A barley pan-transcriptome reveals layers of genotype-dependent transcriptional complexity
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
KJHI-B1-2
Rural and Environment Science and Analytical Services Division (Scottish Government's Rural and Environment Science and Analytical Services Division)
BB/X018636/1
RCUK | Biotechnology and Biological Sciences Research Council (BBSRC)
BB/S020160/1
RCUK | Biotechnology and Biological Sciences Research Council (BBSRC)
ERA-CAPS BB/S004610/1
RCUK | Biotechnology and Biological Sciences Research Council (BBSRC)
UMU1806-002RTX
Grains Research and Development Corporation (Grains Research & Development Corporation)
CF15-0236
Carlsbergfondet (Carlsberg Foundation)
CF15-0476
Carlsbergfondet (Carlsberg Foundation)
CF15-0672
Carlsbergfondet (Carlsberg Foundation)
ERA-CAPS project 1844331
National Science Foundation (NSF)
CTAG2
Genome Canada (Génome Canada)
PubMed
39901014
PubMed Central
PMC11821519
DOI
10.1038/s41588-024-02069-y
PII: 10.1038/s41588-024-02069-y
Knihovny.cz E-zdroje
- MeSH
- genetická transkripce MeSH
- genom rostlinný MeSH
- genotyp * MeSH
- genové regulační sítě MeSH
- ječmen (rod) * genetika MeSH
- regulace genové exprese u rostlin * MeSH
- sekvenční analýza RNA metody MeSH
- stanovení celkové genové exprese metody MeSH
- transkriptom * genetika MeSH
- Publikační typ
- časopisecké články MeSH
A pan-transcriptome describes the transcriptional and post-transcriptional consequences of genome diversity from multiple individuals within a species. We developed a barley pan-transcriptome using 20 inbred genotypes representing domesticated barley diversity by generating and analyzing short- and long-read RNA-sequencing datasets from multiple tissues. To overcome single reference bias in transcript quantification, we constructed genotype-specific reference transcript datasets (RTDs) and integrated these into a linear pan-genome framework to create a pan-RTD, allowing transcript categorization as core, shell or cloud. Focusing on the core (expressed in all genotypes), we observed significant transcript abundance variation among tissues and between genotypes driven partly by RNA processing, gene copy number, structural rearrangements and conservation of promotor motifs. Network analyses revealed conserved co-expression module::tissue correlations and frequent functional diversification. To complement the pan-transcriptome, we constructed a comprehensive cultivar (cv.) Morex gene-expression atlas and illustrate how these combined datasets can be used to guide biological inquiry.
Carlsberg Research Laboratory Copenhagen Denmark
College of Agriculture and Biotechnology Zhejiang University Hangzhou China
College of Agriculture Yangtze University Jinzhou China
CREA Research Centre for Olive Fruit and Citrus Crops Forlì Italy
Department of Agronomy and Plant Genetics University of Minnesota St Paul MN USA
Department of Plant Breeding Swedish University of Agricultural Sciences Uppsala Sweden
Department of Soil and Crop Sciences Texas A and M University College Station TX USA
Higentec Breeding Innovation Co Ltd Lishui China
Institute of Experimental Botany of the Czech Academy of Sciences Olomouc Czech Republic
Institute of Plant Science and Resources Okayama University Kurashiki Japan
International Barley Hub Dundee Scotland
Kazusa DNA Research Institute Kisarazu Japan
Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben Seeland Germany
Minnesota Supercomputing Institute University of Minnesota Minneapolis MN USA
School of Life Sciences Technical University of Munich Freising Germany
School of Life Sciences University of Dundee Dundee UK
Texas A and M AgriLife Research Center at Dallas Texas A and M University System Dallas TX USA
Zobrazit více v PubMed
Verstegen, H., Köneke, O., Korzun, V. & von Broock, R. in Biotechnological Approaches to Barley Improvement (eds Kumlehn, J. & Stein, N.) 3–19 (Springer, 2014).
