Investigation of Protein Corona Formed around Biologically Produced Gold Nanoparticles
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.2.69/0.0/0.0/20_079/0017812
European Science Foundation
Z.02.1.01/0.0/0.0/18_046/0016045, CZ.02.1.01/0.0/0.0/16_013/0001775, CZ.02.1.01/0.0/0.0/18_046/0015974
ERDF
LM2018127, LM2018129
MEYS CR
PubMed
35806737
PubMed Central
PMC9267809
DOI
10.3390/ma15134615
PII: ma15134615
Knihovny.cz E-zdroje
- Klíčová slova
- Fusarium oxysporum, biologically produced gold nanoparticles, capping agent, hard protein corona,
- Publikační typ
- časopisecké články MeSH
Although there are several research articles on the detection and characterization of protein corona on the surface of various nanoparticles, there are no detailed studies on the formation, detection, and characterization of protein corona on the surface of biologically produced gold nanoparticles (AuNPs). AuNPs were prepared from Fusarium oxysporum at two different temperatures and characterized by spectrophotometry, Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDS). The zeta potential of AuNPs was determined using a Zetasizer. AuNPs were incubated with 3 different concentrations of mouse plasma, and the hard protein corona was detected first by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and then by electrospray liquid chromatography-mass spectrometry (LC-MS). The profiles were compared to AuNPs alone that served as control. The results showed that round and oval AuNPs with sizes below 50 nm were produced at both temperatures. The AuNPs were stable after the formation of the protein corona and had sizes larger than 86 nm, and their zeta potential remained negative. We found that capping agents in the control samples contained small peptides/amino acids but almost no protein(s). After hard protein corona formation, we identified plasma proteins present on the surface of AuNPs. The identified plasma proteins may contribute to the AuNPs being shielded from phagocytizing immune cells, which makes the AuNPs a promising candidate for in vivo drug delivery. The protein corona on the surface of biologically produced AuNPs differed depending on the capping agents of the individual AuNP samples and the plasma concentration.
Zobrazit více v PubMed
Pourali P., Baserisalehi M., Afsharnezhad S., Behravan J., Ganjali R., Bahador N., Arabzadeh S. The effect of temperature on antibacterial activity of biosynthesized silver nanoparticles. Biometals. 2013;26:189–196. doi: 10.1007/s10534-012-9606-y. PubMed DOI
Lundqvist M., Stigler J., Cedervall T., Berggard T., Flanagan M.B., Lynch I., Elia G., Dawson K. The evolution of the protein corona around nanoparticles: A test study. ACS Nano. 2011;5:7503–7509. doi: 10.1021/nn202458g. PubMed DOI
Dobrovolskaia M.A., Patri A.K., Zheng J., Clogston J.D., Ayub N., Aggarwal P., Neun B.W., Hall J.B., McNeil S.E. Interaction of colloidal gold nanoparticles with human blood: Effects on particle size and analysis of plasma protein binding profiles. Nanomed. Nanotechnol. Biol. Med. 2009;5:106–117. doi: 10.1016/j.nano.2008.08.001. PubMed DOI PMC
Walczyk D., Bombelli F.B., Monopoli M.P., Lynch I., Dawson K.A. What the cell “sees” in bionanoscience. J. Am. Chem. Soc. 2010;132:5761–5768. doi: 10.1021/ja910675v. PubMed DOI
Lynch I., Salvati A., Dawson K.A. What does the cell see? Nat. Nanotechnol. 2009;4:546–547. doi: 10.1038/nnano.2009.248. PubMed DOI
Elahi N., Kamali M., Baghersad M.H. Recent biomedical applications of gold nanoparticles: A review. Talanta. 2018;184:537–556. doi: 10.1016/j.talanta.2018.02.088. PubMed DOI
Lynch I., Dawson K.A. Protein-nanoparticle interactions. Nano Today. 2008;3:40–47. doi: 10.1016/S1748-0132(08)70014-8. DOI
Pourali P., Benada O., Pátek M., Neuhöferová E., Dzmitruk V., Benson V. Response of Biological Gold Nanoparticles to Different pH Values: Is It Possible to Prepare Both Negatively and Positively Charged Nanoparticles? Appl. Sci. 2021;11:1559. doi: 10.3390/app112311559. DOI
Yahyaei B., Nouri M., Bakherad S., Hassani M., Pourali P. Effects of biologically produced gold nanoparticles: Toxicity assessment in different rat organs after intraperitoneal injection. AMB Express. 2019;9:38. doi: 10.1186/s13568-019-0762-0. PubMed DOI PMC
Yahyaei B., Pourali P. One step conjugation of some chemotherapeutic drugs to the biologically produced gold nanoparticles and assessment of their anticancer effects. Sci. Rep. 2019;9:10242. doi: 10.1038/s41598-019-46602-0. PubMed DOI PMC
Hammami I., Alabdallah N.M. Gold nanoparticles: Synthesis properties and applications. J. King Saud Univ.-Sci. 2021;33:101560. doi: 10.1016/j.jksus.2021.101560. DOI
Pourali P., Yahyaei B., Ajoudanifar H., Taheri R., Alavi H., Hoseini A. Impregnation of the bacterial cellulose membrane with biologically produced silver nanoparticles. Curr. Microbiol. 2014;69:785–793. doi: 10.1007/s00284-014-0655-z. PubMed DOI
Pourali P., Razavian Zadeh N., Yahyaei B. Silver nanoparticles production by two soil isolated bacteria, Bacillus thuringiensis and Enterobacter cloacae, and assessment of their cytotoxicity and wound healing effect in rats. Wound Repair Regen. 2016;24:860–869. doi: 10.1111/wrr.12465. PubMed DOI
Abdolmaleki H., Sohrabi M. Biosynthesis of silver nanoparticles by two lichens of “Usnea articulate” and “Ramalina sinensis” and investigation of their antibacterial activity against some pathogenic bacteria. Ebnesina. 2016;17:33–42.
