PMC
McIntosh CM, et al. Inhibition of DNA transcription using cationic mixed monolayer protected gold clusters. J. Am. Chem. Soc. 2001;123:7626–7629. doi: 10.1021/ja015556g. PubMed DOI
Han G, Martin CT, Rotello VM. Stability of gold nanoparticle-bound DNA toward biological, physical, and chemical agents. Chem. Biol. Drug Des. 2006;67:78–82. doi: 10.1111/j.1747-0285.2005.00324.x. PubMed DOI
Bonoiu AC, et al. Nanotechnology approach for drug addiction therapy: Gene silencing using delivery of gold nanorod-siRNA nanoplex in dopaminergic neurons. Proc. Natl. Acad. Sci. 2009;106:5546–5550. doi: 10.1073/pnas.0901715106. PubMed DOI PMC
Aali E, Shokuhi Rad A, Esfahanian M. Computational investigation of the strategy of DNA/RNA stabilization through the study of the conjugation of an oligonucleotide with silver and gold nanoparticles. Appl. Organomet. Chem. 2020;34:e5690. doi: 10.1002/aoc.5690. DOI
Huang C-C, Huang Y-F, Cao Z, Tan W, Chang H-T. Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors. Anal. Chem. 2005;77:5735–5741. doi: 10.1021/ac050957q. PubMed DOI
Cho H, et al. Aptamer-based SERRS sensor for thrombin detection. Nano Lett. 2008;8:4386–4390. doi: 10.1021/nl802245w. PubMed DOI PMC
Medley CD, et al. Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells. Anal. Chem. 2008;80:1067–1072. doi: 10.1021/ac702037y. PubMed DOI
Mastroianni AJ, Claridge SA, Alivisatos AP. Pyramidal and chiral groupings of gold nanocrystals assembled using DNA scaffolds. J. Am. Chem. Soc. 2009;131:8455–8459. doi: 10.1021/ja808570g. PubMed DOI PMC
Lee J-S, et al. Gold, poly(β-amino ester) nanoparticles for small interfering RNA delivery. Nano Lett. 2009;9:2402–2406. doi: 10.1021/nl9009793. PubMed DOI PMC
Mendes R, Fernandes AR, Baptista PV. Gold nanoparticle approach to the selective delivery of gene silencing in cancer—the case for combined delivery? Genes. 2017;8:94. doi: 10.3390/genes8030094. PubMed DOI PMC
Sandhu KK, McIntosh CM, Simard JM, Smith SW, Rotello VM. Gold nanoparticle-mediated transfection of mammalian cells. Bioconjug. Chem. 2002;13:3–6. doi: 10.1021/bc015545c. PubMed DOI
Thomas M, Klibanov AM. Conjugation to gold nanoparticles enhances polyethylenimine's transfer of plasmid DNA into mammalian cells. Proc. Natl. Acad. Sci. 2003;100:9138–9143. doi: 10.1073/pnas.1233634100. PubMed DOI PMC
Javed R, et al. Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: Recent trends and future prospects. J. Nanobiotechnol. 2020;18:1–15. doi: 10.1186/s12951-020-00704-4. PubMed DOI PMC
Křivohlavá R, Neuhӧferová E, Jakobsen KQ, Benson V. Knockdown of microRNA-135b in mammary carcinoma by targeted nanodiamonds: Potentials and pitfalls of in vivo applications. Nanomaterials. 2019;9:866. doi: 10.3390/nano9060866. PubMed DOI PMC
Borchard G. Chitosans for gene delivery. Adv. Drug Deliv. Rev. 2001;52:145–150. doi: 10.1016/S0169-409X(01)00198-3. PubMed DOI
Martin ME, Rice KG. Peptide-guided gene delivery. AAPS J. 2007;9:E18–E29. doi: 10.1208/aapsj0901003. PubMed DOI PMC
Maguire CM, Rösslein M, Wick P, Prina-Mello A. Characterisation of particles in solution—A perspective on light scattering and comparative technologies. Sci. Technol. Adv. Mater. 2018;19:732–745. doi: 10.1080/14686996.2018.1517587. PubMed DOI PMC
Pourali P, et al. Response of biological gold nanoparticles to different pH values: Is it possible to prepare both negatively and positively charged nanoparticles? Appl. Sci. 2021;11:11559. doi: 10.3390/app112311559. DOI
Narayanan KB, Sakthivel N. Facile green synthesis of gold nanostructures by NADPH-dependent enzyme from the extract of Sclerotium rolfsii. Colloids Surf. A. 2011;380:156–161. doi: 10.1016/j.colsurfa.2011.02.042. DOI
Narayanan KB, Sakthivel N. Biological synthesis of metal nanoparticles by microbes. Adv. Coll. Interface. Sci. 2010;156:1–13. doi: 10.1016/j.cis.2010.02.001. PubMed DOI
McVey C, Huang F, Elliott C, Cao C. Endonuclease controlled aggregation of gold nanoparticles for the ultrasensitive detection of pathogenic bacterial DNA. Biosens. Bioelectron. 2017;92:502–508. doi: 10.1016/j.bios.2016.10.072. PubMed DOI
Shawky SM, Bald D, Azzazy HM. Direct detection of unamplified hepatitis C virus RNA using unmodified gold nanoparticles. Clin. Biochem. 2010;43:1163–1168. doi: 10.1016/j.clinbiochem.2010.07.001. PubMed DOI
Li H, Rothberg LJ. Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction. J. Am. Chem. Soc. 2004;126:10958–10961. doi: 10.1021/ja048749n. PubMed DOI