Langridge, P. in The Barley Genome (eds Stein, N. & Muehlbauer, G. J.) 1–10 (Springer, 2018).
Harwood, W. A. in Barley: Methods and Protocols 1–5 (Springer, 2019).
Von Bothmer, R., van Hintum, T., Knüpffer, H. & Sato, K. Diversity in Barley (Hordeum vulgare) Vol. 7 (Elsevier, 2003).
Komatsuda, T. et al. Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc. Natl Acad. Sci. USA104, 1424–1429 (2007). PubMed PMC
Russell, J. et al. Exome sequencing of geographically diverse barley landraces and wild relatives gives insights into environmental adaptation. Nat. Genet.48, 1024–1030 (2016). PubMed
Taketa, S. et al. Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthesis pathway. Proc. Natl Acad. Sci. USA105, 4062–4067 (2008). PubMed PMC
Jayakodi, M. et al. The barley pan-genome reveals the hidden legacy of mutation breeding. Nature588, 284–289 (2020). PubMed PMC
Jayakodi, M. et al. Structural variation in the pangenome of wild and domesticated barley. Nature636, 654–662 (2024). PubMed PMC
Mascher, M. et al. A chromosome conformation capture ordered sequence of the barley genome. Nature544, 427–433 (2017). PubMed
Lundqvist, U. Scandinavian mutation research in barley—a historical review. Hereditas151, 123–131 (2014). PubMed
Guo, W., Coulter, M., Waugh, R. & Zhang, R. The value of genotype-specific reference for transcriptome analyses in barley. Life Sci. Alliance5, e202101255 (2022). PubMed PMC
Brown, J. W. S., Calixto, C. P. G. & Zhang, R. High-quality reference transcript datasets hold the key to transcript-specific RNA-sequencing analysis in plants. New Phytol.213, 525–530 (2017). PubMed
Zhang, R. et al. A high quality Arabidopsis transcriptome for accurate transcript-level analysis of alternative splicing. Nucleic Acids Res.45, 5061–5073 (2017). PubMed PMC
Rapazote-Flores, P. et al. BaRTv1.0: an improved barley reference transcript dataset to determine accurate changes in the barley transcriptome using RNA-seq. BMC Genomics20, 968 (2019). PubMed PMC
Coulter, M. et al. BaRTv2: a highly resolved barley reference transcriptome for accurate transcript‐specific RNA‐seq quantification. Plant J.111, 1183–1202 (2022). PubMed PMC
Wang, J. et al. A pangenome analysis pipeline provides insights into functional gene identification in rice. Genome Biol.24, 19 (2023). PubMed PMC
Aleksander, S. A. et al. The Gene Ontology knowledgebase in 2023. Genetics224, iyad031 (2023). PubMed PMC
Francia, E. et al. Copy number variation at the HvCBF4–HvCBF2 genomic segment is a major component of frost resistance in barley. Plant Mol. Biol.92, 161–175 (2016). PubMed
Jeknić, Z. et al. Hv-CBF2A overexpression in barley accelerates COR gene transcript accumulation and acquisition of freezing tolerance during cold acclimation. Plant Mol. Biol.84, 67–82 (2014). PubMed
Schreiber, M. et al. Genomic resources for a historical collection of cultivated two-row European spring barley genotypes. Sci. Data11, 66 (2024). PubMed PMC
Shrestha, A. et al. The double round-robin population unravels the genetic architecture of grain size in barley. J. Exp. Bot.73, 7344–7361 (2022). PubMed PMC
Cu, S. T. et al. Genetic analysis of grain and malt quality in an elite barley population. Mol. Breed.36, 129 (2016).
Genievskaya, Y., Almerekova, S., Abugalieva, A. & Abugalieva, S. Genome-wide association study of grain quality traits in spring barley collection grown in Kyzylorda region. Exp. Biol.7, 36–47 (2021).
