Fate of the capping agent of biologically produced gold nanoparticles and adsorption of enzymes onto their surface
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
36966192
PubMed Central
PMC10039949
DOI
10.1038/s41598-023-31792-5
PII: 10.1038/s41598-023-31792-5
Knihovny.cz E-resources
- MeSH
- Adsorption MeSH
- Endopeptidase K MeSH
- Metal Nanoparticles * chemistry MeSH
- Ribonuclease, Pancreatic MeSH
- Gold * chemistry MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Endopeptidase K MeSH
- Ribonuclease, Pancreatic MeSH
- Gold * MeSH
Enzymotherapy based on DNase I or RNase A has often been suggested as an optional strategy for cancer treatment. The efficacy of such procedures is limited e.g. by a short half-time of the enzymes or a low rate of their internalization. The use of nanoparticles, such as gold nanoparticles (AuNPs), helps to overcome these limits. Specifically, biologically produced AuNPs represent an interesting variant here due to naturally occurring capping agents (CA) on their surface. The composition of the CA depends on the producing microorganism. CAs are responsible for the stabilization of the nanoparticles, and promote the direct linking of targeting and therapeutic molecules. This study provided proof of enzyme adsorption onto gold nanoparticles and digestion efficacy of AuNPs-adsorbed enzymes. We employed Fusarium oxysporum extract to produce AuNPs. These nanoparticles were round or polygonal with a size of about 5 nm, negative surface charge of about - 33 mV, and maximum absorption peak at 530 nm. After the adsorption of DNAse I, RNase A, or Proteinase K onto the AuNPs surface, the nanoparticles exhibited shifts in surface charge (values between - 22 and - 13 mV) and maximum absorption peak (values between 513 and 534 nm). The ability of AuNP-enzyme complexes to digest different targets was compared to enzymes alone. We found a remarkable degradation of ssDNA, and dsDNA by AuNP-DNAse I, and a modest degradation of ssRNA by AuNP-RNase A. The presence of particular enzymes on the AuNP surface was proved by liquid chromatography-mass spectrometry (LC-MS). Using SDS-PAGE electrophoresis, we detected a remarkable digestion of collagen type I and fibrinogen by AuNP-proteinase K complexes. We concluded that the biologically produced AuNPs directly bound DNase I, RNase A, and proteinase K while preserving their ability to digest specific targets. Therefore, according to our results, AuNPs can be used as effective enzyme carriers and the AuNP-enzyme conjugates can be effective tools for enzymotherapy.
Institute of Analytical Chemistry Czech Academy of Sciences 602 00 Brno Czech Republic
Institute of Microbiology Czech Academy of Sciences 142 20 Prague Czech Republic
See more in PubMed
Yu M, Wu J, Shi J, Farokhzad OC. Nanotechnology for protein delivery: Overview and perspectives. J. Control. Release. 2016;240:24–37. doi: 10.1016/j.jconrel.2015.10.012. PubMed DOI PMC
Leader B, Baca QJ, Golan DE. Protein therapeutics: A summary and pharmacological classification. Nat. Rev. Drug Discov. 2008;7:21–39. doi: 10.1038/nrd2399. PubMed DOI
Wang X, et al. Hyaluronic acid modification of RNase A and its intracellular delivery using lipid-like nanoparticles. J. Control. Release. 2017;263:39–45. doi: 10.1016/j.jconrel.2017.01.037. PubMed DOI
Hawes MC, Wen F, Elquza E. Extracellular DNA: A bridge to CancerExtracellular DNA versus DNase: Stopping cancer outside the cell. Cancer Res. 2015;75:4260–4264. doi: 10.1158/0008-5472.CAN-15-1546. PubMed DOI
Demers M, Wagner DD. Neutrophil extracellular traps: A new link to cancer-associated thrombosis and potential implications for tumor progression. Oncoimmunology. 2013;2:e22946. doi: 10.4161/onci.22946. PubMed DOI PMC