Nikbakht M., Yahyaei B., Pourali P. Green synthesis, characterization and antibacterial activity of silver nanoparticles using fruit aqueous and methanolic extracts of Berberis vulgaris and Ziziphus vulgaris. J. Pure Appl. Microbiol. 2015;9:349–355.
Pourali P., Nouri M., Ameri F., Heidari T., Kheirkhahan N., Arabzadeh S., Yahyaei B. Histopathological study of the maternal exposure to the biologically produced silver nanoparticles on different organs of the offspring. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2020;393:867–878. doi: 10.1007/s00210-019-01796-y. PubMed DOI
Mukherjee P., Ahmad A., Mandal D., Senapati S., Sainkar S.R., Khan M.I., Ramani R., Parischa R., Ajayakumar P.V., Alam M., et al. Bioreduction of AuCl4− ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew. Chem. Int. Ed. 2001;40:3585–3588. doi: 10.1002/1521-3773(20011001)40:19<3585::AID-ANIE3585>3.0.CO;2-K. PubMed DOI
Ahmad A., Senapati S., Khan M.I., Kumar R., Sastry M. Extra-/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium sp. J. Biomed. Nanotechnol. 2005;1:47–53. doi: 10.1166/jbn.2005.012. DOI
Bhambure R., Bule M., Shaligram N., Kamat M., Singhal R. Extracellular biosynthesis of gold nanoparticles using Aspergillus niger—Its characterization and stability. Chem. Eng. Technol. Ind. Chem.-Plant Equip.-Process Eng.-Biotechnol. 2009;32:1036–1041. doi: 10.1002/ceat.200800647. DOI
Pourali P., Badiee S.H., Manafi S., Noorani T., Rezaei A., Yahyaei B. Biosynthesis of gold nanoparticles by two bacterial and fungal strains, Bacillus cereus and Fusarium oxysporum, and assessment and comparison of their nanotoxicity in vitro by direct and indirect assays. Electron. J. Biotechnol. 2017;29:86–93. doi: 10.1016/j.ejbt.2017.07.005. DOI
Wypij M., Jędrzejewski T., Ostrowski M., Trzcińska J., Rai M., Golińska P. Biogenic silver nanoparticles: Assessment of their cytotoxicity, genotoxicity and study of capping proteins. Molecules. 2020;25:3022. doi: 10.3390/molecules25133022. PubMed DOI PMC
Roy A., Bulut O., Some S., Mandal A.K., Yilmaz M.D. Green synthesis of silver nanoparticles: Biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv. 2019;9:2673–2702. doi: 10.1039/C8RA08982E. PubMed DOI PMC
Zhang X., He X., Wang K., Yang X. Different active biomolecules involved in biosynthesis of gold nanoparticles by three fungus species. J. Biomed. Nanotechnol. 2011;7:245–254. doi: 10.1166/jbn.2011.1285. PubMed DOI
Pourali P., Yahyaei B., Afsharnezhad S. Bio-Synthesis of Gold Nanoparticles by Fusarium oxysporum and Assessment of Their Conjugation Possibility with Two Types of β-Lactam Antibiotics without Any Additional Linkers. Microbiology. 2018;87:229–237. doi: 10.1134/S0026261718020108. DOI
Naimi-Shamel N., Pourali P., Dolatabadi S. Green synthesis of gold nanoparticles using Fusarium oxysporum and antibacterial activity of its tetracycline conjugant. J. De Mycol. Med. 2019;29:7–13. doi: 10.1016/j.mycmed.2019.01.005. PubMed DOI
Owens D.E., III, Peppas N.A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 2006;307:93–102. doi: 10.1016/j.ijpharm.2005.10.010. PubMed DOI
Ishida T., Harashima H., Kiwada H. Interactions of liposomes with cells in vitro and in vivo: Opsonins and receptors. Curr. Drug Metab. 2001;2:397–409. doi: 10.2174/1389200013338306. PubMed DOI
Camner P., Lundborg M., Låstbom L., Gerde P., Gross N., Jarstrand C. Experimental and calculated parameters on particle phagocytosis by alveolar macrophages. J. Appl. Physiol. 2002;92:2608–2616. doi: 10.1152/japplphysiol.01067.2001. PubMed DOI
Monopoli M.P., Walczyk D., Campbell A., Elia G., Lynch I., Baldelli Bombelli F., Dawson K.A. Physical−chemical aspects of protein corona: Relevance to in vitro and in vivo biological impacts of nanoparticles. J. Am. Chem. Soc. 2011;133:2525–2534. doi: 10.1021/ja107583h. PubMed DOI
Pacheco N.I., Roubalova R., Dvorak J., Benada O., Pinkas D., Kofronova O., Semerad J., Pivokonsky M., Cajthaml T., Bilej M., et al. Understanding the toxicity mechanism of CuO nanoparticles: The intracellular view of exposed earthworm cells. Environ. Sci. Nano. 2021;8:2464–2477. doi: 10.1039/D1EN00080B. DOI
Aghamirzaei M., Khiabani M.S., Hamishehkar H., Mokarram R.R., Amjadi M. Antioxidant, antimicrobial and cytotoxic activities of biosynthesized gold nanoparticles (AuNPs) from Chinese lettuce (CL) leave extract (Brassica rapa var. pekinensis) Mater. Today Commun. 2021;29:102831. doi: 10.1016/j.mtcomm.2021.102831. DOI
Parasuraman S., Raveendran R., Kesavan R. Blood sample collection in small laboratory animals. J. Pharmacol. Pharmacother. 2010;1:87. PubMed PMC
Welz B., Sperling M. Atomic Absorption Spectrometry. John Wiley & Sons; Hoboken, NJ, USA: 2008.
