Homology modeling in the time of collective and artificial intelligence

. 2020 ; 18 () : 3494-3506. [epub] 20201114

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33304450
Odkazy

PubMed 33304450
PubMed Central PMC7695898
DOI 10.1016/j.csbj.2020.11.007
PII: S2001-0370(20)30474-8
Knihovny.cz E-zdroje

Homology modeling is a method for building protein 3D structures using protein primary sequence and utilizing prior knowledge gained from structural similarities with other proteins. The homology modeling process is done in sequential steps where sequence/structure alignment is optimized, then a backbone is built and later, side-chains are added. Once the low-homology loops are modeled, the whole 3D structure is optimized and validated. In the past three decades, a few collective and collaborative initiatives allowed for continuous progress in both homology and ab initio modeling. Critical Assessment of protein Structure Prediction (CASP) is a worldwide community experiment that has historically recorded the progress in this field. Folding@Home and Rosetta@Home are examples of crowd-sourcing initiatives where the community is sharing computational resources, whereas RosettaCommons is an example of an initiative where a community is sharing a codebase for the development of computational algorithms. Foldit is another initiative where participants compete with each other in a protein folding video game to predict 3D structure. In the past few years, contact maps deep machine learning was introduced to the 3D structure prediction process, adding more information and increasing the accuracy of models significantly. In this review, we will take the reader in a journey of exploration from the beginnings to the most recent turnabouts, which have revolutionized the field of homology modeling. Moreover, we discuss the new trends emerging in this rapidly growing field.

Zobrazit více v PubMed

Hargittai I. Linus Pauling’s quest for the structure of proteins. Struct. Chem. 2009;21(1):1–7.

Muhammed M.T., Aki-Yalcin E. Homology modeling in drug discovery: Overview, current applications, and future perspectives. Chem. Biol. Drug Des. 2019;93(1):12–20. PubMed

Hatfield M.P., Lovas S. Conformational sampling techniques. Curr. Pharm. Des. 2014;20(20):3303–3313. PubMed

Moult J. A large-scale experiment to assess protein structure prediction methods. Proteins. 1995;23(3):2–4. PubMed

Samuel A.L. Some Studies in Machine Learning Using the Game of Checkers. IBM J. Res. Dev. 1959;3(3):210–229.

Nichols J.A., Herbert Chan H.W., Baker M.A.B. Machine learning: applications of artificial intelligence to imaging and diagnosis. Biophysi. Rev. 2019;11(1):111–118. PubMed PMC

Bali J., Garg R., Bali R.T. Artificial intelligence (AI) in healthcare and biomedical research: Why a strong computational/AI bioethics framework is required? Indian J. Ophthalmol. 2019;67(1):3–6. PubMed PMC

Mintz Y., Brodie R. Introduction to artificial intelligence in medicine. Minim. Invasive Ther. Allied Technol. 2019;28(2):73–81. PubMed

Yang J. Brief introduction of medical database and data mining technology in big data era. J. Evid. Based Med. 2020;13(1):57–69. PubMed PMC

Kourou K. Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J. 2015;13:8–17. PubMed PMC

AlQuraishi M. ProteinNet: a standardized data set for machine learning of protein structure. BMC Bioinf. 2019;20(1):1–10. PubMed PMC

Wu Q. Recent Progress in Machine Learning-based Prediction of Peptide Activity for Drug Discovery. Curr. Top. Med. Chem. 2019;19(1):4–16. PubMed

Marti-Renom M.A. Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct. 2000;29:291–325. PubMed

Read R.J., Chavali G. Assessment of CASP7 predictions in the high accuracy template-based modeling category. Proteins. 2007;69(S8):27–37. PubMed

Jalily Hasani H., Barakat K. Homology Modeling: an Overview of Fundamentals and Tools. Int. Rev. Model. Simul. 2017;10(2):1–14.

Haddad Y., Adam V., Heger Z. Ten quick tips for homology modeling of high-resolution protein 3D structures. PloS Comput. Biol. 2020;16(4):1–19. PubMed PMC

Geraldene M., Mahmoud E.S.S. Homology Modeling in Drug Discovery-an Update on the Last Decade. Lett. Drug. Des. Discov. 2017;14(9):1099–1111.