Várady CB, Oliveira AC, Monteiro RQ, Gomes T. Recombinant human DNase I for the treatment of cancer-associated thrombosis: A pre-clinical study. Thromb. Res. 2021;203:131–137. doi: 10.1016/j.thromres.2021.04.028. PubMed DOI
Trejo-Becerril C, et al. Antitumor effects of systemic DNAse I and proteases in an in vivo model. Integr. Cancer Ther. 2016;15:NP35–NP43. doi: 10.1177/1534735416631102. PubMed DOI PMC
Eatemadi A, et al. Role of protease and protease inhibitors in cancer pathogenesis and treatment. Biomed. Pharmacother. 2017;86:221–231. doi: 10.1016/j.biopha.2016.12.021. PubMed DOI
Yamashita K, Mimori K, Inoue H, Mori M, Sidransky D. A tumor-suppressive role for trypsin in human cancer progression. Cancer Res. 2003;63:6575–6578. PubMed
Guimaraes-Ferreira CA, et al. Antitumor effects in vitro and in vivo and mechanisms of protection against melanoma B16F10-Nex2 cells by fastuosain, a cysteine proteinase from Bromelia fastuosa. Neoplasia. 2007;9:723–733. doi: 10.1593/neo.07427. PubMed DOI PMC
Perán M, Marchal JA, García MA, Kenyon J, Tosh D. In vitro treatment of carcinoma cell lines with pancreatic (pro) enzymes suppresses the EMT programme and promotes cell differentiation. Cell. Oncol. 2013;36:289–301. doi: 10.1007/s13402-013-0134-8. PubMed DOI
Martin MD, Matrisian LM. The other side of MMPs: Protective roles in tumor progression. Cancer Metastasis Rev. 2007;26:717–724. doi: 10.1007/s10555-007-9089-4. PubMed DOI
Raines RT. Ribonuclease A. Chem. Rev. 1998;98:1045–1066. doi: 10.1021/cr960427h. PubMed DOI
Spalletti-Cernia D, et al. Antineoplastic ribonucleases selectively kill thyroid carcinoma cells via caspase-mediated induction of apoptosis. J. Clin. Endocrinol. Metab. 2003;88:2900–2907. doi: 10.1210/jc.2002-020373. PubMed DOI
Mironova N, et al. The systemic tumor response to RNase A treatment affects the expression of genes involved in maintaining cell malignancy. Oncotarget. 2017;8:78796. doi: 10.18632/oncotarget.20228. PubMed DOI PMC
Lim WQ, Phua SZF, Zhao Y. Redox-responsive polymeric nanocomplex for delivery of cytotoxic protein and chemotherapeutics. ACS Appl. Mater. Interfaces. 2019;11:31638–31648. doi: 10.1021/acsami.9b09605. PubMed DOI
Baynes JW, Wold F. Effect of glycosylation on the in vivo circulating half-life of ribonuclease. J. Biol. Chem. 1976;251:6016–6024. doi: 10.1016/S0021-9258(17)33053-3. PubMed DOI
Liew SS, et al. Intracellular delivery of therapeutic proteins through N-terminal site-specific modification. Chem. Commun. 2020;56:11473–11476. doi: 10.1039/D0CC04728G. PubMed DOI
Kordalivand N, et al. Polyethyleneimine coated nanogels for the intracellular delivery of RNase A for cancer therapy. Chem. Eng. J. 2018;340:32–41. doi: 10.1016/j.cej.2017.12.071. DOI
Krauss J, Arndt MA, Dubel S, Rybak SM. Antibody-targeted RNase fusion proteins (immunoRNases) for cancer therapy. Curr. Pharm. Biotechnol. 2008;9:231–234. doi: 10.2174/138920108784567317. PubMed DOI
Andersen KA, Smith TP, Lomax JE, Raines RT. Boronic acid for the traceless delivery of proteins into cells. ACS Chem. Biol. 2016;11:319–323. doi: 10.1021/acschembio.5b00966. PubMed DOI PMC
Wang M, Sun S, Neufeld CI, Perez-Ramirez B, Xu Q. Reactive oxygen species-responsive protein modification and its intracellular delivery for targeted cancer therapy. Angew. Chem. 2014;126:13662–13666. doi: 10.1002/ange.201407234. PubMed DOI
Khojaewa V, Lopatin O, Zelenikhin P, Ilinskaya O. Zeolites as carriers of antitumor ribonuclease binase. Front. Pharmacol. 2019;10:442. doi: 10.3389/fphar.2019.00442. PubMed DOI PMC
Choi JH, Jang JY, Joung YK, Kwon MH, Park KD. Intracellular delivery and anti-cancer effect of self-assembled heparin-Pluronic nanogels with RNase A. J. Control. Release. 2010;147:420–427. doi: 10.1016/j.jconrel.2010.07.118. PubMed DOI