Jedlovszky-Hajdu A., Bombelli F.B., Monopoli M.P., Tombacz E., Dawson K.A. Surface coatings shape the protein corona of SPIONs with relevance to their application in vivo. Langmuir. 2012;28:14983–14991. doi: 10.1021/la302446h. PubMed DOI
Goldring J. Protein quantification methods to determine protein concentration prior to electrophoresis. Protein Electrophor. 2012:29–35. PubMed
Brunelle J.L., Green R. One-dimensional SDS-polyacrylamide gel electrophoresis (1D SDS-PAGE) Methods Enzymol. 2014;541:151–159. PubMed
Anwar Z.M., Azab H.A. Ternary complexes in solution. Comparison of the coordination tendency of some biologically important zwitterionic buffers toward the binary complexes of some transition metal ions and some amino acids. J. Chem. Eng. Data. 1999;44:1151–1157. doi: 10.1021/je9901031. DOI
Azab H.A., Anwar Z.M. Coordination tendency of some biologically important zwitterionic buffers toward metal ion nucleotide complexes at different temperatures. J. Chem. Eng. Data. 2012;57:2890–2895. doi: 10.1021/je300830k. DOI
Ferreira C.M., Pinto I.S., Soares E.V., Soares H.M. (Un) suitability of the use of pH buffers in biological, biochemical and environmental studies and their interaction with metal ions—A review. RSC Adv. 2015;5:30989–31003. doi: 10.1039/C4RA15453C. DOI
Pavelek Z., Vyšata O., Tambor V., Pimková K., Vu D.L., Kuča K., Šťourač P., Vališ M. Proteomic analysis of cerebrospinal fluid for relapsing-remitting multiple sclerosis and clinically isolated syndrome. Biomed. Rep. 2016;5:35–40. doi: 10.3892/br.2016.668. PubMed DOI PMC
Whitaker J.R., Granum P.E. An absolute method for protein determination based on difference in absorbance at 235 and 280 nm. Anal. Biochem. 1980;109:156–159. doi: 10.1016/0003-2697(80)90024-X. PubMed DOI
Salvadori M.R., Nascimento C.A.O., Corrêa B. Nickel oxide nanoparticles film produced by dead biomass of filamentous fungus. Sci. Rep. 2014;4:6404. doi: 10.1038/srep06404. PubMed DOI PMC
Salvadori M.R., Lepre L.F., Ando R.A., Oller do Nascimento C.A., Corrêa B. Biosynthesis and uptake of copper nanoparticles by dead biomass of Hypocrea lixii isolated from the metal mine in the Brazilian Amazon region. PLoS ONE. 2013;8:e80519. doi: 10.1371/journal.pone.0080519. PubMed DOI PMC
Salvadori M.R., Ando R.A., Oller Nascimento C.A., Correa B. Extra and intracellular synthesis of nickel oxide nanoparticles mediated by dead fungal biomass. PLoS ONE. 2015;10:e0129799. doi: 10.1371/journal.pone.0129799. PubMed DOI PMC
Salvadori M.R., Ando R.A., Nascimento C.A., Corrêa B. Dead biomass of Amazon yeast: A new insight into bioremediation and recovery of silver by intracellular synthesis of nanoparticles. J. Environ. Sci. Health Part A. 2017;52:1112–1120. doi: 10.1080/10934529.2017.1340754. PubMed DOI
Chowdhury S., Basu A., Kundu S. Green synthesis of protein capped silver nanoparticles from phytopathogenic fungus Macrophomina phaseolina (Tassi) Goid with antimicrobial properties against multidrug-resistant bacteria. Nanoscale Res. Lett. 2014;9:365. doi: 10.1186/1556-276X-9-365. PubMed DOI PMC