Schwede T. Protein modeling: what happened to the “protein structure gap”? Structure. 2013;21(9):1531–1540. PubMed PMC

Cheng T. Structure-based virtual screening for drug discovery: a problem-centric review. AAPS J. 2012;14(1):133–141. PubMed PMC

Egelman E.H. The Current Revolution in Cryo-EM. Biophys. J. 2016;110(5):1008–1012. PubMed PMC

Kryshtafovych A., Malhotra S. Cryo-electron microscopy targets in CASP13: Overview and evaluation of results. Proteins. 2019;87(12):1128–1140. PubMed PMC

Esquivel-Rodríguez J., Kihara D. Computational methods for constructing protein structure models from 3D electron microscopy maps. Journal Struct. Biol. 2013;184(1):93–102. PubMed PMC

Zhu J. Building and refining protein models within cryo-electron microscopy density maps based on homology modeling and multiscale structure refinement. J. Mol. Biol. 2010;397(3):835–851. PubMed PMC

Yip K.M. Atomic-resolution protein structure determination by cryo-EM. Nature. 2020;587:157–161. PubMed

Remmert M. HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat. Methods. 2012;9(2):173–175. PubMed

Johnson L.S., Eddy S.R., Portugaly E. Hidden Markov model speed heuristic and iterative HMM search procedure. BMC Bioinf. 2010;11(1):1–8. PubMed PMC

Altschul S.F. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–3402. PubMed PMC

Lam S.D. An overview of comparative modelling and resources dedicated to large-scale modelling of genome sequences. Acta Crystalogr. D. 2017;73(8):628–640. PubMed PMC

Cavasotto C.N., Phatak S.S. Homology modeling in drug discovery: current trends and applications. Drug Discov. Today. 2009;14(13):676–683. PubMed

Larkin M.A. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23(21):2947–2948. PubMed

Li W. The EMBL-EBI bioinformatics web and programmatic tools framework. Nucleic Acids Res. 2015;43(1):580–584. PubMed PMC

Edgar R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–1797. PubMed PMC

Ashkenazy H., Unger R., Kliger Y. Hidden conformations in protein structures. Bioinformatics. 2011;27(14):1941–1947. PubMed

Fiser A. Template-based protein structure modeling. Methods Mol. Biol. 2010;673:73–94. PubMed PMC

Xiang Z. Advances in homology protein structure modeling. Curr. Protein Pept. Sci. 2006;7(3):217–227. PubMed PMC

Liang S., Grishin N.V. Side-chain modeling with an optimized scoring function. Protein Sci. 2002;11(2):322–331. PubMed PMC

Xu G. OPUS-Rota2: An Improved Fast and Accurate Side-Chain Modeling Method. J. Chem. Theory Comput. 2019;15(9):5154–5160. PubMed

Krivov G.G., Shapovalov M.V., Dunbrack R.L., Jr. Improved prediction of protein side-chain conformations with SCWRL4. Proteins. 2009;77(4):778–795. PubMed PMC

Huang X., Pearce R., Zhang Y. FASPR: an open-source tool for fast and accurate protein side-chain packing. Bioinformatics. 2020;36(12):3758–3765. PubMed PMC

Hong S.H. Protein structure modeling and refinement by global optimization in CASP12. Proteins. 2018;86:122–135. PubMed

Kryshtafovych A., Monastyrskyy B., Fidelis K. CASP prediction center infrastructure and evaluation measures in CASP10 and CASP ROLL. Proteins. 2014;82(2):7–13. PubMed PMC

Mande, S.r.C., A. Kumar, and P. Ghosh, Analysis of Dihedral Angle Variability in Related Protein Structures, in Biomolecular Forms and Functions: A Celebration of 50 Years of the Ramachandran Map. 2013, World Scientific. p. 107-115.

