Cellular Delivery of Functional AntimiR Conjugated to Bio-Produced Gold Nanoparticles

. 2025 Sep 11 ; 11 (5) : . [epub] 20250911

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40981383

Grantová podpora
CZ.02.01.01/00/22_010/0002357 MEYS Czech Republic

Background/Objectives: Bio-produced gold nanoparticles (AuNPs) are effective carriers of short RNAs into specialized mammalian cells. Their potential application is still limited by scarce knowledge on their uptake and intracellular fate. Gold nanoparticles that are not biologically produced (NB-AuNPs) enter specialized cells primarily via clathrin-dependent endocytosis. Unlike the NB-AuNPs, the bio AuNPs possess natural surface coatings that significantly alter the AuNPs properties. Our research aimed to reveal the cellular uptake of the AuNPs with respect to delivering a functional RNA cargo. Methods: The AuNPs were conjugated with short inhibitory RNA specific to miR 135b. Mammary cancer cells 4T1 were pretreated with inhibitors of caveolin- and clathrin-mediated endocytosis and macropinocytosis. AuNPs' uptake, fate, and miR 135b knock-down were assessed with TEM and qPCR. Results: The AuNPs-antimiR 135b conjugates entered 4T1 cells via all the tested pathways and could be seen inside the cells in early and late endosomes as well as cytoplasm. In contrast to the clathrin-dependent pathway, the caveolae-mediated endocytosis and the macropinocytosis of the AuNPs resulted in the effective targeting and reduction of the miR 135b. Conclusions: The bio-produced AuNPs can effectively enter mammalian cells simultaneously by different endocytic pathways but the delivery of functional cargo is not achieved via the clathrin-dependent endocytosis.

Zobrazit více v PubMed

Perez H.L., Cardarelli P.M., Deshpande S., Gangwar S., Schroeder G.M., Vite G.D., Borzilleri R.M. Antibody-drug conjugates: Current status and future directions. Drug Discov. Today. 2014;19:869–881. doi: 10.1016/j.drudis.2013.11.004. PubMed DOI

Bolaños K., Kogan M.J., Araya E. Capping gold nanoparticles with albumin to improve their biomedical properties. Int. J. Nanomed. 2019;14:6387–6406. doi: 10.2147/IJN.S210992. PubMed DOI PMC

Pourali P., Neuhöferová E., Dzmitruk V., Svoboda M., Stodůlková E., Flieger M., Yahyaei B., Benson V. Bioproduced Nanoparticles Deliver Multiple Cargoes via Targeted Tumor Therapy In Vivo. ACS Omega. 2024;9:33789–33804. doi: 10.1021/acsomega.4c03277. PubMed DOI PMC

Pourali P., Neuhoferova E., Dzmitruk V., Benson V. Investigation of Protein Corona Formed around Biologically Produced Gold Nanoparticles. Materials. 2022;15:4615. doi: 10.3390/ma15134615. PubMed DOI PMC

Behzadi S., Serpooshan V., Tao W., Hamaly M.A., Alkawareek M.Y., Dreaden E.C., Brown D., Alkilany A.M., Farokhzad O.C., Mahmoudi M. Cellular uptake of nanoparticles: Journey inside the cell. Chem. Soc. Rev. 2017;46:4218–4244. doi: 10.1039/C6CS00636A. PubMed DOI PMC

Pourali P., Benada O., Pátek M., Neuhöferová E., Dzmitruk V., Benson V. Response of Biological Gold Nanoparticles to Different pH Values: Is It Possible to Prepare Both Negatively and Positively Charged Nanoparticles? Appl. Sci. 2021;11:11559. doi: 10.3390/app112311559. DOI

Todaro B., Ottalagana E., Luin S., Santi M. Targeting peptides: The new generation of targeted drug delivery systems. Pharmaceutics. 2023;15:1648. doi: 10.3390/pharmaceutics15061648. PubMed DOI PMC

Kumari S., Mg S., Mayor S. Endocytosis unplugged: Multiple ways to enter the cell. Cell Res. 2010;20:256–275. doi: 10.1038/cr.2010.19. PubMed DOI PMC

Sahay G., Alakhova D.Y., Kabanov A.V. Endocytosis of nanomedicines. J. Control. Release. 2010;145:182–195. doi: 10.1016/j.jconrel.2010.01.036. PubMed DOI PMC

Sanità G., Carrese B., Lamberti A. Nanoparticle surface functionalization: How to improve biocompatibility and cellular internalization. Front. Mol. Biosci. 2020;7:587012. doi: 10.3389/fmolb.2020.587012. PubMed DOI PMC

Pourali P., Svoboda M., Neuhoferova E., Dzmitruk V., Benson V. Accumulation and toxicity of biologically produced gold nanoparticles in different types of specialized mammalian cells. Biotechnol. Appl. Biochem. 2024;71:766–778. doi: 10.1002/bab.2575. PubMed DOI

Pourali P., Dzmitruk V., Benada O., Svoboda M., Benson V. Conjugation of microbial-derived gold nanoparticles to different types of nucleic acids: Evaluation of transfection efficiency. Sci. Rep. 2023;13:14669. doi: 10.1038/s41598-023-41567-7. PubMed DOI PMC

Li L., Wang L., Liu X.Y., Zhang Z.P., Guo H.C., Liu W.M., Tang S.H. In vitro cancer cell imaging and therapy using transferrin-conjugated gold nanoparticles. Cancer Lett. 2009;274:319–326. doi: 10.1016/j.canlet.2008.09.024. PubMed DOI

Zare N., Ghasemi R., Rafiee L., Javanmard S.H. Assessment of microRNA-21 using gold nanoparticle-DNA conjugates based on colorimetric and fluorescent detection. Gold Bull. 2022;55:107–114. doi: 10.1007/s13404-022-00308-w. DOI

