Homology modeling in the time of collective and artificial intelligence
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
33304450
PubMed Central
PMC7695898
DOI
10.1016/j.csbj.2020.11.007
PII: S2001-0370(20)30474-8
Knihovny.cz E-zdroje
- Klíčová slova
- Artificial intelligence, Collective intelligence, Homology modeling, Machine learning, Protein 3D structure, Structural bioinformatics,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Homology modeling is a method for building protein 3D structures using protein primary sequence and utilizing prior knowledge gained from structural similarities with other proteins. The homology modeling process is done in sequential steps where sequence/structure alignment is optimized, then a backbone is built and later, side-chains are added. Once the low-homology loops are modeled, the whole 3D structure is optimized and validated. In the past three decades, a few collective and collaborative initiatives allowed for continuous progress in both homology and ab initio modeling. Critical Assessment of protein Structure Prediction (CASP) is a worldwide community experiment that has historically recorded the progress in this field. Folding@Home and Rosetta@Home are examples of crowd-sourcing initiatives where the community is sharing computational resources, whereas RosettaCommons is an example of an initiative where a community is sharing a codebase for the development of computational algorithms. Foldit is another initiative where participants compete with each other in a protein folding video game to predict 3D structure. In the past few years, contact maps deep machine learning was introduced to the 3D structure prediction process, adding more information and increasing the accuracy of models significantly. In this review, we will take the reader in a journey of exploration from the beginnings to the most recent turnabouts, which have revolutionized the field of homology modeling. Moreover, we discuss the new trends emerging in this rapidly growing field.
Zobrazit více v PubMed
Hargittai I. Linus Pauling’s quest for the structure of proteins. Struct. Chem. 2009;21(1):1–7.
Muhammed M.T., Aki-Yalcin E. Homology modeling in drug discovery: Overview, current applications, and future perspectives. Chem. Biol. Drug Des. 2019;93(1):12–20. PubMed
Hatfield M.P., Lovas S. Conformational sampling techniques. Curr. Pharm. Des. 2014;20(20):3303–3313. PubMed
Moult J. A large-scale experiment to assess protein structure prediction methods. Proteins. 1995;23(3):2–4. PubMed
Samuel A.L. Some Studies in Machine Learning Using the Game of Checkers. IBM J. Res. Dev. 1959;3(3):210–229.
Nichols J.A., Herbert Chan H.W., Baker M.A.B. Machine learning: applications of artificial intelligence to imaging and diagnosis. Biophysi. Rev. 2019;11(1):111–118. PubMed PMC
Bali J., Garg R., Bali R.T. Artificial intelligence (AI) in healthcare and biomedical research: Why a strong computational/AI bioethics framework is required? Indian J. Ophthalmol. 2019;67(1):3–6. PubMed PMC
Mintz Y., Brodie R. Introduction to artificial intelligence in medicine. Minim. Invasive Ther. Allied Technol. 2019;28(2):73–81. PubMed
Yang J. Brief introduction of medical database and data mining technology in big data era. J. Evid. Based Med. 2020;13(1):57–69. PubMed PMC
Kourou K. Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J. 2015;13:8–17. PubMed PMC
AlQuraishi M. ProteinNet: a standardized data set for machine learning of protein structure. BMC Bioinf. 2019;20(1):1–10. PubMed PMC
Wu Q. Recent Progress in Machine Learning-based Prediction of Peptide Activity for Drug Discovery. Curr. Top. Med. Chem. 2019;19(1):4–16. PubMed
Marti-Renom M.A. Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct. 2000;29:291–325. PubMed
Read R.J., Chavali G. Assessment of CASP7 predictions in the high accuracy template-based modeling category. Proteins. 2007;69(S8):27–37. PubMed
Jalily Hasani H., Barakat K. Homology Modeling: an Overview of Fundamentals and Tools. Int. Rev. Model. Simul. 2017;10(2):1–14.
Haddad Y., Adam V., Heger Z. Ten quick tips for homology modeling of high-resolution protein 3D structures. PloS Comput. Biol. 2020;16(4):1–19. PubMed PMC
Geraldene M., Mahmoud E.S.S. Homology Modeling in Drug Discovery-an Update on the Last Decade. Lett. Drug. Des. Discov. 2017;14(9):1099–1111.
