Investigation of Protein Corona Formed around Biologically Produced Gold Nanoparticles

. 2022 Jun 30 ; 15 (13) : . [epub] 20220630

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35806737

Grantová podpora
CZ.02.2.69/0.0/0.0/20_079/0017812 European Science Foundation
Z.02.1.01/0.0/0.0/18_046/0016045, CZ.02.1.01/0.0/0.0/16_013/0001775, CZ.02.1.01/0.0/0.0/18_046/0015974 ERDF
LM2018127, LM2018129 MEYS CR

Although there are several research articles on the detection and characterization of protein corona on the surface of various nanoparticles, there are no detailed studies on the formation, detection, and characterization of protein corona on the surface of biologically produced gold nanoparticles (AuNPs). AuNPs were prepared from Fusarium oxysporum at two different temperatures and characterized by spectrophotometry, Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDS). The zeta potential of AuNPs was determined using a Zetasizer. AuNPs were incubated with 3 different concentrations of mouse plasma, and the hard protein corona was detected first by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and then by electrospray liquid chromatography-mass spectrometry (LC-MS). The profiles were compared to AuNPs alone that served as control. The results showed that round and oval AuNPs with sizes below 50 nm were produced at both temperatures. The AuNPs were stable after the formation of the protein corona and had sizes larger than 86 nm, and their zeta potential remained negative. We found that capping agents in the control samples contained small peptides/amino acids but almost no protein(s). After hard protein corona formation, we identified plasma proteins present on the surface of AuNPs. The identified plasma proteins may contribute to the AuNPs being shielded from phagocytizing immune cells, which makes the AuNPs a promising candidate for in vivo drug delivery. The protein corona on the surface of biologically produced AuNPs differed depending on the capping agents of the individual AuNP samples and the plasma concentration.

Zobrazit více v PubMed

Pourali P., Baserisalehi M., Afsharnezhad S., Behravan J., Ganjali R., Bahador N., Arabzadeh S. The effect of temperature on antibacterial activity of biosynthesized silver nanoparticles. Biometals. 2013;26:189–196. doi: 10.1007/s10534-012-9606-y. PubMed DOI

Lundqvist M., Stigler J., Cedervall T., Berggard T., Flanagan M.B., Lynch I., Elia G., Dawson K. The evolution of the protein corona around nanoparticles: A test study. ACS Nano. 2011;5:7503–7509. doi: 10.1021/nn202458g. PubMed DOI

Dobrovolskaia M.A., Patri A.K., Zheng J., Clogston J.D., Ayub N., Aggarwal P., Neun B.W., Hall J.B., McNeil S.E. Interaction of colloidal gold nanoparticles with human blood: Effects on particle size and analysis of plasma protein binding profiles. Nanomed. Nanotechnol. Biol. Med. 2009;5:106–117. doi: 10.1016/j.nano.2008.08.001. PubMed DOI PMC

Walczyk D., Bombelli F.B., Monopoli M.P., Lynch I., Dawson K.A. What the cell “sees” in bionanoscience. J. Am. Chem. Soc. 2010;132:5761–5768. doi: 10.1021/ja910675v. PubMed DOI

Lynch I., Salvati A., Dawson K.A. What does the cell see? Nat. Nanotechnol. 2009;4:546–547. doi: 10.1038/nnano.2009.248. PubMed DOI

Elahi N., Kamali M., Baghersad M.H. Recent biomedical applications of gold nanoparticles: A review. Talanta. 2018;184:537–556. doi: 10.1016/j.talanta.2018.02.088. PubMed DOI

Lynch I., Dawson K.A. Protein-nanoparticle interactions. Nano Today. 2008;3:40–47. doi: 10.1016/S1748-0132(08)70014-8. DOI

Pourali P., Benada O., Pátek M., Neuhöferová E., Dzmitruk V., Benson V. Response of Biological Gold Nanoparticles to Different pH Values: Is It Possible to Prepare Both Negatively and Positively Charged Nanoparticles? Appl. Sci. 2021;11:1559. doi: 10.3390/app112311559. DOI

Yahyaei B., Nouri M., Bakherad S., Hassani M., Pourali P. Effects of biologically produced gold nanoparticles: Toxicity assessment in different rat organs after intraperitoneal injection. AMB Express. 2019;9:38. doi: 10.1186/s13568-019-0762-0. PubMed DOI PMC

Yahyaei B., Pourali P. One step conjugation of some chemotherapeutic drugs to the biologically produced gold nanoparticles and assessment of their anticancer effects. Sci. Rep. 2019;9:10242. doi: 10.1038/s41598-019-46602-0. PubMed DOI PMC

Hammami I., Alabdallah N.M. Gold nanoparticles: Synthesis properties and applications. J. King Saud Univ.-Sci. 2021;33:101560. doi: 10.1016/j.jksus.2021.101560. DOI

Pourali P., Yahyaei B., Ajoudanifar H., Taheri R., Alavi H., Hoseini A. Impregnation of the bacterial cellulose membrane with biologically produced silver nanoparticles. Curr. Microbiol. 2014;69:785–793. doi: 10.1007/s00284-014-0655-z. PubMed DOI

Pourali P., Razavian Zadeh N., Yahyaei B. Silver nanoparticles production by two soil isolated bacteria, Bacillus thuringiensis and Enterobacter cloacae, and assessment of their cytotoxicity and wound healing effect in rats. Wound Repair Regen. 2016;24:860–869. doi: 10.1111/wrr.12465. PubMed DOI

Abdolmaleki H., Sohrabi M. Biosynthesis of silver nanoparticles by two lichens of “Usnea articulate” and “Ramalina sinensis” and investigation of their antibacterial activity against some pathogenic bacteria. Ebnesina. 2016;17:33–42.

