Cellular Delivery of Functional AntimiR Conjugated to Bio-Produced Gold Nanoparticles
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.01.01/00/22_010/0002357
MEYS Czech Republic
PubMed
40981383
PubMed Central
PMC12452297
DOI
10.3390/ncrna11050066
PII: ncrna11050066
Knihovny.cz E-zdroje
- Klíčová slova
- biologically produced gold nanoparticles, caveolin-mediated endocytosis, chemical blockers, clathrin-mediated endocytosis, macropinocytosis,
- Publikační typ
- časopisecké články MeSH
Background/Objectives: Bio-produced gold nanoparticles (AuNPs) are effective carriers of short RNAs into specialized mammalian cells. Their potential application is still limited by scarce knowledge on their uptake and intracellular fate. Gold nanoparticles that are not biologically produced (NB-AuNPs) enter specialized cells primarily via clathrin-dependent endocytosis. Unlike the NB-AuNPs, the bio AuNPs possess natural surface coatings that significantly alter the AuNPs properties. Our research aimed to reveal the cellular uptake of the AuNPs with respect to delivering a functional RNA cargo. Methods: The AuNPs were conjugated with short inhibitory RNA specific to miR 135b. Mammary cancer cells 4T1 were pretreated with inhibitors of caveolin- and clathrin-mediated endocytosis and macropinocytosis. AuNPs' uptake, fate, and miR 135b knock-down were assessed with TEM and qPCR. Results: The AuNPs-antimiR 135b conjugates entered 4T1 cells via all the tested pathways and could be seen inside the cells in early and late endosomes as well as cytoplasm. In contrast to the clathrin-dependent pathway, the caveolae-mediated endocytosis and the macropinocytosis of the AuNPs resulted in the effective targeting and reduction of the miR 135b. Conclusions: The bio-produced AuNPs can effectively enter mammalian cells simultaneously by different endocytic pathways but the delivery of functional cargo is not achieved via the clathrin-dependent endocytosis.
Department of Chemistry University of Wyoming 1000 E University Ave Laramie WY 82071 USA
Faculty of Health Studies Technical University of Liberec 46001 Liberec Czech Republic
Zobrazit více v PubMed
Perez H.L., Cardarelli P.M., Deshpande S., Gangwar S., Schroeder G.M., Vite G.D., Borzilleri R.M. Antibody-drug conjugates: Current status and future directions. Drug Discov. Today. 2014;19:869–881. doi: 10.1016/j.drudis.2013.11.004. PubMed DOI
Bolaños K., Kogan M.J., Araya E. Capping gold nanoparticles with albumin to improve their biomedical properties. Int. J. Nanomed. 2019;14:6387–6406. doi: 10.2147/IJN.S210992. PubMed DOI PMC
Pourali P., Neuhöferová E., Dzmitruk V., Svoboda M., Stodůlková E., Flieger M., Yahyaei B., Benson V. Bioproduced Nanoparticles Deliver Multiple Cargoes via Targeted Tumor Therapy In Vivo. ACS Omega. 2024;9:33789–33804. doi: 10.1021/acsomega.4c03277. PubMed DOI PMC
Pourali P., Neuhoferova E., Dzmitruk V., Benson V. Investigation of Protein Corona Formed around Biologically Produced Gold Nanoparticles. Materials. 2022;15:4615. doi: 10.3390/ma15134615. PubMed DOI PMC
Behzadi S., Serpooshan V., Tao W., Hamaly M.A., Alkawareek M.Y., Dreaden E.C., Brown D., Alkilany A.M., Farokhzad O.C., Mahmoudi M. Cellular uptake of nanoparticles: Journey inside the cell. Chem. Soc. Rev. 2017;46:4218–4244. doi: 10.1039/C6CS00636A. PubMed DOI PMC
