A barley pan-transcriptome reveals layers of genotype-dependent transcriptional complexity

. 2025 Feb ; 57 (2) : 441-450. [epub] 20250203

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39901014

Grantová podpora
KJHI-B1-2 Rural and Environment Science and Analytical Services Division (Scottish Government's Rural and Environment Science and Analytical Services Division)
BB/X018636/1 RCUK | Biotechnology and Biological Sciences Research Council (BBSRC)
BB/S020160/1 RCUK | Biotechnology and Biological Sciences Research Council (BBSRC)
ERA-CAPS BB/S004610/1 RCUK | Biotechnology and Biological Sciences Research Council (BBSRC)
UMU1806-002RTX Grains Research and Development Corporation (Grains Research & Development Corporation)
CF15-0236 Carlsbergfondet (Carlsberg Foundation)
CF15-0476 Carlsbergfondet (Carlsberg Foundation)
CF15-0672 Carlsbergfondet (Carlsberg Foundation)
ERA-CAPS project 1844331 National Science Foundation (NSF)
CTAG2 Genome Canada (Génome Canada)

Odkazy

PubMed 39901014
PubMed Central PMC11821519
DOI 10.1038/s41588-024-02069-y
PII: 10.1038/s41588-024-02069-y
Knihovny.cz E-zdroje

A pan-transcriptome describes the transcriptional and post-transcriptional consequences of genome diversity from multiple individuals within a species. We developed a barley pan-transcriptome using 20 inbred genotypes representing domesticated barley diversity by generating and analyzing short- and long-read RNA-sequencing datasets from multiple tissues. To overcome single reference bias in transcript quantification, we constructed genotype-specific reference transcript datasets (RTDs) and integrated these into a linear pan-genome framework to create a pan-RTD, allowing transcript categorization as core, shell or cloud. Focusing on the core (expressed in all genotypes), we observed significant transcript abundance variation among tissues and between genotypes driven partly by RNA processing, gene copy number, structural rearrangements and conservation of promotor motifs. Network analyses revealed conserved co-expression module::tissue correlations and frequent functional diversification. To complement the pan-transcriptome, we constructed a comprehensive cultivar (cv.) Morex gene-expression atlas and illustrate how these combined datasets can be used to guide biological inquiry.

Carlsberg Research Laboratory Copenhagen Denmark

Chair of Crop Plant Genetics Institute of Agricultural and Nutritional Sciences Martin Luther University Halle Wittenberg Halle Germany

Chair of Plant Breeding Institute of Agricultural and Nutritional Sciences Martin Luther University Halle Wittenberg Halle Germany

College of Agriculture and Biotechnology Zhejiang University Hangzhou China

College of Agriculture Yangtze University Jinzhou China

Council for Agriculture Research and Economics Research Centre for Genomics and Bioinformatics Fiorenzuola d'Arda Italy

CREA Research Centre for Olive Fruit and Citrus Crops Forlì Italy

Department of Agronomy and Plant Genetics University of Minnesota St Paul MN USA

Department of Molecular Life Sciences Computational Plant Biology School of Life Sciences Technical University of Munich Freising Germany

Department of Plant Breeding Swedish University of Agricultural Sciences Uppsala Sweden

Department of Plant Sciences and Crop Development Centre University of Saskatchewan Saskatoon Saskatchewan Canada

Department of Primary Industry and Regional Development Western Australia South Perth Western Australia Australia

Department of Soil and Crop Sciences Texas A and M University College Station TX USA

DLF Roskilde Denmark

Higentec Breeding Innovation Co Ltd Lishui China

Institute of Experimental Botany of the Czech Academy of Sciences Olomouc Czech Republic

Institute of Plant Science and Resources Okayama University Kurashiki Japan

International Barley Hub Dundee Scotland

Kazusa DNA Research Institute Kisarazu Japan

Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben Seeland Germany

Minnesota Supercomputing Institute University of Minnesota Minneapolis MN USA

Plant Genome and Systems Biology Helmholtz Center Munich German Research Center for Environmental Health Neuherberg Germany

School of Agriculture Food and Wine University of Adelaide Waite Campus Urrbrae South Australia Australia

School of Life Sciences Technical University of Munich Freising Germany

School of Life Sciences University of Dundee Dundee UK

Texas A and M AgriLife Research Center at Dallas Texas A and M University System Dallas TX USA

Western Crop Genetics Alliance Food Futures Institute School of Agriculture Murdoch University Murdoch Western Australia Australia

Zobrazit více v PubMed

Verstegen, H., Köneke, O., Korzun, V. & von Broock, R. in Biotechnological Approaches to Barley Improvement (eds Kumlehn, J. & Stein, N.) 3–19 (Springer, 2014).