Nikbakht M., Yahyaei B., Pourali P. Green synthesis, characterization and antibacterial activity of silver nanoparticles using fruit aqueous and methanolic extracts of Berberis vulgaris and Ziziphus vulgaris. J. Pure Appl. Microbiol. 2015;9:349–355.

Pourali P., Nouri M., Ameri F., Heidari T., Kheirkhahan N., Arabzadeh S., Yahyaei B. Histopathological study of the maternal exposure to the biologically produced silver nanoparticles on different organs of the offspring. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2020;393:867–878. doi: 10.1007/s00210-019-01796-y. PubMed DOI

Mukherjee P., Ahmad A., Mandal D., Senapati S., Sainkar S.R., Khan M.I., Ramani R., Parischa R., Ajayakumar P.V., Alam M., et al. Bioreduction of AuCl4− ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew. Chem. Int. Ed. 2001;40:3585–3588. doi: 10.1002/1521-3773(20011001)40:19<3585::AID-ANIE3585>3.0.CO;2-K. PubMed DOI

Ahmad A., Senapati S., Khan M.I., Kumar R., Sastry M. Extra-/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium sp. J. Biomed. Nanotechnol. 2005;1:47–53. doi: 10.1166/jbn.2005.012. DOI

Bhambure R., Bule M., Shaligram N., Kamat M., Singhal R. Extracellular biosynthesis of gold nanoparticles using Aspergillus niger—Its characterization and stability. Chem. Eng. Technol. Ind. Chem.-Plant Equip.-Process Eng.-Biotechnol. 2009;32:1036–1041. doi: 10.1002/ceat.200800647. DOI

Pourali P., Badiee S.H., Manafi S., Noorani T., Rezaei A., Yahyaei B. Biosynthesis of gold nanoparticles by two bacterial and fungal strains, Bacillus cereus and Fusarium oxysporum, and assessment and comparison of their nanotoxicity in vitro by direct and indirect assays. Electron. J. Biotechnol. 2017;29:86–93. doi: 10.1016/j.ejbt.2017.07.005. DOI

Wypij M., Jędrzejewski T., Ostrowski M., Trzcińska J., Rai M., Golińska P. Biogenic silver nanoparticles: Assessment of their cytotoxicity, genotoxicity and study of capping proteins. Molecules. 2020;25:3022. doi: 10.3390/molecules25133022. PubMed DOI PMC

Roy A., Bulut O., Some S., Mandal A.K., Yilmaz M.D. Green synthesis of silver nanoparticles: Biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv. 2019;9:2673–2702. doi: 10.1039/C8RA08982E. PubMed DOI PMC

Zhang X., He X., Wang K., Yang X. Different active biomolecules involved in biosynthesis of gold nanoparticles by three fungus species. J. Biomed. Nanotechnol. 2011;7:245–254. doi: 10.1166/jbn.2011.1285. PubMed DOI

Pourali P., Yahyaei B., Afsharnezhad S. Bio-Synthesis of Gold Nanoparticles by Fusarium oxysporum and Assessment of Their Conjugation Possibility with Two Types of β-Lactam Antibiotics without Any Additional Linkers. Microbiology. 2018;87:229–237. doi: 10.1134/S0026261718020108. DOI

Naimi-Shamel N., Pourali P., Dolatabadi S. Green synthesis of gold nanoparticles using Fusarium oxysporum and antibacterial activity of its tetracycline conjugant. J. De Mycol. Med. 2019;29:7–13. doi: 10.1016/j.mycmed.2019.01.005. PubMed DOI

Owens D.E., III, Peppas N.A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 2006;307:93–102. doi: 10.1016/j.ijpharm.2005.10.010. PubMed DOI

Ishida T., Harashima H., Kiwada H. Interactions of liposomes with cells in vitro and in vivo: Opsonins and receptors. Curr. Drug Metab. 2001;2:397–409. doi: 10.2174/1389200013338306. PubMed DOI

Camner P., Lundborg M., Låstbom L., Gerde P., Gross N., Jarstrand C. Experimental and calculated parameters on particle phagocytosis by alveolar macrophages. J. Appl. Physiol. 2002;92:2608–2616. doi: 10.1152/japplphysiol.01067.2001. PubMed DOI