Pourali P., Benada O., Pátek M., Neuhöferová E., Dzmitruk V., Benson V. Response of Biological Gold Nanoparticles to Different pH Values: Is It Possible to Prepare Both Negatively and Positively Charged Nanoparticles? Appl. Sci. 2021;11:11559. doi: 10.3390/app112311559. DOI
Todaro B., Ottalagana E., Luin S., Santi M. Targeting peptides: The new generation of targeted drug delivery systems. Pharmaceutics. 2023;15:1648. doi: 10.3390/pharmaceutics15061648. PubMed DOI PMC
Kumari S., Mg S., Mayor S. Endocytosis unplugged: Multiple ways to enter the cell. Cell Res. 2010;20:256–275. doi: 10.1038/cr.2010.19. PubMed DOI PMC
Sahay G., Alakhova D.Y., Kabanov A.V. Endocytosis of nanomedicines. J. Control. Release. 2010;145:182–195. doi: 10.1016/j.jconrel.2010.01.036. PubMed DOI PMC
Sanità G., Carrese B., Lamberti A. Nanoparticle surface functionalization: How to improve biocompatibility and cellular internalization. Front. Mol. Biosci. 2020;7:587012. doi: 10.3389/fmolb.2020.587012. PubMed DOI PMC
Pourali P., Svoboda M., Neuhoferova E., Dzmitruk V., Benson V. Accumulation and toxicity of biologically produced gold nanoparticles in different types of specialized mammalian cells. Biotechnol. Appl. Biochem. 2024;71:766–778. doi: 10.1002/bab.2575. PubMed DOI
Pourali P., Dzmitruk V., Benada O., Svoboda M., Benson V. Conjugation of microbial-derived gold nanoparticles to different types of nucleic acids: Evaluation of transfection efficiency. Sci. Rep. 2023;13:14669. doi: 10.1038/s41598-023-41567-7. PubMed DOI PMC
Li L., Wang L., Liu X.Y., Zhang Z.P., Guo H.C., Liu W.M., Tang S.H. In vitro cancer cell imaging and therapy using transferrin-conjugated gold nanoparticles. Cancer Lett. 2009;274:319–326. doi: 10.1016/j.canlet.2008.09.024. PubMed DOI
Zare N., Ghasemi R., Rafiee L., Javanmard S.H. Assessment of microRNA-21 using gold nanoparticle-DNA conjugates based on colorimetric and fluorescent detection. Gold Bull. 2022;55:107–114. doi: 10.1007/s13404-022-00308-w. DOI
Tao K., Fang M., Alroy J. Imagable 4T1 model for the study of late stage breast cancer. BMC Cancer. 2008;8:228. doi: 10.1186/1471-2407-8-228. PubMed DOI PMC
Yilmaz D., Culha M. Investigation of the pathway dependent endocytosis of gold nanoparticles by surface-enhanced Raman scattering. Talanta. 2021;225:122071. doi: 10.1016/j.talanta.2020.122071. PubMed DOI
Canton I., Battaglia G. Endocytosis at the nanoscale. Chem. Soc. Rev. 2012;41:2718–2739. doi: 10.1039/c2cs15309b. PubMed DOI
Saftig P., Klumperman J. Lysosome biogenesis and lysosomal membrane proteins: Trafficking meets function. Nat. Rev. Mol. Cell Biol. 2009;10:623–635. doi: 10.1038/nrm2745. PubMed DOI
Kiss A.L., Botos E. Endocytosis via caveolae: Alternative pathway with distinct cellular compartments to avoid lysosomal degradation? J. Cell. Mol. Med. 2009;13:1228–1237. doi: 10.1111/j.1582-4934.2009.00754.x. PubMed DOI PMC
Ng C.T., Tang F.M., Li J.J., Ong C., Yung L.L., Bay B.H. Clathrin-mediated endocytosis of gold nanoparticles in vitro. Anat. Rec. 2015;298:418–427. doi: 10.1002/ar.23051. PubMed DOI