Zemla A. LGA: A method for finding 3D similarities in protein structures. Nucleic Acids Res. 2003;31(13):3370–3374. PubMed PMC

Kryshtafovych A. Progress over the first decade of CASP experiments. Proteins. 2005;61(S7):225–236. PubMed

Zhang Y., Skolnick J. TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res. 2005;33(7):2302–2309. PubMed PMC

Siew N. MaxSub: an automated measure for the assessment of protein structure prediction quality. Bioinformatics. 2000;16(9):776–785. PubMed

Lukasiak P. Proceedings 2015 Ieee International Conference on Bioinformatics and Biomedicine. 2015. SphereGrinder - reference structure-based tool for quality assessment of protein structural models; pp. 665–668.

Abagyan R.A., Totrov M.M. Contact area difference (CAD): a robust measure to evaluate accuracy of protein models. J. Mol. Biol. 1997;268(3):678–685. PubMed

Olechnovic K., Kulberkyte E., Venclovas C. CAD-score: a new contact area difference-based function for evaluation of protein structural models. Proteins. 2013;81(1):149–162. PubMed

Davis, I.W., et al., MOLPROBITY: structure validation and all-atom contact analysis for nucleic acids and their complexes. Nucleic Acids Res., 2004. 32(Web Server issue): p. 615-619. PubMed PMC

Vriend, G., WHAT IF: a molecular modeling and drug design program. J. Mol. Graph., 1990. 8(1): p. 52-56 PubMed

Laskowski R.A. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 1993;26(2):283–291.

Benkert P., Tosatto S.C., Schomburg D. QMEAN: A comprehensive scoring function for model quality assessment. Proteins. 2008;71(1):261–277. PubMed

Shen M.Y., Sali A. Statistical potential for assessment and prediction of protein structures. Protein Sci. 2006;15(11):2507–2524. PubMed PMC

Sippl M.J. Recognition of errors in three-dimensional structures of proteins. Proteins. 1993;17(4):355–362. PubMed

Pawlowski M. MetaMQAP: a meta-server for the quality assessment of protein models. BMC Bioinf. 2008;9(1):1–20. PubMed PMC

Eramian D. A composite score for predicting errors in protein structure models. Protein Sci. 2006;15(7):1653–1666. PubMed PMC

Elmezayen A.D., Yelekçi K. Homology modeling and in silico design of novel and potential dual-acting inhibitors of human histone deacetylases HDAC5 and HDAC9 isozymes. J. Biomol. Struct. Dyn. 2020:1–19. PubMed

Al-Obaidi A., Elmezayen A.D., Yelekci K. Homology modeling of human GABA-AT and devise some novel and potent inhibitors via computer-aided drug design techniques. J. Biomol. Struct. Dyn. 2020:1–11. PubMed

Hanwell, M.D., et al., Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminformatics, 2012. 4(1): p. 17-17 PubMed PMC

Guex N., Peitsch M.C., Schwede T. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. Electrophoresis. 2009;30(1):162–173. PubMed

Reynolds C.R., Islam S.A., Sternberg M.J.E. EzMol: A Web Server Wizard for the Rapid Visualization and Image Production of Protein and Nucleic Acid Structures. J. Mol. Biol. 2018;430(15):2244–2248. PubMed PMC

Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem. Mol. Biol. Educ. 2006;34(4):255–261. PubMed

Yamaguchi H. Structural insight into the ligand-receptor interaction between glycyrrhetinic acid (GA) and the high-mobility group protein B1 (HMGB1)-DNA complex. Bioinformation. 2012;8(23):1147–1153. PubMed PMC

Schaftenaar G., Noordik J.H. Molden: a pre- and post-processing program for molecular and electronic structures. J. Comput. Aided Mol. Des. 2000;14(2):123–134. PubMed

Rigsby R.E., Parker A.B. Using the PyMOL application to reinforce visual understanding of protein structure. Biochem. Mol. Biol. Educ. 2016;44(5):433–437. PubMed

Sayle R.A., Milner-White E.J. RASMOL: biomolecular graphics for all. Trends Biochem. Sci. 1995;20(9):374–376. PubMed

Nazipova N.N. SAMSON: a software package for the biopolymer primary structure analysis. Comput. Appl. Biosci. 1995;11(4):423–426. PubMed