Langridge, P. in The Barley Genome (eds Stein, N. & Muehlbauer, G. J.) 1–10 (Springer, 2018).

Harwood, W. A. in Barley: Methods and Protocols 1–5 (Springer, 2019).

Von Bothmer, R., van Hintum, T., Knüpffer, H. & Sato, K. Diversity in Barley (Hordeum vulgare) Vol. 7 (Elsevier, 2003).

Komatsuda, T. et al. Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc. Natl Acad. Sci. USA104, 1424–1429 (2007). PubMed PMC

Russell, J. et al. Exome sequencing of geographically diverse barley landraces and wild relatives gives insights into environmental adaptation. Nat. Genet.48, 1024–1030 (2016). PubMed

Taketa, S. et al. Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway. Proc. Natl Acad. Sci. USA105, 4062–4067 (2008). PubMed PMC

Jayakodi, M. et al. The barley pan-genome reveals the hidden legacy of mutation breeding. Nature588, 284–289 (2020). PubMed PMC

Jayakodi, M. et al. Structural variation in the pangenome of wild and domesticated barley. Nature636, 654–662 (2024). PubMed PMC

Mascher, M. et al. A chromosome conformation capture ordered sequence of the barley genome. Nature544, 427–433 (2017). PubMed

Lundqvist, U. Scandinavian mutation research in barley—a historical review. Hereditas151, 123–131 (2014). PubMed

Guo, W., Coulter, M., Waugh, R. & Zhang, R. The value of genotype-specific reference for transcriptome analyses in barley. Life Sci. Alliance5, e202101255 (2022). PubMed PMC

Brown, J. W. S., Calixto, C. P. G. & Zhang, R. High-quality reference transcript datasets hold the key to transcript-specific RNA-sequencing analysis in plants. New Phytol.213, 525–530 (2017). PubMed

Zhang, R. et al. A high quality Arabidopsis transcriptome for accurate transcript-level analysis of alternative splicing. Nucleic Acids Res.45, 5061–5073 (2017). PubMed PMC

Rapazote-Flores, P. et al. BaRTv1.0: an improved barley reference transcript dataset to determine accurate changes in the barley transcriptome using RNA-seq. BMC Genomics20, 968 (2019). PubMed PMC

Coulter, M. et al. BaRTv2: a highly resolved barley reference transcriptome for accurate transcript‐specific RNA‐seq quantification. Plant J.111, 1183–1202 (2022). PubMed PMC

Wang, J. et al. A pangenome analysis pipeline provides insights into functional gene identification in rice. Genome Biol.24, 19 (2023). PubMed PMC

Aleksander, S. A. et al. The Gene Ontology knowledgebase in 2023. Genetics224, iyad031 (2023). PubMed PMC

Francia, E. et al. Copy number variation at the HvCBF4–HvCBF2 genomic segment is a major component of frost resistance in barley. Plant Mol. Biol.92, 161–175 (2016). PubMed

Jeknić, Z. et al. Hv-CBF2A overexpression in barley accelerates COR gene transcript accumulation and acquisition of freezing tolerance during cold acclimation. Plant Mol. Biol.84, 67–82 (2014). PubMed

Schreiber, M. et al. Genomic resources for a historical collection of cultivated two-row European spring barley genotypes. Sci. Data11, 66 (2024). PubMed PMC

Shrestha, A. et al. The double round-robin population unravels the genetic architecture of grain size in barley. J. Exp. Bot.73, 7344–7361 (2022). PubMed PMC

Cu, S. T. et al. Genetic analysis of grain and malt quality in an elite barley population. Mol. Breed.36, 129 (2016).