Schwede T. Protein modeling: what happened to the “protein structure gap”? Structure. 2013;21(9):1531–1540. PubMed PMC
Cheng T. Structure-based virtual screening for drug discovery: a problem-centric review. AAPS J. 2012;14(1):133–141. PubMed PMC
Egelman E.H. The Current Revolution in Cryo-EM. Biophys. J. 2016;110(5):1008–1012. PubMed PMC
Kryshtafovych A., Malhotra S. Cryo-electron microscopy targets in CASP13: Overview and evaluation of results. Proteins. 2019;87(12):1128–1140. PubMed PMC
Esquivel-Rodríguez J., Kihara D. Computational methods for constructing protein structure models from 3D electron microscopy maps. Journal Struct. Biol. 2013;184(1):93–102. PubMed PMC
Zhu J. Building and refining protein models within cryo-electron microscopy density maps based on homology modeling and multiscale structure refinement. J. Mol. Biol. 2010;397(3):835–851. PubMed PMC
Yip K.M. Atomic-resolution protein structure determination by cryo-EM. Nature. 2020;587:157–161. PubMed
Remmert M. HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat. Methods. 2012;9(2):173–175. PubMed
Johnson L.S., Eddy S.R., Portugaly E. Hidden Markov model speed heuristic and iterative HMM search procedure. BMC Bioinf. 2010;11(1):1–8. PubMed PMC
Altschul S.F. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–3402. PubMed PMC
Lam S.D. An overview of comparative modelling and resources dedicated to large-scale modelling of genome sequences. Acta Crystalogr. D. 2017;73(8):628–640. PubMed PMC
Cavasotto C.N., Phatak S.S. Homology modeling in drug discovery: current trends and applications. Drug Discov. Today. 2009;14(13):676–683. PubMed
Larkin M.A. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23(21):2947–2948. PubMed
Li W. The EMBL-EBI bioinformatics web and programmatic tools framework. Nucleic Acids Res. 2015;43(1):580–584. PubMed PMC
Edgar R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–1797. PubMed PMC
Ashkenazy H., Unger R., Kliger Y. Hidden conformations in protein structures. Bioinformatics. 2011;27(14):1941–1947. PubMed
Fiser A. Template-based protein structure modeling. Methods Mol. Biol. 2010;673:73–94. PubMed PMC
Xiang Z. Advances in homology protein structure modeling. Curr. Protein Pept. Sci. 2006;7(3):217–227. PubMed PMC
Liang S., Grishin N.V. Side-chain modeling with an optimized scoring function. Protein Sci. 2002;11(2):322–331. PubMed PMC
Xu G. OPUS-Rota2: An Improved Fast and Accurate Side-Chain Modeling Method. J. Chem. Theory Comput. 2019;15(9):5154–5160. PubMed
Krivov G.G., Shapovalov M.V., Dunbrack R.L., Jr. Improved prediction of protein side-chain conformations with SCWRL4. Proteins. 2009;77(4):778–795. PubMed PMC
Huang X., Pearce R., Zhang Y. FASPR: an open-source tool for fast and accurate protein side-chain packing. Bioinformatics. 2020;36(12):3758–3765. PubMed PMC
Hong S.H. Protein structure modeling and refinement by global optimization in CASP12. Proteins. 2018;86:122–135. PubMed
Kryshtafovych A., Monastyrskyy B., Fidelis K. CASP prediction center infrastructure and evaluation measures in CASP10 and CASP ROLL. Proteins. 2014;82(2):7–13. PubMed PMC
Mande, S.r.C., A. Kumar, and P. Ghosh, Analysis of Dihedral Angle Variability in Related Protein Structures, in Biomolecular Forms and Functions: A Celebration of 50 Years of the Ramachandran Map. 2013, World Scientific. p. 107-115.