Tao K., Fang M., Alroy J. Imagable 4T1 model for the study of late stage breast cancer. BMC Cancer. 2008;8:228. doi: 10.1186/1471-2407-8-228. PubMed DOI PMC

Yilmaz D., Culha M. Investigation of the pathway dependent endocytosis of gold nanoparticles by surface-enhanced Raman scattering. Talanta. 2021;225:122071. doi: 10.1016/j.talanta.2020.122071. PubMed DOI

Canton I., Battaglia G. Endocytosis at the nanoscale. Chem. Soc. Rev. 2012;41:2718–2739. doi: 10.1039/c2cs15309b. PubMed DOI

Saftig P., Klumperman J. Lysosome biogenesis and lysosomal membrane proteins: Trafficking meets function. Nat. Rev. Mol. Cell Biol. 2009;10:623–635. doi: 10.1038/nrm2745. PubMed DOI

Kiss A.L., Botos E. Endocytosis via caveolae: Alternative pathway with distinct cellular compartments to avoid lysosomal degradation? J. Cell. Mol. Med. 2009;13:1228–1237. doi: 10.1111/j.1582-4934.2009.00754.x. PubMed DOI PMC

Ng C.T., Tang F.M., Li J.J., Ong C., Yung L.L., Bay B.H. Clathrin-mediated endocytosis of gold nanoparticles in vitro. Anat. Rec. 2015;298:418–427. doi: 10.1002/ar.23051. PubMed DOI

Jin H., Heller D.A., Sharma R., Strano M.S. Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: Single particle tracking and a generic uptake model for nanoparticles. ACS Nano. 2009;3:149–158. doi: 10.1021/nn800532m. PubMed DOI

Kapara A., Brunton V., Graham D., Faulds K. Investigation of cellular uptake mechanism of functionalised gold nanoparticles into breast cancer using SERS. Chem. Sci. 2020;11:5819–5829. doi: 10.1039/D0SC01255F. PubMed DOI PMC

Nativo P., Prior I.A., Brust M. Uptake and intracellular fate of surface-modified gold nanoparticles. ACS Nano. 2008;2:1639–1644. doi: 10.1021/nn800330a. PubMed DOI

Hao X., Wu J., Shan Y., Cai M., Shang X., Jiang J., Wang H. Caveolae-mediated endocytosis of biocompatible gold nanoparticles in living Hela cells. J. Phys. Condens. Matter. 2012;24:164207. doi: 10.1088/0953-8984/24/16/164207. PubMed DOI

Pourali P., Dzmitruk V., Pátek M., Neuhöferová E., Svoboda M., Benson V. Fate of the capping agent of biologically produced gold nanoparticles and adsorption of enzymes onto their surface. Sci. Rep. 2023;13:4916. doi: 10.1038/s41598-023-31792-5. PubMed DOI PMC

Dosumu A.N., Claire S., Watson L.S., Girio P.M., Osborne S.A., Pikramenou Z., Hodges N.J. Quantification by luminescence tracking of red emissive gold nanoparticles in cells. JACS Au. 2021;1:174–186. doi: 10.1021/jacsau.0c00033. PubMed DOI PMC

Roselló-Busquets C., Hernaiz-Llorens M., Soriano E., Martínez-Mármol R. Nystatin Regulates Axonal Extension and Regeneration by Modifying the Levels of Nitric Oxide. Front. Mol. Neurosci. 2020;13:56. doi: 10.3389/fnmol.2020.00056. PubMed DOI PMC

Koivusalo M., Welch C., Hayashi H., Scott C.C., Kim M., Alexander T., Touret N., Hahn K.M., Grinstein S. Amiloride inhibits macropinocytosis by lowering submembranous pH and preventing Rac1 and Cdc42 signaling. J. Cell Biol. 2010;188:547–563. doi: 10.1083/jcb.200908086. PubMed DOI PMC

Daniel J.A., Chau N., Abdel-Hamid M.K., Hu L., von Kleist L., Whiting A., Krishnan S., Maamary P., Joseph S.R., Simpson F., et al. Phenothiazine-Derived Antipsychotic Drugs Inhibit Dynamin and Clathrin-Mediated Endocytosis. Traffic. 2015;16:635–654. doi: 10.1111/tra.12272. PubMed DOI

Ruseva V., Lyons M., Powell J., Austin J., Malm A., Corbett J. Capillary dynamic light scattering: Continuous hydrodynamic particle size from the nano to the micro-scale. Colloids Surf. A Physicochem. Eng. Asp. 2018;558:504–511. doi: 10.1016/j.colsurfa.2018.09.022. DOI

Malinovskaya J., Salami R., Valikhov M., Vadekhina V., Semyonkin A., Semkina A., Abakumov M., Harel Y., Levy E., Levin T. Supermagnetic human serum albumin (HSA) nanoparticles and PLGA-based doxorubicin nanoformulation: A duet for selective nanotherapy. Int. J. Mol. Sci. 2022;24:627. doi: 10.3390/ijms24010627. PubMed DOI PMC

Zhang Y., Zhou J., Chen X., Li Z., Gu L., Pan D., Zheng X., Zhang Q., Chen R., Zhang H. Modulating tumor-stromal crosstalk via a redox-responsive nanomedicine for combination tumor therapy. J. Control. Release. 2023;356:525–541. doi: 10.1016/j.jconrel.2023.03.015. PubMed DOI

Křivohlavá R., Neuh E., Jakobsen K.Q., Benson V. Knockdown of microRNA-135b in mammary carcinoma by targeted nanodiamonds: Potentials and pitfalls of in vivo applications. Nanomaterials. 2019;9:866. doi: 10.3390/nano9060866. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...