Li H, Rothberg L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc. Natl. Acad. Sci. 2004;101:14036–14039. doi: 10.1073/pnas.0406115101. PubMed DOI PMC
Giljohann DA, Seferos DS, Prigodich AE, Patel PC, Mirkin CA. Gene regulation with polyvalent siRNA−nanoparticle conjugates. J. Am. Chem. Soc. 2009;131:2072–2073. doi: 10.1021/ja808719p. PubMed DOI PMC
Lytton-Jean AK, Langer R, Anderson DG. Five years of siRNA delivery: Spotlight on gold nanoparticles. Small. 2011;7:1932–1937. doi: 10.1002/smll.201100761. PubMed DOI
Oishi M, Nakaogami J, Ishii T, Nagasaki Y. Smart PEGylated gold nanoparticles for the cytoplasmic delivery of siRNA to induce enhanced gene silencing. Chem. Lett. 2006;35:1046–1047. doi: 10.1246/cl.2006.1046. DOI
Ghosh PS, et al. Nanoparticles featuring amino acid-functionalized side chains as DNA receptors. Chem. Biol. Drug Des. 2007;70:13–18. doi: 10.1111/j.1747-0285.2007.00534.x. PubMed DOI
Pourali P, Neuhöferová E, Dzmitruk V, Benson V. Investigation of protein corona formed around biologically produced gold nanoparticles. Materials. 2022;15:4615. doi: 10.3390/ma15134615. PubMed DOI PMC
Pourali P, Yahyaei B, Afsharnezhad S. Bio-synthesis of gold nanoparticles by Fusarium oxysporum and assessment of their conjugation possibility with two types of β-lactam antibiotics without any additional linkers. Microbiology. 2018;87:229–237. doi: 10.1134/S0026261718020108. DOI
Naimi-Shamel N, Pourali P, Dolatabadi S. Green synthesis of gold nanoparticles using Fusarium oxysporum and antibacterial activity of its tetracycline conjugant. Journal de mycologie medicale. 2019;29:7–13. doi: 10.1016/j.mycmed.2019.01.005. PubMed DOI
Yahyaei B, Pourali P. One step conjugation of some chemotherapeutic drugs to the biologically produced gold nanoparticles and assessment of their anticancer effects. Sci. Rep. 2019;9:1–15. doi: 10.1038/s41598-019-46602-0. PubMed DOI PMC
Pourali P, et al. Fate of the capping agent of biologically produced gold nanoparticles and adsorption of enzymes onto their surface. Sci. Rep. 2023;13:4916. doi: 10.1038/s41598-023-31792-5. PubMed DOI PMC
Yahyaei B, Nouri M, Bakherad S, Hassani M, Pourali P. Effects of biologically produced gold nanoparticles: Toxicity assessment in different rat organs after intraperitoneal injection. AMB Express. 2019;9:1–12. doi: 10.1186/s13568-019-0762-0. PubMed DOI PMC
Fratoddi I, Venditti I, Cametti C, Russo MV. How toxic are gold nanoparticles? The state-of-the-art. Nano Res. 2015;8:1771–1799. doi: 10.1007/s12274-014-0697-3. DOI
Ding Y, et al. Gold nanoparticles for nucleic acid delivery. Mol. Ther. 2014;22:1075–1083. doi: 10.1038/mt.2014.30. PubMed DOI PMC
Krokan, H. E., Kavli, B., Slupphaug, G. & Drabløs, F. In Genomic Uracil: Evolution, Biology, Immunology and Disease 15–45 (World Scientific, 2018).
Walter W, Stein U. Viral vectors for gene transfer a review of their use in the treatment of human disease. Drugs. 2000;60:249–271. doi: 10.2165/00003495-200060020-00002. PubMed DOI
Kay MA, Glorioso JC, Naldini L. Viral vectors for gene therapy: The art of turning infectious agents into vehicles of therapeutics. Nat. Med. 2001;7:33–40. doi: 10.1038/83324. PubMed DOI
Takahashi Y, Nishikawa M, Takakura Y. Nonviral vector-mediated RNA interference: Its gene silencing characteristics and important factors to achieve RNAi-based gene therapy. Adv. Drug Deliv. Rev. 2009;61:760–766. doi: 10.1016/j.addr.2009.04.006. PubMed DOI
Benada O, Pokorný V. Modification of the Polaron sputter-coater unit for glow-discharge activation of carbon support films. J. Electron Microsc. Tech. 1990;16:235–239. doi: 10.1002/jemt.1060160304. PubMed DOI
Team, R. C. R: A language and environment for statistical computing. (2021).
Park S, et al. Reversibly pH-responsive gold nanoparticles and their applications for photothermal cancer therapy. Sci. Rep. 2019;9:1–9. doi: 10.1038/s41598-019-56754-8. PubMed DOI PMC
Welz B, Sperling M. Atomic Absorption Spectrometry. Wiley; 2008.
Wang H-Q, Deng Z-X. Gel electrophoresis as a nanoseparation tool serving DNA nanotechnology. Chin. Chem. Lett. 2015;26:1435–1438. doi: 10.1016/j.cclet.2015.10.019. DOI
Ackerson CJ, Sykes MT, Kornberg RD. Defined DNA/nanoparticle conjugates. Proc. Natl. Acad. Sci. 2005;102:13383–13385. doi: 10.1073/pnas.0506290102. PubMed DOI PMC
Pourali P, Yahyaei B. Biological production of silver nanoparticles by soil isolated bacteria and preliminary study of their cytotoxicity and cutaneous wound healing efficiency in rat. J. Trace Elem. Med Biol. 2016;34:22–31. doi: 10.1016/j.jtemb.2015.11.004. PubMed DOI