Paneth, A., W. Płonka, and P. Paneth, What do docking and QSAR tell us about the design of HIV-1 reverse transcriptase nonnucleoside inhibitors? J. Mol. Model., 2017. 23(11): p. 317-317. PubMed PMC

Pettersen E.F. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25(13):1605–1612. PubMed

Humphrey W., Dalke A., Schulten K. VMD: visual molecular dynamics. J. Mol. Graph. 1996;14(1):33–38. PubMed

Vriend, G., WHAT IF: a molecular modeling and drug design program. J Mol Graph, 1990. 8(1): p. 52-6, 29 PubMed

Land H., Humble M.S. YASARA: A Tool to Obtain Structural Guidance in Biocatalytic Investigations. Methods Mol. Biol. 2018;1685:43–67. PubMed

Sali A., Blundell T.L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 1993;234(3):779–815. PubMed

Webb B., Sali A. Comparative Protein Structure Modeling Using MODELLER. Curr. Protoc. Bioinformatics. 2016;54:1–37. PubMed PMC

Guex N., Peitsch M.C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997;18(15):2714–2723. PubMed

Arnold K. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics. 2006;22(2):195–201. PubMed

Biasini, M., et al., SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res., 2014. 42(Web Server issue): p. 252-258. PubMed PMC

Schwede T. SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res. 2003;31(13):3381–3385. PubMed PMC

Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinf. 2008;9:1–8. PubMed PMC

Roy A., Kucukural A., Zhang Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protoc. 2010;5(4):725–738. PubMed PMC

Kelley L.A., Sternberg M.J. Protein structure prediction on the Web: a case study using the Phyre server. Nat. Protoc. 2009;4(3):363–371. PubMed

Kelley L.A. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 2015;10(6):845–858. PubMed PMC

Rohl C.A. Modeling structurally variable regions in homologous proteins with rosetta. Proteins. 2004;55(3):656–677. PubMed

Kallberg M. Template-based protein structure modeling using the RaptorX web server. Nat. Protoc. 2012;7(8):1511–1522. PubMed PMC

Ko J., Park H., Seok C. GalaxyTBM: template-based modeling by building a reliable core and refining unreliable local regions. BMC Bioinf. 2012;13(1):1–8. PubMed PMC

Ko J. GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Res. 2012;40:294–297. PubMed PMC

AlQuraishi M. AlphaFold at CASP13. Bioinformatics. 2019;35(22):4862–4865. PubMed PMC

Wallner B., Elofsson A. All are not equal: a benchmark of different homology modeling programs. Protein Sci. 2005;14(5):1315–1327. PubMed PMC

Dalton J.A., Jackson R.M. An evaluation of automated homology modelling methods at low target template sequence similarity. Bioinformatics. 2007;23(15):1901–1908. PubMed

Forrest L.R., Tang C.L., Honig B. On the accuracy of homology modeling and sequence alignment methods applied to membrane proteins. Biophys. J. 2006;91(2):508–517. PubMed PMC

Szuba, T.T., et al., On efficiency of collective intelligence phenomena, in Transactions on computational collective intelligence III, N.T. Nguyen, Editor. 2011, Springer. p. 50-73.

Yi S.K.M. The Wisdom of the Crowd in Combinatorial Problems. Cogn. Sci. 2012;36(3):452–470. PubMed

Tucker, J.D., et al., Crowdsourcing in medical research: concepts and applications. PeerJ, 2019. 7: p. 6762-6762. PubMed PMC

Wang C. Crowdsourcing in health and medical research: a systematic review. Infect. Dis. Poverty. 2020;9(1):1–8. PubMed PMC

Schalk G. Brain-computer symbiosis. J. Neural Eng. 2008;5(1):1–15. PubMed PMC

Sandini, G., et al., Social Cognition for Human-Robot Symbiosis-Challenges and Building Blocks. Front. Neurorobotics, 2018. 12: p. 34-344 PubMed PMC

Shirts M., Pande V.S. COMPUTING: Screen Savers of the World Unite! Science. 2000;290(5498):1903–1904. PubMed

Taufer M. Predictor@ Home: A“ Protein Structure Prediction Supercomputer'Based on Global Computing. IEEE Trans. Parallel. Distrib. Syst. 2006;17(8):786–796.

