Extracellular Vesicle-Mediated Delivery of AntimiR-Conjugated Bio-Gold Nanoparticles for In Vivo Tumor Targeting
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.01.01/00/22_010/0002357, LM2023050
Ministry of Education Youth and Sports
CZ.02.1.01/0.0/0.0/18_046/0016045
ERDF
PubMed
40871036
PubMed Central
PMC12389129
DOI
10.3390/pharmaceutics17081015
PII: pharmaceutics17081015
Knihovny.cz E-zdroje
- Klíčová slova
- RNA delivery, biologically produced gold nanoparticles, cancer tissue targeting, extracellular vesicles, in vivo application,
- Publikační typ
- časopisecké články MeSH
Background/Objectives: Extracellular vesicles (EVs) are involved in cell-to-cell communication and delivery of signaling molecules and represent an interesting approach in targeted therapy. This project focused on EV-mediated facilitation and cell-specific delivery of effector antimiR molecules carried by biologically produced gold nanoparticles (AuNPs). Methods: First, we loaded EVs derived from cancer cells 4T1 with AuNPs-antimiR. The AuNPs were also decorated with or without transferrin (Tf) molecules. We examined parental cell-specific delivery of the AuNPs-Tf-antimiR within monocultures as well as co-cultures in vitro. Subsequently, we used autologous EVs containing AuNPs-Tf-antimiR to target tumor cells in a xenograft tumor model in vivo. Efficacy of the antimir transfer was assessed by qPCR and apoptosis assessment. Results: In vitro, EVs loaded with AuNPs-antimiR were internalized only by the parental cells and the AuNPs-antimiR transfer was successful and effective only in EVs that were decorated with Tf. We achieved effective delivery of the antimiR molecule into cancer cells in vivo, which was proved by specific silencing of the target oncogenic miRNA as well as induction of cancer cells apoptosis. Conclusions: EVs represent an interesting and potent way for targeted cargo delivery and personalized medicine. On the other hand, there are various safety and efficacy challenges that remain to be addressed.
Department of Chemistry University of Wyoming 1000 E University Ave Laramie WY 82071 USA
Department of Medical Sciences Sha C Islamic Azad University Shahrood 36199 43189 Iran
Faculty of Health Studies Technical University of Liberec 460 01 Liberec Czech Republic
Institute of Analytical Chemistry Czech Academy of Sciences 602 00 Brno Czech Republic
Institute of Microbiology Czech Academy of Sciences 142 20 Prague Czech Republic
Zobrazit více v PubMed
Jeong M., Lee Y., Park J., Jung H., Lee H. Lipid nanoparticles (LNPs) for in vivo RNA delivery and their breakthrough technology for future applications. Adv. Drug Deliv. Rev. 2023;200:114990. doi: 10.1016/j.addr.2023.114990. PubMed DOI
Jia Y., Wang X., Li L., Li F., Zhang J., Liang X. Lipid nanoparticles optimized for targeting and release of nucleic acid. Adv. Mater. 2024;36:2305300. doi: 10.1002/adma.202305300. PubMed DOI
Lu M., Shao W., Xing H., Huang Y. Extracellular vesicle-based nucleic acid delivery. Interdiscip. Med. 2023;1:e20220007. doi: 10.1002/INMD.20220007. DOI
Jeppesen D.K., Zhang Q., Franklin J.L., Coffey R.J. Extracellular vesicles and nanoparticles: Emerging complexities. Trends Cell Biol. 2023;33:667–681. doi: 10.1016/j.tcb.2023.01.002. PubMed DOI PMC
Kim S.M., Yang Y., Oh S.J., Hong Y., Seo M., Jang M. Cancer-derived exosomes as a delivery platform of CRISPR/Cas9 confer cancer cell tropism-dependent targeting. J. Control. Release. 2017;266:8–16. doi: 10.1016/j.jconrel.2017.09.013. PubMed DOI
Li Y.-J., Wu J.-Y., Hu X.-B., Wang J.-M., Xiang D.-X. Autologous cancer cell-derived extracellular vesicles as drug-delivery systems: A systematic review of preclinical and clinical findings and translational implications. Nanomedicine. 2019;14:493–509. doi: 10.2217/nnm-2018-0286. PubMed DOI