Pasam, R. K. et al. Genome-wide association studies for agronomical traits in a world wide spring barley collection. BMC Plant Biol.12, 16 (2012). PubMed PMC
Elía, M. et al. A model of the genetic differences in malting quality between European and North American barley cultivars based on a QTL study of the cross Triumph x Morex. Plant Breed.129, 280–290 (2010).
Du, B. et al. Detection of consensus genomic regions and candidate genes for quality traits in barley using QTL meta-analysis. Front. Plant Sci.14, 1319889 (2024). PubMed PMC
Collins, H. M. et al. Genes that mediate starch metabolism in developing and germinated barley grain. Front. Plant Sci.12, 641325 (2021). PubMed PMC
Franco-Zorrilla, J. M. et al. DNA-binding specificities of plant transcription factors and their potential to define target genes. Proc. Natl Acad. Sci. USA111, 2367–2372 (2014). PubMed PMC
Spitz, F. & Furlong, E. E. M. Transcription factors: from enhancer binding to developmental control. Nat. Rev. Genet.13, 613–626 (2012). PubMed
Ricci, W. A. et al. Widespread long-range cis-regulatory elements in the maize genome. Nat. Plants5, 1237–1249 (2019). PubMed PMC
Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics9, 559 (2008). PubMed PMC
Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods14, 417–419 (2017). PubMed PMC
Milne, L. et al. EORNA, a barley gene and transcript abundance database. Sci. Data8, 90 (2021). PubMed PMC
Peng, J. et al. ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature400, 256–261 (1999). PubMed
Betts, N. S. et al. Transcriptional and biochemical analyses of gibberellin expression and content in germinated barley grain. J. Exp. Bot.71, 1870–1884 (2020). PubMed PMC
Cheng, J. et al. Diversity of gibberellin 2-oxidase genes in the barley genome offers opportunities for genetic improvement. J. Adv. Res.66, 105–118 (2024). PubMed PMC
Potokina, E. et al. Gene expression quantitative trait locus analysis of 16000 barley genes reveals a complex pattern of genome-wide transcriptional regulation. Plant J.53, 90–101 (2008). PubMed
Druka, A. et al. Expression quantitative trait loci analysis in plants. Plant Biotechnol. J.8, 10–27 (2010). PubMed
Wonneberger, R. et al. Major chromosome 5H haplotype switch structures the European two-rowed spring barley germplasm of the past 190 years. Theor. Appl. Genet.136, 174 (2023). PubMed PMC
Harper, A. L. et al. Associative transcriptomics of traits in the polyploid crop species Brassica napus. Nat. Biotechnol.30, 798–802 (2012). PubMed
Jin, M. et al. Maize pan-transcriptome provides novel insights into genome complexity and quantitative trait variation. Sci. Rep.6, 18936 (2016). PubMed PMC
Chen, X. et al. An eQTL analysis of partial resistance to Puccinia hordei in barley. PLoS ONE5, e8598 (2010). PubMed PMC
Ma, Y., Liu, M., Stiller, J. & Liu, C. A pan-transcriptome analysis shows that disease resistance genes have undergone more selection pressure during barley domestication. BMC Genomics20, 12 (2019). PubMed PMC
Ramírez-González, R. H. et al. The transcriptional landscape of polyploid wheat. Science361, eaar6089 (2018). PubMed
Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics34, i884–i890 (2018). PubMed PMC
Dobin, A. & Gingeras, T. R. Mapping RNA-seq reads with STAR. Curr. Protoc. Bioinformatics51, 11.14.1–11.14.19 (2015). PubMed PMC
Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol.33, 290–295 (2015). PubMed PMC
Shao, M. & Kingsford, C. Accurate assembly of transcripts through phase-preserving graph decomposition. Nat. Biotechnol.35, 1167–1169 (2017). PubMed PMC
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics34, 3094–3100 (2018). PubMed PMC
Kuo, R. I. et al. Illuminating the dark side of the human transcriptome with long read transcript sequencing. BMC Genomics21, 751 (2020). PubMed PMC
Zhang, R. et al. A high-resolution single-molecule sequencing-based Arabidopsis transcriptome using novel methods of Iso-seq analysis. Genome Biol.23, 149 (2022). PubMed PMC
Entizne, J. C. et al. TranSuite: a software suite for accurate translation and characterization of transcripts. Preprint at bioRxiv10.1101/2020.12.15.422989 (2020).