Zemla A. LGA: A method for finding 3D similarities in protein structures. Nucleic Acids Res. 2003;31(13):3370–3374. PubMed PMC
Kryshtafovych A. Progress over the first decade of CASP experiments. Proteins. 2005;61(S7):225–236. PubMed
Zhang Y., Skolnick J. TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res. 2005;33(7):2302–2309. PubMed PMC
Siew N. MaxSub: an automated measure for the assessment of protein structure prediction quality. Bioinformatics. 2000;16(9):776–785. PubMed
Lukasiak P. Proceedings 2015 Ieee International Conference on Bioinformatics and Biomedicine. 2015. SphereGrinder - reference structure-based tool for quality assessment of protein structural models; pp. 665–668.
Abagyan R.A., Totrov M.M. Contact area difference (CAD): a robust measure to evaluate accuracy of protein models. J. Mol. Biol. 1997;268(3):678–685. PubMed
Olechnovic K., Kulberkyte E., Venclovas C. CAD-score: a new contact area difference-based function for evaluation of protein structural models. Proteins. 2013;81(1):149–162. PubMed
Davis, I.W., et al., MOLPROBITY: structure validation and all-atom contact analysis for nucleic acids and their complexes. Nucleic Acids Res., 2004. 32(Web Server issue): p. 615-619. PubMed PMC
Vriend, G., WHAT IF: a molecular modeling and drug design program. J. Mol. Graph., 1990. 8(1): p. 52-56 PubMed
Laskowski R.A. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 1993;26(2):283–291.
Benkert P., Tosatto S.C., Schomburg D. QMEAN: A comprehensive scoring function for model quality assessment. Proteins. 2008;71(1):261–277. PubMed
Shen M.Y., Sali A. Statistical potential for assessment and prediction of protein structures. Protein Sci. 2006;15(11):2507–2524. PubMed PMC
Sippl M.J. Recognition of errors in three-dimensional structures of proteins. Proteins. 1993;17(4):355–362. PubMed
Pawlowski M. MetaMQAP: a meta-server for the quality assessment of protein models. BMC Bioinf. 2008;9(1):1–20. PubMed PMC
Eramian D. A composite score for predicting errors in protein structure models. Protein Sci. 2006;15(7):1653–1666. PubMed PMC
Elmezayen A.D., Yelekçi K. Homology modeling and in silico design of novel and potential dual-acting inhibitors of human histone deacetylases HDAC5 and HDAC9 isozymes. J. Biomol. Struct. Dyn. 2020:1–19. PubMed
Al-Obaidi A., Elmezayen A.D., Yelekci K. Homology modeling of human GABA-AT and devise some novel and potent inhibitors via computer-aided drug design techniques. J. Biomol. Struct. Dyn. 2020:1–11. PubMed
Hanwell, M.D., et al., Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminformatics, 2012. 4(1): p. 17-17 PubMed PMC
Guex N., Peitsch M.C., Schwede T. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. Electrophoresis. 2009;30(1):162–173. PubMed
Reynolds C.R., Islam S.A., Sternberg M.J.E. EzMol: A Web Server Wizard for the Rapid Visualization and Image Production of Protein and Nucleic Acid Structures. J. Mol. Biol. 2018;430(15):2244–2248. PubMed PMC
Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem. Mol. Biol. Educ. 2006;34(4):255–261. PubMed
Yamaguchi H. Structural insight into the ligand-receptor interaction between glycyrrhetinic acid (GA) and the high-mobility group protein B1 (HMGB1)-DNA complex. Bioinformation. 2012;8(23):1147–1153. PubMed PMC
Schaftenaar G., Noordik J.H. Molden: a pre- and post-processing program for molecular and electronic structures. J. Comput. Aided Mol. Des. 2000;14(2):123–134. PubMed
Rigsby R.E., Parker A.B. Using the PyMOL application to reinforce visual understanding of protein structure. Biochem. Mol. Biol. Educ. 2016;44(5):433–437. PubMed
Sayle R.A., Milner-White E.J. RASMOL: biomolecular graphics for all. Trends Biochem. Sci. 1995;20(9):374–376. PubMed
Nazipova N.N. SAMSON: a software package for the biopolymer primary structure analysis. Comput. Appl. Biosci. 1995;11(4):423–426. PubMed