Genievskaya, Y., Almerekova, S., Abugalieva, A. & Abugalieva, S. Genome-wide association study of grain quality traits in spring barley collection grown in Kyzylorda region. Exp. Biol.7, 36–47 (2021).

Pasam, R. K. et al. Genome-wide association studies for agronomical traits in a world wide spring barley collection. BMC Plant Biol.12, 16 (2012). PubMed PMC

Elía, M. et al. A model of the genetic differences in malting quality between European and North American barley cultivars based on a QTL study of the cross Triumph x Morex. Plant Breed.129, 280–290 (2010).

Du, B. et al. Detection of consensus genomic regions and candidate genes for quality traits in barley using QTL meta-analysis. Front. Plant Sci.14, 1319889 (2024). PubMed PMC

Collins, H. M. et al. Genes that mediate starch metabolism in developing and germinated barley grain. Front. Plant Sci.12, 641325 (2021). PubMed PMC

Franco-Zorrilla, J. M. et al. DNA-binding specificities of plant transcription factors and their potential to define target genes. Proc. Natl Acad. Sci. USA111, 2367–2372 (2014). PubMed PMC

Spitz, F. & Furlong, E. E. M. Transcription factors: from enhancer binding to developmental control. Nat. Rev. Genet.13, 613–626 (2012). PubMed

Ricci, W. A. et al. Widespread long-range cis-regulatory elements in the maize genome. Nat. Plants5, 1237–1249 (2019). PubMed PMC

Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics9, 559 (2008). PubMed PMC

Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods14, 417–419 (2017). PubMed PMC

Milne, L. et al. EORNA, a barley gene and transcript abundance database. Sci. Data8, 90 (2021). PubMed PMC

Peng, J. et al. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature400, 256–261 (1999). PubMed

Betts, N. S. et al. Transcriptional and biochemical analyses of gibberellin expression and content in germinated barley grain. J. Exp. Bot.71, 1870–1884 (2020). PubMed PMC

Cheng, J. et al. Diversity of gibberellin 2-oxidase genes in the barley genome offers opportunities for genetic improvement. J. Adv. Res.66, 105–118 (2024). PubMed PMC

Potokina, E. et al. Gene expression quantitative trait locus analysis of 16000 barley genes reveals a complex pattern of genome-wide transcriptional regulation. Plant J.53, 90–101 (2008). PubMed

Druka, A. et al. Expression quantitative trait loci analysis in plants. Plant Biotechnol. J.8, 10–27 (2010). PubMed

Wonneberger, R. et al. Major chromosome 5H haplotype switch structures the European two-rowed spring barley germplasm of the past 190 years. Theor. Appl. Genet.136, 174 (2023). PubMed PMC

Harper, A. L. et al. Associative transcriptomics of traits in the polyploid crop species Brassica napus. Nat. Biotechnol.30, 798–802 (2012). PubMed

Jin, M. et al. Maize pan-transcriptome provides novel insights into genome complexity and quantitative trait variation. Sci. Rep.6, 18936 (2016). PubMed PMC

Chen, X. et al. An eQTL analysis of partial resistance to Puccinia hordei in barley. PLoS ONE5, e8598 (2010). PubMed PMC

Ma, Y., Liu, M., Stiller, J. & Liu, C. A pan-transcriptome analysis shows that disease resistance genes have undergone more selection pressure during barley domestication. BMC Genomics20, 12 (2019). PubMed PMC

Ramírez-González, R. H. et al. The transcriptional landscape of polyploid wheat. Science361, eaar6089 (2018). PubMed

Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics34, i884–i890 (2018). PubMed PMC

Dobin, A. & Gingeras, T. R. Mapping RNA-seq reads with STAR. Curr. Protoc. Bioinformatics51, 11.14.1–11.14.19 (2015). PubMed PMC

Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol.33, 290–295 (2015). PubMed PMC

Shao, M. & Kingsford, C. Accurate assembly of transcripts through phase-preserving graph decomposition. Nat. Biotechnol.35, 1167–1169 (2017). PubMed PMC

Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics34, 3094–3100 (2018). PubMed PMC

Kuo, R. I. et al. Illuminating the dark side of the human transcriptome with long read transcript sequencing. BMC Genomics21, 751 (2020). PubMed PMC

Zhang, R. et al. A high-resolution single-molecule sequencing-based Arabidopsis transcriptome using novel methods of Iso-seq analysis. Genome Biol.23, 149 (2022). PubMed PMC

Entizne, J. C. et al. TranSuite: a software suite for accurate translation and characterization of transcripts. Preprint at bioRxiv10.1101/2020.12.15.422989 (2020).