Zhao Y, et al. Specific photothermal killing of cancer cells by RNase-conjugated glyco-gold nanoparticles. Mater. Today Commun. 2021;28:102640. doi: 10.1016/j.mtcomm.2021.102640. DOI
Park J, et al. Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps. Sci. Transl. Med. 2016;8:361ra138. doi: 10.1126/scitranslmed.aag1711. PubMed DOI PMC
Arvizo RR, et al. Modulating pharmacokinetics, tumor uptake and biodistribution by engineered nanoparticles. PLoS ONE. 2011;6:e24374. doi: 10.1371/journal.pone.0024374. PubMed DOI PMC
Pourali P, et al. Response of biological gold nanoparticles to different pH values: Is it possible to prepare both negatively and positively charged nanoparticles? Appl. Sci. 2021;11:11559. doi: 10.3390/app112311559. DOI
Pourali P, Neuhöferová E, Dzmitruk V, Benson V. Investigation of protein corona formed around biologically produced gold nanoparticles. Materials. 2022;15:4615. doi: 10.3390/ma15134615. PubMed DOI PMC
Wu Y, Ali MR, Chen K, Fang N, El-Sayed MA. Gold nanoparticles in biological optical imaging. Nano Today. 2019;24:120–140. doi: 10.1016/j.nantod.2018.12.006. DOI
Riley RS, Day ES. Gold nanoparticle-mediated photothermal therapy: applications and opportunities for multimodal cancer treatment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2017;9:e1449. doi: 10.1002/wnan.1449. PubMed DOI PMC
Narayanan KB, Sakthivel N. Biological synthesis of metal nanoparticles by microbes. Adv. Colloid Interface Sci. 2010;156:1–13. doi: 10.1016/j.cis.2010.02.001. PubMed DOI
Naimi-Shamel N, Pourali P, Dolatabadi S. Green synthesis of gold nanoparticles using Fusarium oxysporum and antibacterial activity of its tetracycline conjugant. J. Mycol. Med. 2019;29:7–13. doi: 10.1016/j.mycmed.2019.01.005. PubMed DOI
Pourali P, Razavian Zadeh N, Yahyaei B. Silver nanoparticles production by two soil isolated bacteria, Bacillus thuringiensis and Enterobacter cloacae, and assessment of their cytotoxicity and wound healing effect in rats. Wound Repair Regener. 2016;24:860–869. doi: 10.1111/wrr.12465. PubMed DOI
Pourali P, Yahyaei B. Biological production of silver nanoparticles by soil isolated bacteria and preliminary study of their cytotoxicity and cutaneous wound healing efficiency in rat. J. Trace Elem. Med Biol. 2016;34:22–31. doi: 10.1016/j.jtemb.2015.11.004. PubMed DOI
Pourali P, et al. The effect of temperature on antibacterial activity of biosynthesized silver nanoparticles. Biometals. 2013;26:189–196. doi: 10.1007/s10534-012-9606-y. PubMed DOI
Wypij M, et al. Biogenic silver nanoparticles: Assessment of their cytotoxicity, genotoxicity and study of capping proteins. Molecules. 2020;25:3022. doi: 10.3390/molecules25133022. PubMed DOI PMC
Zhang X, He X, Wang K, Yang X. Different active biomolecules involved in biosynthesis of gold nanoparticles by three fungus species. J. Biomed. Nanotechnol. 2011;7:245–254. doi: 10.1166/jbn.2011.1285. PubMed DOI
Yahyaei B, Pourali P. One step conjugation of some chemotherapeutic drugs to the biologically produced gold nanoparticles and assessment of their anticancer effects. Sci. Rep. 2019;9:1–15. doi: 10.1038/s41598-019-46602-0. PubMed DOI PMC
Pourali P, Yahyaei B, Afsharnezhad S. Bio-synthesis of gold nanoparticles by Fusarium oxysporum and assessment of their conjugation possibility with two types of β-lactam antibiotics without any additional linkers. Microbiology (00262617) 2018;87:229–237. doi: 10.1134/S0026261718020108. DOI
Pourali P, et al. Biosynthesis of gold nanoparticles by two bacterial and fungal strains, Bacillus cereus and Fusarium oxysporum, and assessment and comparison of their nanotoxicity in vitro by direct and indirect assays. Electron. J. Biotechnol. 2017;29:86–93. doi: 10.1016/j.ejbt.2017.07.005. DOI