Lin W., Cai X.-D. Current Strategies for Cancer Cell-Derived Extracellular Vesicles for Cancer Therapy. Front. Oncol. 2021;11:758884. doi: 10.3389/fonc.2021.758884. PubMed DOI PMC
Srivastava A., Babu A., Filant J., Moxley K., Ruskin R., Dhanasekaran D., Sood A., McMeekin S., Ramesh R. Exploitation of exosomes as nanocarriers for gene-, chemo-, and immune-therapy of cancer. J. Biomed. Nanotechnol. 2016;12:1159–1173. doi: 10.1166/jbn.2016.2205. PubMed DOI
Chen T.S., Lai R.C., Lee M.M., Choo A.B.H., Lee C.N., Lim S.K. Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs. Nucleic Acids Res. 2010;38:215–224. doi: 10.1093/nar/gkp857. PubMed DOI PMC
Qu J.-L., Qu X.-J., Zhao M.-F., Teng Y.-E., Zhang Y., Hou K.-Z., Jiang Y.-H., Yang X.-H., Liu Y.-P. Gastric cancer exosomes promote tumour cell proliferation through PI3K/Akt and MAPK/ERK activation. Dig. Liver Dis. 2009;41:875–880. doi: 10.1016/j.dld.2009.04.006. PubMed DOI
Greening D.W., Gopal S.K., Xu R., Simpson R.J., Chen W. Exosomes and their roles in immune regulation and cancer. Semin. Cell Dev. Biol. 2015;40:72–81. doi: 10.1016/j.semcdb.2015.02.009. PubMed DOI
Steinbichler T.B., Dudás J., Riechelmann H., Skvortsova I.I. The role of exosomes in cancer metastasis. Semin. Cancer Biol. 2017;44:170–181. doi: 10.1016/j.semcancer.2017.02.006. PubMed DOI
Saari H., Lázaro-Ibáñez E., Viitala T., Vuorimaa-Laukkanen E., Siljander P., Yliperttula M. Microvesicle-and exosome-mediated drug delivery enhances the cytotoxicity of Paclitaxel in autologous prostate cancer cells. J. Control. Release. 2015;220:727–737. doi: 10.1016/j.jconrel.2015.09.031. PubMed DOI
Shtam T.A., Kovalev R.A., Varfolomeeva E.Y., Makarov E.M., Kil Y.V., Filatov M.V. Exosomes are natural carriers of exogenous siRNA to human cells in vitro. Cell Commun. Signal. 2013;11:88. doi: 10.1186/1478-811X-11-88. PubMed DOI PMC
O’bRien K., Lowry M.C., Corcoran C., Martinez V.G., Daly M., Rani S., Gallagher W.M., Radomski M.W., MacLeod R.A., O’dRiscoll L. miR-134 in extracellular vesicles reduces triple-negative breast cancer aggression and increases drug sensitivity. Oncotarget. 2015;6:32774. doi: 10.18632/oncotarget.5192. PubMed DOI PMC
Han Y., Jones T.W., Dutta S., Zhu Y., Wang X., Narayanan S.P., Fagan S.C., Zhang D. Overview and update on methods for cargo loading into extracellular vesicles. Processes. 2021;9:356. doi: 10.3390/pr9020356. PubMed DOI PMC
Kooijmans S.A.A., Stremersch S., Braeckmans K., De Smedt S.C., Hendrix A., Wood M.J.A., Schiffelers R.M., Raemdonck K., Vader P. Electroporation-induced siRNA precipitation obscures the efficiency of siRNA loading into extracellular vesicles. J. Control. Release. 2013;172:229–238. doi: 10.1016/j.jconrel.2013.08.014. PubMed DOI
Lamichhane T.N., Jeyaram A., Patel D.B., Parajuli B., Livingston N.K., Arumugasaamy N., Schardt J.S., Jay S.M. Oncogene knockdown via active loading of small RNAs into extracellular vesicles by sonication. Cell. Mol. Bioeng. 2016;9:315–324. doi: 10.1007/s12195-016-0457-4. PubMed DOI PMC
Pascucci L., Coccè V., Bonomi A., Ami D., Ceccarelli P., Ciusani E., Viganò L., Locatelli A., Sisto F., Doglia S.M., et al. Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: A new approach for drug delivery. J. Control. Release. 2014;192:262–270. doi: 10.1016/j.jconrel.2014.07.042. PubMed DOI
Pourali P., Dzmitruk V., Benada O., Svoboda M., Benson V. Conjugation of microbial-derived gold nanoparticles to different types of nucleic acids: Evaluation of transfection efficiency. Sci. Rep. 2023;13:14669. doi: 10.1038/s41598-023-41567-7. PubMed DOI PMC
Nikbakht M., Yahyaei B., Pourali P. Green synthesis, characterization and antibacterial activity of silver nanoparticles using fruit aqueous and methanolic extracts of Berberis vulgaris and Ziziphus vulgaris. J. Pure Appl. Microbiol. 2015;9:349–355.