Quevillon, E. et al. InterProScan: protein domains identifier. Nucleic Acids Res.33, W116 (2005). PubMed PMC
Guo, W. et al. 3D RNA-seq: a powerful and flexible tool for rapid and accurate differential expression and alternative splicing analysis of RNA-seq data for biologists. RNA Biol.18, 1574–1587 (2021). PubMed PMC
Frazee, A. C., Jaffe, A. E., Langmead, B. & Leek, J. T. Polyester: simulating RNA-seq datasets with differential transcript expression. Bioinformatics31, 2778–2784 (2015). PubMed PMC
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol.215, 403–410 (1990). PubMed
Goel, M., Sun, H., Jiao, W. B. & Schneeberger, K. SyRI: finding genomic rearrangements and local sequence differences from whole-genome assemblies. Genome Biol.20, 277 (2019). PubMed PMC
Goel, M. & Schneeberger, K. plotsr: visualizing structural similarities and rearrangements between multiple genomes. Bioinformatics38, 2922–2926 (2022). PubMed PMC
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol.15, 550 (2014). PubMed PMC
Lohse, M. et al. Mercator: a fast and simple web server for genome scale functional annotation of plant sequence data. Plant Cell Environ.37, 1250–1258 (2014). PubMed
Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation2, 100141 (2021). PubMed PMC
Hagberg, A. A., Schult, D. A. & Swart, P. J. Exploring network structure, dynamics, and function using NetworkX. In Proc. 7th Python in Science Conference (eds Varoquaux, G. et al.) 11–15 (SciPy, 2008).
De Meo, P., Ferrara, E., Fiumara, G. & Provetti, A. Generalized Louvain method for community detection in large networks. In Proc. International Conference on Intelligent Systems Design and Applications (ed. Ventura, S.) 88–93 (ISDA, 2011).
Brodersen, P. & Voinnet, O. Revisiting the principles of microRNA target recognition and mode of action. Nat. Rev. Mol. Cell. Biol.10, 141–148 (2009). PubMed
Sakai, H. et al. Rice Annotation Project Database (RAP-DB): an integrative and interactive database for rice genomics. Plant Cell Physiol.54, e6 (2013). PubMed PMC
Cheng, C. Y. et al. Araport11: a complete reannotation of the Arabidopsis thaliana reference genome. Plant J.89, 789–804 (2017). PubMed
Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol.20, 238 (2019). PubMed PMC
Mascher, M. et al. Long-read sequence assembly: a technical evaluation in barley. Plant Cell33, 1888–1906 (2021). PubMed PMC
Knudsen, S. et al. FIND-IT: accelerated trait development for a green evolution. Sci. Adv.8, eabq2266 (2024). PubMed PMC
Marosi, V., Bayer, M., & Guo, W. cropgeeks/barleyPantranscriptome: v1.0 (v1.0). Zenodo10.5281/zenodo.13961253 (2024).
Marosi, V. vanda-marosi/PanBarleyNetworks: publication (1.0). Zenodo10.5281/zenodo.13961795 (2024).
Viet, D., Brett, C., Yong, J., Chengdao, L., & Western Crop Genetics Alliance. WCGA-Murdoch/Barley-phenology-2023: barley phenology genes CNV analysis—2023 (v1.0). Zenodo10.5281/zenodo.13950149 (2024).
Guo, W. et al. A barley pan-transcriptome reveals layers of genotype-dependent transcriptional complexity. figshare10.6084/m9.figshare.28035638 (2025). PubMed PMC
A barley pan-transcriptome reveals layers of genotype-dependent transcriptional complexity