He C, et al. A highly sensitive glucose biosensor based on gold nanoparticles/bovine serum albumin/Fe3O4 biocomposite nanoparticles. Electrochim. Acta. 2016;222:1709–1715. doi: 10.1016/j.electacta.2016.11.162. DOI
Binaymotlagh R, et al. In situ generation of the gold nanoparticles–bovine serum albumin (AuNPs–BSA) bioconjugated system using pulsed-laser ablation (PLA) Mater. Chem. Phys. 2016;177:360–370. doi: 10.1016/j.matchemphys.2016.04.040. DOI
Meghani NM, et al. Modulation of serum albumin protein corona for exploring cellular behaviors of fattigation-platform nanoparticles. Colloids Surf. B. 2018;170:179–186. doi: 10.1016/j.colsurfb.2018.05.060. PubMed DOI
Yan Y, et al. Differential roles of the protein corona in the cellular uptake of nanoporous polymer particles by monocyte and macrophage cell lines. ACS Nano. 2013;7:10960–10970. doi: 10.1021/nn404481f. PubMed DOI
Zhang L, et al. Uptake of folate-conjugated albumin nanoparticles to the SKOV3 cells. Int. J. Pharm. 2004;287:155–162. doi: 10.1016/j.ijpharm.2004.08.015. PubMed DOI
Parween S, Ali A, Chauhan VS. Non-natural amino acids containing peptide-capped gold nanoparticles for drug delivery application. ACS Appl. Mater. Interfaces. 2013;5:6484–6493. doi: 10.1021/am4017973. PubMed DOI
Ghosh PS, Kim C-K, Han G, Forbes NS, Rotello VM. Efficient gene delivery vectors by tuning the surface charge density of amino acid-functionalized gold nanoparticles. ACS Nano. 2008;2:2213–2218. doi: 10.1021/nn800507t. PubMed DOI PMC
Ellis GA, Palte MJ, Raines RT. Boronate-mediated biologic delivery. J. Am. Chem. Soc. 2012;134:3631–3634. doi: 10.1021/ja210719s. PubMed DOI PMC
Zhu Q, et al. Tumor-specific self-degradable nanogels as potential carriers for systemic delivery of anticancer proteins. Adv. Func. Mater. 2018;28:1707371. doi: 10.1002/adfm.201707371. DOI
Liu X, Wu F, Ji Y, Yin L. Recent advances in anti-cancer protein/peptide delivery. Bioconjug. Chem. 2018;30:305–324. doi: 10.1021/acs.bioconjchem.8b00750. PubMed DOI
Baelo A, et al. Disassembling bacterial extracellular matrix with DNase-coated nanoparticles to enhance antibiotic delivery in biofilm infections. J. Control. Release. 2015;209:150–158. doi: 10.1016/j.jconrel.2015.04.028. PubMed DOI
Deacon J, et al. Antimicrobial efficacy of tobramycin polymeric nanoparticles for Pseudomonas aeruginosa infections in cystic fibrosis: formulation, characterisation and functionalisation with dornase alfa (DNase) J. Control. Release. 2015;198:55–61. doi: 10.1016/j.jconrel.2014.11.022. PubMed DOI
Islan GA, Tornello PC, Abraham GA, Duran N, Castro GR. Smart lipid nanoparticles containing levofloxacin and DNase for lung delivery. Design and characterization. Colloids Surf. B Biointerfaces. 2016;143:168–176. doi: 10.1016/j.colsurfb.2016.03.040. PubMed DOI
Seferos DS, Prigodich AE, Giljohann DA, Patel PC, Mirkin CA. Polyvalent DNA nanoparticle conjugates stabilize nucleic acids. Nano Lett. 2009;9:308–311. doi: 10.1021/nl802958f. PubMed DOI PMC
Libonati M, Sorrentino S. Revisiting the action of bovine ribonuclease A and pancreatic-type ribonucleases on double-stranded RNA. Mol. Cell. Biochem. 1992;117:139–151. doi: 10.1007/BF00230753. PubMed DOI
Lytton-Jean AK, Langer R, Anderson DG. Five years of siRNA delivery: Spotlight on gold nanoparticles. Small. 2011;7:1932–1937. doi: 10.1002/smll.201100761. PubMed DOI
Oishi M, Nakaogami J, Ishii T, Nagasaki Y. Smart PEGylated gold nanoparticles for the cytoplasmic delivery of siRNA to induce enhanced gene silencing. Chem. Lett. 2006;35:1046–1047. doi: 10.1246/cl.2006.1046. DOI
Wang M, Alberti K, Sun S, Arellano CL, Xu Q. Combinatorially designed lipid-like nanoparticles for intracellular delivery of cytotoxic protein for cancer therapy. Angew. Chem. Int. Ed. 2014;53:2893–2898. doi: 10.1002/anie.201311245. PubMed DOI
Welz B, Sperling M. Atomic Absorption Spectrometry. Wiley; 2008.