Hodge, G., While You Were Sleeping: The Human Proteome Folding Project, in 40th Midwest Instruction and Computing Symposium. 2007, University of North Dakota, Grand Forks, ND: Grand Forks, North Dakota

Koehler Leman J. Better together: Elements of successful scientific software development in a distributed collaborative community. PLoS Comput. Biol. 2020;16(5):1–35. PubMed PMC

Cooper S. Predicting protein structures with a multiplayer online game. Nature. 2010;466(7307):756–760. PubMed PMC

Koepnick B. De novo protein design by citizen scientists. Nature. 2019;570(7761):390–394. PubMed PMC

Khatib F. Building de novo cryo-electron microscopy structures collaboratively with citizen scientists. PLoS Biol. 2019;17(11):1–11. PubMed PMC

Dill K.A., MacCallum J.L. The Protein-Folding Problem, 50 Years On. Science. 2012;338(6110):1042–1046. PubMed

Moult J. A decade of CASP: progress, bottlenecks and prognosis in protein structure prediction. Curr. Opin. Struct. Biol. 2005;15(3):285–289. PubMed

Kryshtafovych A. Critical assessment of methods of protein structure prediction (CASP)-Round XIII. Proteins. 2019;87(12):1011–1020. PubMed PMC

First J.T., Webb L.J. Agreement between Experimental and Simulated Circular Dichroic Spectra of a Positively Charged Peptide in Aqueous Solution and on Self-Assembled Monolayers. J. Phys. Chem. B. 2019;123(21):4512–4526. PubMed

Bonneau R. Contact order and ab initio protein structure prediction. Protein Sci. 2002;11(8):1937–1944. PubMed PMC

Kryshtafovych A. Progress over the first decade of CASP experiments. Proteins. 2005;61(7):225–236. PubMed

Kryshtafovych A., Fidelis K., Moult J. Progress from CASP6 to CASP7. Proteins. 2007;69(8):194–207. PubMed

Kryshtafovych A., Fidelis K., Moult J. CASP10 results compared to those of previous CASP experiments. Proteins. 2014;82(2):164–174. PubMed PMC

Moult J. Critical assessment of methods of protein structure prediction: Progress and new directions in round XI. Proteins. 2016;84(1):4–14. PubMed PMC

Moult J. Critical assessment of methods of protein structure prediction (CASP)-Round XII. Proteins. 2018;86(1):7–15. PubMed PMC

Kryshtafovych A. Critical assessment of methods of protein structure prediction (CASP)—Round XIII. Proteins. 2019;87(12):1011–1020. PubMed PMC

Xu J., Wang S. Analysis of distance-based protein structure prediction by deep learning in CASP13. Proteins. 2019;87(12):1069–1081. PubMed

Zheng W. Deep-learning contact-map guided protein structure prediction in CASP13. Proteins. 2019;87(12):1149–1164. PubMed PMC

Baek M. Prediction of protein oligomer structures using GALAXY in CASP13. Proteins. 2019;87(12):1233–1240. PubMed

Senior A.W. Improved protein structure prediction using potentials from deep learning. Nature. 2020;577(7792):706–710. PubMed

Senior A.W. Protein structure prediction using multiple deep neural networks in the 13th Critical Assessment of Protein Structure Prediction (CASP13) Proteins. 2019;87(12):1141–1148. PubMed PMC

McGuffin L.J. IntFOLD: an integrated web resource for high performance protein structure and function prediction. Nucleic Acids Res. 2019;47(1):408–413. PubMed PMC

Olechnovic K., Venclovas C. VoroMQA web server for assessing three-dimensional structures of proteins and protein complexes. Nucleic Acids Res. 2019;47(1):437–442. PubMed PMC

Karasikov M., Pagès G., Grudinin S. Smooth orientation-dependent scoring function for coarse-grained protein quality assessment. Bioinformatics. 2019;35(16):2801–2808. PubMed

Hou, J., et al., Protein tertiary structure modeling driven by deep learning and contact distance prediction in CASP13. Proteins, 2019. 87(12): p. 1165-1178 PubMed PMC