Monopoli M.P., Walczyk D., Campbell A., Elia G., Lynch I., Baldelli Bombelli F., Dawson K.A. Physical−chemical aspects of protein corona: Relevance to in vitro and in vivo biological impacts of nanoparticles. J. Am. Chem. Soc. 2011;133:2525–2534. doi: 10.1021/ja107583h. PubMed DOI

Pacheco N.I., Roubalova R., Dvorak J., Benada O., Pinkas D., Kofronova O., Semerad J., Pivokonsky M., Cajthaml T., Bilej M., et al. Understanding the toxicity mechanism of CuO nanoparticles: The intracellular view of exposed earthworm cells. Environ. Sci. Nano. 2021;8:2464–2477. doi: 10.1039/D1EN00080B. DOI

Aghamirzaei M., Khiabani M.S., Hamishehkar H., Mokarram R.R., Amjadi M. Antioxidant, antimicrobial and cytotoxic activities of biosynthesized gold nanoparticles (AuNPs) from Chinese lettuce (CL) leave extract (Brassica rapa var. pekinensis) Mater. Today Commun. 2021;29:102831. doi: 10.1016/j.mtcomm.2021.102831. DOI

Parasuraman S., Raveendran R., Kesavan R. Blood sample collection in small laboratory animals. J. Pharmacol. Pharmacother. 2010;1:87. PubMed PMC

Welz B., Sperling M. Atomic Absorption Spectrometry. John Wiley & Sons; Hoboken, NJ, USA: 2008.

Jedlovszky-Hajdu A., Bombelli F.B., Monopoli M.P., Tombacz E., Dawson K.A. Surface coatings shape the protein corona of SPIONs with relevance to their application in vivo. Langmuir. 2012;28:14983–14991. doi: 10.1021/la302446h. PubMed DOI

Goldring J. Protein quantification methods to determine protein concentration prior to electrophoresis. Protein Electrophor. 2012:29–35. PubMed

Brunelle J.L., Green R. One-dimensional SDS-polyacrylamide gel electrophoresis (1D SDS-PAGE) Methods Enzymol. 2014;541:151–159. PubMed

Anwar Z.M., Azab H.A. Ternary complexes in solution. Comparison of the coordination tendency of some biologically important zwitterionic buffers toward the binary complexes of some transition metal ions and some amino acids. J. Chem. Eng. Data. 1999;44:1151–1157. doi: 10.1021/je9901031. DOI

Azab H.A., Anwar Z.M. Coordination tendency of some biologically important zwitterionic buffers toward metal ion nucleotide complexes at different temperatures. J. Chem. Eng. Data. 2012;57:2890–2895. doi: 10.1021/je300830k. DOI

Ferreira C.M., Pinto I.S., Soares E.V., Soares H.M. (Un) suitability of the use of pH buffers in biological, biochemical and environmental studies and their interaction with metal ions—A review. RSC Adv. 2015;5:30989–31003. doi: 10.1039/C4RA15453C. DOI

Pavelek Z., Vyšata O., Tambor V., Pimková K., Vu D.L., Kuča K., Šťourač P., Vališ M. Proteomic analysis of cerebrospinal fluid for relapsing-remitting multiple sclerosis and clinically isolated syndrome. Biomed. Rep. 2016;5:35–40. doi: 10.3892/br.2016.668. PubMed DOI PMC

Whitaker J.R., Granum P.E. An absolute method for protein determination based on difference in absorbance at 235 and 280 nm. Anal. Biochem. 1980;109:156–159. doi: 10.1016/0003-2697(80)90024-X. PubMed DOI

Salvadori M.R., Nascimento C.A.O., Corrêa B. Nickel oxide nanoparticles film produced by dead biomass of filamentous fungus. Sci. Rep. 2014;4:6404. doi: 10.1038/srep06404. PubMed DOI PMC

Salvadori M.R., Lepre L.F., Ando R.A., Oller do Nascimento C.A., Corrêa B. Biosynthesis and uptake of copper nanoparticles by dead biomass of Hypocrea lixii isolated from the metal mine in the Brazilian Amazon region. PLoS ONE. 2013;8:e80519. doi: 10.1371/journal.pone.0080519. PubMed DOI PMC

Salvadori M.R., Ando R.A., Oller Nascimento C.A., Correa B. Extra and intracellular synthesis of nickel oxide nanoparticles mediated by dead fungal biomass. PLoS ONE. 2015;10:e0129799. doi: 10.1371/journal.pone.0129799. PubMed DOI PMC

Salvadori M.R., Ando R.A., Nascimento C.A., Corrêa B. Dead biomass of Amazon yeast: A new insight into bioremediation and recovery of silver by intracellular synthesis of nanoparticles. J. Environ. Sci. Health Part A. 2017;52:1112–1120. doi: 10.1080/10934529.2017.1340754. PubMed DOI

Chowdhury S., Basu A., Kundu S. Green synthesis of protein capped silver nanoparticles from phytopathogenic fungus Macrophomina phaseolina (Tassi) Goid with antimicrobial properties against multidrug-resistant bacteria. Nanoscale Res. Lett. 2014;9:365. doi: 10.1186/1556-276X-9-365. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...