Pourali P., Benada O., Pátek M., Neuhöferová E., Dzmitruk V., Benson V. Response of Biological Gold Nanoparticles to Different pH Values: Is It Possible to Prepare Both Negatively and Positively Charged Nanoparticles? Appl. Sci. 2021;11:11559. doi: 10.3390/app112311559. DOI
Pourali P., Svoboda M., Neuhöferová E., Dzmitruk V., Benson V. Accumulation and toxicity of biologically produced gold nanoparticles in different types of specialized mammalian cells. Biotechnol. Appl. Biochem. 2024;71:766–778. doi: 10.1002/bab.2575. PubMed DOI
Pourali P., Dzmitruk V., Pátek M., Neuhöferová E., Svoboda M., Benson V. Fate of the capping agent of biologically produced gold nanoparticles and adsorption of enzymes onto their surface. Sci. Rep. 2023;13:4916. doi: 10.1038/s41598-023-31792-5. PubMed DOI PMC
Pourali P., Nouri M., Heidari T., Kheirkhahan N., Yahyaei B. Comparison between the Nature and Activity of Silver Nanoparticles Produced by Active and Inactive Fungal Biomass Forms on Cervical Cancer Cells. Nanomanufacturing. 2023;3:248–262. doi: 10.3390/nanomanufacturing3020016. DOI
Pourali P., Svoboda M., Benada O., Dzmitruk V., Benson V. Biological Production of Gold Nanoparticles at Different Temperatures: Efficiency Assessment. Part. Part. Syst. Charact. 2023;40:2200182. doi: 10.1002/ppsc.202200182. DOI
Pourali P., Neuhöferová E., Dzmitruk V., Benson V. Investigation of Protein Corona Formed around Biologically Produced Gold Nanoparticles. Materials. 2022;15:4615. doi: 10.3390/ma15134615. PubMed DOI PMC
Yahyaei B., Pourali P., Hassani M. Morphological Change of Kidney after Injection of the Biological Gold Nanoparticles in Wistar Rats. J. Anim. Biol. 2020;13:109–119.
Lara P., Palma-Florez S., Salas-Huenuleo E., Polakovicova I., Guerrero S., Lobos-Gonzalez L., Campos A., Muñoz L., Jorquera-Cordero C., Varas-Godoy M., et al. Gold nanoparticle based double-labeling of melanoma extracellular vesicles to determine the specificity of uptake by cells and preferential accumulation in small metastatic lung tumors. J. Nanobiotechnol. 2020;18:20. doi: 10.1186/s12951-020-0573-0. PubMed DOI PMC
Hao F., Ku T., Yang X., Liu Q.S., Zhao X., Faiola F., Zhou Q., Jiang G. Gold nanoparticles change small extracellular vesicle attributes of mouse embryonic stem cells. Nanoscale. 2020;12:15631–15637. doi: 10.1039/D0NR03598J. PubMed DOI
Ho L.W.C., Chan C.K.W., Han R., Lau Y.F.Y., Li H., Ho Y.-P., Zhuang X., Choi C.H.J. Mammalian cells exocytose alkylated gold nanoparticles via extracellular vesicles. ACS Nano. 2022;16:2032–2045. doi: 10.1021/acsnano.1c07418. PubMed DOI
Wu X.A., Choi C.H.J., Zhang C., Hao L., Mirkin C.A. Intracellular fate of spherical nucleic acid nanoparticle conjugates. J. Am. Chem. Soc. 2014;136:7726–7733. doi: 10.1021/ja503010a. PubMed DOI PMC
Pourali P., Neuhöferová E., Dzmitruk V., Svoboda M., Stodůlková E., Flieger M., Yahyaei B., Benson V. Bioproduced Nanoparticles Deliver Multiple Cargoes via Targeted Tumor Therapy In Vivo. ACS Omega. 2024;9:33789–33804. doi: 10.1021/acsomega.4c03277. PubMed DOI PMC
Wu J.-Y., Li Y.-J., Hu X.-B., Huang S., Xiang D.-X. Preservation of small extracellular vesicles for functional analysis and therapeutic applications: A comparative evaluation of storage conditions. Drug Deliv. 2021;28:162–170. doi: 10.1080/10717544.2020.1869866. PubMed DOI PMC
Rikkert L.G., Nieuwland R., Terstappen L.W.M.M., Coumans F.A.W. Quality of extracellular vesicle images by transmission electron microscopy is operator and protocol dependent. J. Extracell. Vesicles. 2019;8:1555419. doi: 10.1080/20013078.2018.1555419. PubMed DOI PMC