Hou, J., et al., The MULTICOM Protein Structure Prediction Server Empowered by Deep Learning and Contact Distance Prediction, in Protein Structure Prediction, D. Kihara, Editor. 2020, Springer US: New York, NY. p. 13-26 PubMed

Park H. High-accuracy refinement using Rosetta in CASP13. Proteins. 2019;87(12):1276–1282. PubMed PMC

Wikipedia contributors. Collective intelligence. 2020 22 October 2020 [cited 2020 1 November 2020]; Available from: https://en.wikipedia.org/w/index.php?title=Collective_intelligence&oldid=984808145.

Bohm G. New approaches in molecular structure prediction. Biophys. Chem. 1996;59(1–2):1–32. PubMed

Torrisi M., Pollastri G., Le Q. Deep learning methods in protein structure prediction. Comput. Struct. Biotechnol. J. 2020;18:1301–1310. PubMed PMC

Ji S. DeepCDpred: Inter-residue distance and contact prediction for improved prediction of protein structure. PLoS ONE. 2019;14(1):1–15. PubMed PMC

Wang S. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model. PLoS Comput. Biol. 2017;13(1):1–22. PubMed PMC

Li Y. Ensembling multiple raw coevolutionary features with deep residual neural networks for contact-map prediction in CASP13. Proteins. 2019;87(12):1082–1091. PubMed PMC

Gao, W., et al., Deep Learning in Protein Structural Modeling and Design. arXiv preprint arXiv:2007.08383, 2020. PubMed PMC

Bhowmik D. Deep clustering of protein folding simulations. BMC Bioinf. 2018;19(18):47–58. PubMed PMC

Guo, X., et al., Generating Tertiary Protein Structures via an Interpretative Variational Autoencoder. arXiv preprint arXiv:2004.07119, 2020.

Li P., Merz K.M. Metal Ion Modeling Using Classical Mechanics. Chem. Rev. 2017;117(3):1564–1686. PubMed PMC

Sabban, S. and M. Markovsky, RamaNet: Computational de novo helical protein backbone design using a long short-term memory generative adversarial neural network. F1000Res., 2020. 9(298): p. 1-14

Anand, N. and P. Huang. Generative modeling for protein structures. in Advances in Neural Information Processing Systems. 2018. Montreal, Canada.

Feng S.-H., Xu J.-Y., Shen H.-B. Biomedical Information Technology. Elsevier; 2020. Artificial intelligence in bioinformatics: Automated methodology development for protein residue contact map prediction; pp. 217–237.

Feng, S.-H., J.-Y. Xu, and H.-B. Shen, Artificial intelligence in bioinformatics: Automated methodology development for protein residue contact map prediction, in Biomedical Information Technology (Second Edition), D.D. Feng, Editor. 2020, Academic Press. p. 217-237.

Shrestha R. Assessing the accuracy of contact predictions in CASP13. Proteins. 2019;87(12):1058–1068. PubMed PMC

Jones D.T. PSICOV: precise structural contact prediction using sparse inverse covariance estimation on large multiple sequence alignments. Bioinformatics. 2011;28(2):184–190. PubMed

Kamisetty H., Ovchinnikov S., Baker D. Assessing the utility of coevolution-based residue-residue contact predictions in a sequence- and structure-rich era. Proc. Natl. Acad. Sci. U. S. A. 2013;110(39):15674–15679. PubMed PMC

Kajan L. FreeContact: fast and free software for protein contact prediction from residue co-evolution. BMC Bioinf. 2014;15(1):1–6. PubMed PMC

Seemayer S., Gruber M., Söding J. CCMpred—fast and precise prediction of protein residue–residue contacts from correlated mutations. Bioinformatics. 2014;30(21):3128–3130. PubMed PMC

Zhang H. Predicting protein inter-residue contacts using composite likelihood maximization and deep learning. BMC Bioinf. 2019;20(1):1–11. PubMed PMC

Jones D.T. MetaPSICOV: combining coevolution methods for accurate prediction of contacts and long range hydrogen bonding in proteins. Bioinformatics. 2015;31(7):999–1006. PubMed PMC