Paneth, A., W. Płonka, and P. Paneth, What do docking and QSAR tell us about the design of HIV-1 reverse transcriptase nonnucleoside inhibitors? J. Mol. Model., 2017. 23(11): p. 317-317. PubMed PMC
Pettersen E.F. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25(13):1605–1612. PubMed
Humphrey W., Dalke A., Schulten K. VMD: visual molecular dynamics. J. Mol. Graph. 1996;14(1):33–38. PubMed
Vriend, G., WHAT IF: a molecular modeling and drug design program. J Mol Graph, 1990. 8(1): p. 52-6, 29 PubMed
Land H., Humble M.S. YASARA: A Tool to Obtain Structural Guidance in Biocatalytic Investigations. Methods Mol. Biol. 2018;1685:43–67. PubMed
Sali A., Blundell T.L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 1993;234(3):779–815. PubMed
Webb B., Sali A. Comparative Protein Structure Modeling Using MODELLER. Curr. Protoc. Bioinformatics. 2016;54:1–37. PubMed PMC
Guex N., Peitsch M.C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 1997;18(15):2714–2723. PubMed
Arnold K. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics. 2006;22(2):195–201. PubMed
Biasini, M., et al., SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res., 2014. 42(Web Server issue): p. 252-258. PubMed PMC
Schwede T. SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res. 2003;31(13):3381–3385. PubMed PMC
Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinf. 2008;9:1–8. PubMed PMC
Roy A., Kucukural A., Zhang Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protoc. 2010;5(4):725–738. PubMed PMC
Kelley L.A., Sternberg M.J. Protein structure prediction on the Web: a case study using the Phyre server. Nat. Protoc. 2009;4(3):363–371. PubMed
Kelley L.A. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 2015;10(6):845–858. PubMed PMC
Rohl C.A. Modeling structurally variable regions in homologous proteins with rosetta. Proteins. 2004;55(3):656–677. PubMed
Kallberg M. Template-based protein structure modeling using the RaptorX web server. Nat. Protoc. 2012;7(8):1511–1522. PubMed PMC
Ko J., Park H., Seok C. GalaxyTBM: template-based modeling by building a reliable core and refining unreliable local regions. BMC Bioinf. 2012;13(1):1–8. PubMed PMC
Ko J. GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Res. 2012;40:294–297. PubMed PMC
AlQuraishi M. AlphaFold at CASP13. Bioinformatics. 2019;35(22):4862–4865. PubMed PMC
Wallner B., Elofsson A. All are not equal: a benchmark of different homology modeling programs. Protein Sci. 2005;14(5):1315–1327. PubMed PMC
Dalton J.A., Jackson R.M. An evaluation of automated homology modelling methods at low target template sequence similarity. Bioinformatics. 2007;23(15):1901–1908. PubMed
Forrest L.R., Tang C.L., Honig B. On the accuracy of homology modeling and sequence alignment methods applied to membrane proteins. Biophys. J. 2006;91(2):508–517. PubMed PMC
Szuba, T.T., et al., On efficiency of collective intelligence phenomena, in Transactions on computational collective intelligence III, N.T. Nguyen, Editor. 2011, Springer. p. 50-73.
Yi S.K.M. The Wisdom of the Crowd in Combinatorial Problems. Cogn. Sci. 2012;36(3):452–470. PubMed
Tucker, J.D., et al., Crowdsourcing in medical research: concepts and applications. PeerJ, 2019. 7: p. 6762-6762. PubMed PMC
Wang C. Crowdsourcing in health and medical research: a systematic review. Infect. Dis. Poverty. 2020;9(1):1–8. PubMed PMC
Schalk G. Brain-computer symbiosis. J. Neural Eng. 2008;5(1):1–15. PubMed PMC
Sandini, G., et al., Social Cognition for Human-Robot Symbiosis-Challenges and Building Blocks. Front. Neurorobotics, 2018. 12: p. 34-344 PubMed PMC
Shirts M., Pande V.S. COMPUTING: Screen Savers of the World Unite! Science. 2000;290(5498):1903–1904. PubMed
Taufer M. Predictor@ Home: A“ Protein Structure Prediction Supercomputer'Based on Global Computing. IEEE Trans. Parallel. Distrib. Syst. 2006;17(8):786–796.