Tsuji T., Yoshitomi H., Usukura J. Endocytic mechanism of transferrin-conjugated nanoparticles and the effects of their size and ligand number on the efficiency of drug delivery. Microscopy. 2013;62:341–352. doi: 10.1093/jmicro/dfs080. PubMed DOI
Yahyaei B., Manafi S., Fahimi B., Arabzadeh S., Pourali P. Production of electrospun polyvinyl alcohol/microbial synthesized silver nanoparticles scaffold for the treatment of fungating wounds. Appl. Nanosci. 2018;8:417–426. doi: 10.1007/s13204-018-0711-2. DOI
Bi Y., Chen J., Li Q., Li Y., Zhang L., Zhida L., Yuan F., Zhang R. Tumor-derived extracellular vesicle drug delivery system for chemo-photothermal-immune combination cancer treatment. iScience. 2024;27:108833. doi: 10.1016/j.isci.2024.108833. PubMed DOI PMC
Kang M., Jordan V., Blenkiron C., Chamley L.W. Biodistribution of extracellular vesicles following administration into animals: A systematic review. J. Extracell. Vesicles. 2021;10:e12085. doi: 10.1002/jev2.12085. PubMed DOI PMC
Fathi P., Rao L., Chen X. Extracellular vesicle-coated nanoparticles. View. 2021;2:20200187. doi: 10.1002/VIW.20200187. DOI
Rao L., Tian R., Chen X. Cell-Membrane-Mimicking Nanodecoys against Infectious Diseases. ACS Nano. 2020;14:2569–2574. doi: 10.1021/acsnano.0c01665. PubMed DOI PMC
Hanson P.I., Cashikar A. Multivesicular body morphogenesis. Annu. Rev. Cell Dev. Biol. 2012;28:337–362. doi: 10.1146/annurev-cellbio-092910-154152. PubMed DOI
Zomer A., Maynard C., Verweij F.J., Kamermans A., Schäfer R., Beerling E., Schiffelers R.M., de Wit E., Berenguer J., Ellenbroek S.I.J., et al. In Vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell. 2015;161:1046–1057. doi: 10.1016/j.cell.2015.04.042. PubMed DOI PMC
Cruz L., Romero J.A.A., Prado M.B., Santos T.G., Lopes M.H. Evidence of extracellular vesicles biogenesis and release in mouse embryonic stem cells. Stem Cell Rev. Rep. 2018;14:262–276. doi: 10.1007/s12015-017-9776-7. PubMed DOI
Bhat A., Yadav J., Thakur K., Aggarwal N., Tripathi T., Chhokar A., Singh T., Jadli M., Bharti A.C. Exosomes from cervical cancer cells facilitate pro-angiogenic endothelial reconditioning through transfer of Hedgehog–GLI signaling components. Cancer Cell Int. 2021;21:319. doi: 10.1186/s12935-021-02026-3. PubMed DOI PMC
Hofmann D., Tenzer S., Bannwarth M.B., Messerschmidt C., Glaser S.-F., Schild H., Landfester K., Mailänder V. Mass spectrometry and imaging analysis of nanoparticle-containing vesicles provide a mechanistic insight into cellular trafficking. ACS Nano. 2014;8:10077–10088. doi: 10.1021/nn502754c. PubMed DOI
Mayle K.M., Le A.M., Kamei D.T. The intracellular trafficking pathway of transferrin. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2012;1820:264–281. doi: 10.1016/j.bbagen.2011.09.009. PubMed DOI PMC
Tang K., Zhang Y., Zhang H., Xu P., Liu J., Ma J., Lv M., Li D., Katirai F., Shen G.-X., et al. Delivery of chemotherapeutic drugs in tumour cell-derived microparticles. Nat. Commun. 2012;3:1282. doi: 10.1038/ncomms2282. PubMed DOI
Ma J., Zhang Y., Tang K., Zhang H., Yin X., Li Y., Xu P., Sun Y., Ma R., Ji T., et al. Reversing drug resistance of soft tumor-repopulating cells by tumor cell-derived chemotherapeutic microparticles. Cell Res. 2016;26:713–727. doi: 10.1038/cr.2016.53. PubMed DOI PMC
Křivohlavá R., Neuhöferová E., Jakobsen K.Q., Benson V. Knockdown of microRNA-135b in Mammary Carcinoma by Targeted Nanodiamonds: Potentials and Pitfalls of In Vivo Applications. Nanomaterials. 2019;9:866. doi: 10.3390/nano9060866. PubMed DOI PMC