Skwark M.J. Improved Contact Predictions Using the Recognition of Protein Like Contact Patterns. PloS Comput. Biol. 2014;10(11):1–14. PubMed PMC

Sun H.P. Improving accuracy of protein contact prediction using balanced network deconvolution. Proteins. 2015;83(3):485–496. PubMed PMC

Yang J. R2C: improving ab initio residue contact map prediction using dynamic fusion strategy and Gaussian noise filter. Bioinformatics. 2016;32(16):2435–2443. PubMed

Wang S. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model. PLoS Comput Biol. 2017;13(1) PubMed PMC

Liu Y. Enhancing Evolutionary Couplings with Deep Convolutional Neural Networks. Cell Syst. 2018;6(1):65–74. PubMed PMC

Jones D.T., Kandathil S.M. High precision in protein contact prediction using fully convolutional neural networks and minimal sequence features. Bioinformatics. 2018;34(19):3308–3315. PubMed PMC

Hanson J. Accurate prediction of protein contact maps by coupling residual two-dimensional bidirectional long short-term memory with convolutional neural networks. Bioinformatics. 2018;34(23):4039–4045. PubMed

Li Y. ResPRE: high-accuracy protein contact prediction by coupling precision matrix with deep residual neural networks. Bioinformatics. 2019;35(22):4647–4655. PubMed PMC

Kandathil S.M., Greener J.G., Jones D.T. Prediction of inter-residue contacts with DeepMetaPSICOV in CASP13. Proteins. 2019;87(12):1092–1099. PubMed PMC

Gao M., Zhou H., Skolnick J. DESTINI: A deep-learning approach to contact-driven protein structure prediction. Sci. Rep. 2019;9(1):1–13. PubMed PMC

Stahl, K., M. Schneider, and O. Brock, EPSILON-CP: using deep learning to combine information from multiple sources for protein contact prediction. BMC Bioinformatics, 2017. 18(1): p. 303-303 PubMed PMC

Michel M., Hurtado D.M., Elofsson A. PconsC4: fast, free, easy, and accurate contact predictions. Bioinformatics. 2018;35(1):2677–2679. PubMed

Adhikari B., Hou J., Cheng J. DNCON2: improved protein contact prediction using two-level deep convolutional neural networks. Bioinformatics. 2018;34(9):1466–1472. PubMed PMC

Uversky V.N. The mysterious unfoldome: structureless, underappreciated, yet vital part of any given proteome. J. Biomed. Biotechnol. 2010;2010:1–14. PubMed PMC

Pancsa R., Tompa P. Structural Disorder in Eukaryotes. PLoS ONE. 2012;7(4):1–10. PubMed PMC

Schad E., Tompa P., Hegyi H. The relationship between proteome size, structural disorder and organism complexity. Genome Biol. 2011;12(12):1–13. PubMed PMC

DeForte S., Uversky V.N. Resolving the ambiguity: Making sense of intrinsic disorder when PDB structures disagree. Protein Sci. 2016;25(3):676–688. PubMed PMC

Uversky V.N. Unusual biophysics of intrinsically disordered proteins. Biochim. Biophys. Acta. 2013;1834(5):932–951. PubMed

DeForte S., Uversky V.N. Intrinsically disordered proteins in PubMed: what can the tip of the iceberg tell us about what lies below? RSC Adv. 2016;6(14):11513–11521.

Tompa P. Intrinsically disordered proteins: a 10-year recap. Trends Biochem. Sci. 2012;37(12):509–516. PubMed

Uversky V.N. Intrinsically Disordered Proteins and Their “Mysterious” (Meta)Physics. Front. Phys. 2019;7(10):1–18.