Quevillon, E. et al. InterProScan: protein domains identifier. Nucleic Acids Res.33, W116 (2005). PubMed PMC

Guo, W. et al. 3D RNA-seq: a powerful and flexible tool for rapid and accurate differential expression and alternative splicing analysis of RNA-seq data for biologists. RNA Biol.18, 1574–1587 (2021). PubMed PMC

Frazee, A. C., Jaffe, A. E., Langmead, B. & Leek, J. T. Polyester: simulating RNA-seq datasets with differential transcript expression. Bioinformatics31, 2778–2784 (2015). PubMed PMC

Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol.215, 403–410 (1990). PubMed

Goel, M., Sun, H., Jiao, W. B. & Schneeberger, K. SyRI: finding genomic rearrangements and local sequence differences from whole-genome assemblies. Genome Biol.20, 277 (2019). PubMed PMC

Goel, M. & Schneeberger, K. plotsr: visualizing structural similarities and rearrangements between multiple genomes. Bioinformatics38, 2922–2926 (2022). PubMed PMC

Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol.15, 550 (2014). PubMed PMC

Lohse, M. et al. Mercator: a fast and simple web server for genome scale functional annotation of plant sequence data. Plant Cell Environ.37, 1250–1258 (2014). PubMed

Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation2, 100141 (2021). PubMed PMC

Hagberg, A. A., Schult, D. A. & Swart, P. J. Exploring network structure, dynamics, and function using NetworkX. In Proc. 7th Python in Science Conference (eds Varoquaux, G. et al.) 11–15 (SciPy, 2008).

De Meo, P., Ferrara, E., Fiumara, G. & Provetti, A. Generalized Louvain method for community detection in large networks. In Proc. International Conference on Intelligent Systems Design and Applications (ed. Ventura, S.) 88–93 (ISDA, 2011).

Brodersen, P. & Voinnet, O. Revisiting the principles of microRNA target recognition and mode of action. Nat. Rev. Mol. Cell. Biol.10, 141–148 (2009). PubMed

Sakai, H. et al. Rice Annotation Project Database (RAP-DB): an integrative and interactive database for rice genomics. Plant Cell Physiol.54, e6 (2013). PubMed PMC

Cheng, C. Y. et al. Araport11: a complete reannotation of the Arabidopsis thaliana reference genome. Plant J.89, 789–804 (2017). PubMed

Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol.20, 238 (2019). PubMed PMC

Mascher, M. et al. Long-read sequence assembly: a technical evaluation in barley. Plant Cell33, 1888–1906 (2021). PubMed PMC

Knudsen, S. et al. FIND-IT: accelerated trait development for a green evolution. Sci. Adv.8, eabq2266 (2024). PubMed PMC

Marosi, V., Bayer, M., & Guo, W. cropgeeks/barleyPantranscriptome: v1.0 (v1.0). Zenodo10.5281/zenodo.13961253 (2024).

Marosi, V. vanda-marosi/PanBarleyNetworks: publication (1.0). Zenodo10.5281/zenodo.13961795 (2024).

Viet, D., Brett, C., Yong, J., Chengdao, L., & Western Crop Genetics Alliance. WCGA-Murdoch/Barley-phenology-2023: barley phenology genes CNV analysis—2023 (v1.0). Zenodo10.5281/zenodo.13950149 (2024).

Guo, W. et al. A barley pan-transcriptome reveals layers of genotype-dependent transcriptional complexity. figshare10.6084/m9.figshare.28035638 (2025). PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

A barley pan-transcriptome reveals layers of genotype-dependent transcriptional complexity

. 2025 Feb ; 57 (2) : 441-450. [epub] 20250203

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...