Jin H., Heller D.A., Sharma R., Strano M.S. Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: Single particle tracking and a generic uptake model for nanoparticles. ACS Nano. 2009;3:149–158. doi: 10.1021/nn800532m. PubMed DOI
Kapara A., Brunton V., Graham D., Faulds K. Investigation of cellular uptake mechanism of functionalised gold nanoparticles into breast cancer using SERS. Chem. Sci. 2020;11:5819–5829. doi: 10.1039/D0SC01255F. PubMed DOI PMC
Nativo P., Prior I.A., Brust M. Uptake and intracellular fate of surface-modified gold nanoparticles. ACS Nano. 2008;2:1639–1644. doi: 10.1021/nn800330a. PubMed DOI
Hao X., Wu J., Shan Y., Cai M., Shang X., Jiang J., Wang H. Caveolae-mediated endocytosis of biocompatible gold nanoparticles in living Hela cells. J. Phys. Condens. Matter. 2012;24:164207. doi: 10.1088/0953-8984/24/16/164207. PubMed DOI
Pourali P., Dzmitruk V., Pátek M., Neuhöferová E., Svoboda M., Benson V. Fate of the capping agent of biologically produced gold nanoparticles and adsorption of enzymes onto their surface. Sci. Rep. 2023;13:4916. doi: 10.1038/s41598-023-31792-5. PubMed DOI PMC
Dosumu A.N., Claire S., Watson L.S., Girio P.M., Osborne S.A., Pikramenou Z., Hodges N.J. Quantification by luminescence tracking of red emissive gold nanoparticles in cells. JACS Au. 2021;1:174–186. doi: 10.1021/jacsau.0c00033. PubMed DOI PMC
Roselló-Busquets C., Hernaiz-Llorens M., Soriano E., Martínez-Mármol R. Nystatin Regulates Axonal Extension and Regeneration by Modifying the Levels of Nitric Oxide. Front. Mol. Neurosci. 2020;13:56. doi: 10.3389/fnmol.2020.00056. PubMed DOI PMC
Koivusalo M., Welch C., Hayashi H., Scott C.C., Kim M., Alexander T., Touret N., Hahn K.M., Grinstein S. Amiloride inhibits macropinocytosis by lowering submembranous pH and preventing Rac1 and Cdc42 signaling. J. Cell Biol. 2010;188:547–563. doi: 10.1083/jcb.200908086. PubMed DOI PMC
Daniel J.A., Chau N., Abdel-Hamid M.K., Hu L., von Kleist L., Whiting A., Krishnan S., Maamary P., Joseph S.R., Simpson F., et al. Phenothiazine-Derived Antipsychotic Drugs Inhibit Dynamin and Clathrin-Mediated Endocytosis. Traffic. 2015;16:635–654. doi: 10.1111/tra.12272. PubMed DOI
Ruseva V., Lyons M., Powell J., Austin J., Malm A., Corbett J. Capillary dynamic light scattering: Continuous hydrodynamic particle size from the nano to the micro-scale. Colloids Surf. A Physicochem. Eng. Asp. 2018;558:504–511. doi: 10.1016/j.colsurfa.2018.09.022. DOI
Malinovskaya J., Salami R., Valikhov M., Vadekhina V., Semyonkin A., Semkina A., Abakumov M., Harel Y., Levy E., Levin T. Supermagnetic human serum albumin (HSA) nanoparticles and PLGA-based doxorubicin nanoformulation: A duet for selective nanotherapy. Int. J. Mol. Sci. 2022;24:627. doi: 10.3390/ijms24010627. PubMed DOI PMC
Zhang Y., Zhou J., Chen X., Li Z., Gu L., Pan D., Zheng X., Zhang Q., Chen R., Zhang H. Modulating tumor-stromal crosstalk via a redox-responsive nanomedicine for combination tumor therapy. J. Control. Release. 2023;356:525–541. doi: 10.1016/j.jconrel.2023.03.015. PubMed DOI
Křivohlavá R., Neuh E., Jakobsen K.Q., Benson V. Knockdown of microRNA-135b in mammary carcinoma by targeted nanodiamonds: Potentials and pitfalls of in vivo applications. Nanomaterials. 2019;9:866. doi: 10.3390/nano9060866. PubMed DOI PMC