Williams R.M. The protein non-folding problem: amino acid determinants of intrinsic order and disorder. Pac. Symp. Biocomput. 2001:89–100. PubMed

Jorda J. Protein tandem repeats - the more perfect, the less structured. FEBS J. 2010;277(12):2673–2682. PubMed PMC

Uversky V.N. Paradoxes and wonders of intrinsic disorder: Complexity of simplicity. Intrinsically Disord. Proteins. 2016;4(1):1–10. PubMed PMC

Uversky V.N. Dancing Protein Clouds: The Strange Biology and Chaotic Physics of Intrinsically Disordered Proteins. J. Biol. Chem. 2016;291(13):6681–6688. PubMed PMC

Fisher C.K., Stultz C.M. Constructing ensembles for intrinsically disordered proteins. Curr. Opin. Struct. Biol. 2011;21(3):426–431. PubMed PMC

Huang F. Multiple conformations of full-length p53 detected with single-molecule fluorescence resonance energy transfer. Proc. Natl. Acad. Sci. U. S. A. 2009;106(49):20758–20763. PubMed PMC

Kodera N. Video imaging of walking myosin V by high-speed atomic force microscopy. Nature. 2010;468(7320):72–76. PubMed

Oldfield C.J. Addressing the intrinsic disorder bottleneck in structural proteomics. Proteins. 2005;59(3):444–453. PubMed

Ersoz Kaya I., Ibrikci T., Ersoy O.K. Prediction of disorder with new computational tool: BVDEA. Expert Syst. Appl. 2011;38(12):14451–14459.

He H., Zhao J., Sun G. The Prediction of Intrinsically Disordered Proteins Based on Feature Selection. Algorithms. 2019;12(2):1–1046.

Lobanov M.Y., Galzitskaya O.V. The Ising model for prediction of disordered residues from protein sequence alone. Phys. Biol. 2011;8(3):1–10. PubMed

Zhang T. SPINE-D: accurate prediction of short and long disordered regions by a single neural-network based method. J. Biomol. Struct. Dyn. 2012;29(4):799–813. PubMed PMC

Schlessinger A. Improved Disorder Prediction by Combination of Orthogonal Approaches. PLoS ONE. 2009;4(2):1–10. PubMed PMC

Liu Y., Wang X.F., Liu B. A comprehensive review and comparison of existing computational methods for intrinsically disordered protein and region prediction. Brief. Bioinformatics. 2017;20(1):330–346. PubMed

Necci, M., D. Piovesan, and S.C.E. Tosatto, Critical Assessment of Protein Intrinsic Disorder Prediction. bioRxiv preprint: 2020.08.11.245852, 2020.

Monastyrskyy B. Assessment of protein disorder region predictions in CASP10. Proteins. 2014;82(2):127–137. PubMed PMC

Monastyrskyy B. Evaluation of disorder predictions in CASP9. Proteins. 2011;79(10):107–118. PubMed PMC

Xu D. AIDA: ab initio domain assembly for automated multi-domain protein structure prediction and domain–domain interaction prediction. Bioinformatics. 2015;31(13):2098–2105. PubMed PMC

Hertig S. Multidomain assembler (MDA) generates models of large multidomain proteins. Biophys. J. 2015;108(9):2097–2102. PubMed PMC

Berliner N. Combining structural modeling with ensemble machine learning to accurately predict protein fold stability and binding affinity effects upon mutation. PLoS ONE. 2014;9(9):1–12. PubMed PMC

Rudenko, O., A. Thureau, and J. Perez. Evolutionary refinement of the 3D structure of multi-domain protein complexes from small angle X-ray scattering data. in GECCO 19: Genetic and Evolutionary Computation Conference. 2019. Prague, Czech Republic.

Huang W. Multidomain architecture of estrogen receptor reveals interfacial cross-talk between its DNA-binding and ligand-binding domains. Nat. Commun. 2018;9(1):1–10. PubMed PMC

Hou J. SAXSDom: Modeling multidomain protein structures using small-angle X-ray scattering data. Proteins. 2020;88(6):775–787. PubMed PMC

Zhou X. Assembling multidomain protein structures through analogous global structural alignments. Proc. Natl. Acad. Sci. U. S. A. 2019;116(32):15930–15938. PubMed PMC

Shen Y., Bax A. Homology modeling of larger proteins guided by chemical shifts. Nat. Methods. 2015;12(8):747–750. PubMed PMC

Aggarwal, C.C., Neural Networks and Deep Learning. 2018: Springer.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...