Hodge, G., While You Were Sleeping: The Human Proteome Folding Project, in 40th Midwest Instruction and Computing Symposium. 2007, University of North Dakota, Grand Forks, ND: Grand Forks, North Dakota
Koehler Leman J. Better together: Elements of successful scientific software development in a distributed collaborative community. PLoS Comput. Biol. 2020;16(5):1–35. PubMed PMC
Cooper S. Predicting protein structures with a multiplayer online game. Nature. 2010;466(7307):756–760. PubMed PMC
Koepnick B. De novo protein design by citizen scientists. Nature. 2019;570(7761):390–394. PubMed PMC
Khatib F. Building de novo cryo-electron microscopy structures collaboratively with citizen scientists. PLoS Biol. 2019;17(11):1–11. PubMed PMC
Dill K.A., MacCallum J.L. The Protein-Folding Problem, 50 Years On. Science. 2012;338(6110):1042–1046. PubMed
Moult J. A decade of CASP: progress, bottlenecks and prognosis in protein structure prediction. Curr. Opin. Struct. Biol. 2005;15(3):285–289. PubMed
Kryshtafovych A. Critical assessment of methods of protein structure prediction (CASP)-Round XIII. Proteins. 2019;87(12):1011–1020. PubMed PMC
First J.T., Webb L.J. Agreement between Experimental and Simulated Circular Dichroic Spectra of a Positively Charged Peptide in Aqueous Solution and on Self-Assembled Monolayers. J. Phys. Chem. B. 2019;123(21):4512–4526. PubMed
Bonneau R. Contact order and ab initio protein structure prediction. Protein Sci. 2002;11(8):1937–1944. PubMed PMC
Kryshtafovych A. Progress over the first decade of CASP experiments. Proteins. 2005;61(7):225–236. PubMed
Kryshtafovych A., Fidelis K., Moult J. Progress from CASP6 to CASP7. Proteins. 2007;69(8):194–207. PubMed
Kryshtafovych A., Fidelis K., Moult J. CASP10 results compared to those of previous CASP experiments. Proteins. 2014;82(2):164–174. PubMed PMC
Moult J. Critical assessment of methods of protein structure prediction: Progress and new directions in round XI. Proteins. 2016;84(1):4–14. PubMed PMC
Moult J. Critical assessment of methods of protein structure prediction (CASP)-Round XII. Proteins. 2018;86(1):7–15. PubMed PMC
Kryshtafovych A. Critical assessment of methods of protein structure prediction (CASP)—Round XIII. Proteins. 2019;87(12):1011–1020. PubMed PMC
Xu J., Wang S. Analysis of distance-based protein structure prediction by deep learning in CASP13. Proteins. 2019;87(12):1069–1081. PubMed
Zheng W. Deep-learning contact-map guided protein structure prediction in CASP13. Proteins. 2019;87(12):1149–1164. PubMed PMC
Baek M. Prediction of protein oligomer structures using GALAXY in CASP13. Proteins. 2019;87(12):1233–1240. PubMed
Senior A.W. Improved protein structure prediction using potentials from deep learning. Nature. 2020;577(7792):706–710. PubMed
Senior A.W. Protein structure prediction using multiple deep neural networks in the 13th Critical Assessment of Protein Structure Prediction (CASP13) Proteins. 2019;87(12):1141–1148. PubMed PMC
McGuffin L.J. IntFOLD: an integrated web resource for high performance protein structure and function prediction. Nucleic Acids Res. 2019;47(1):408–413. PubMed PMC
Olechnovic K., Venclovas C. VoroMQA web server for assessing three-dimensional structures of proteins and protein complexes. Nucleic Acids Res. 2019;47(1):437–442. PubMed PMC
Karasikov M., Pagès G., Grudinin S. Smooth orientation-dependent scoring function for coarse-grained protein quality assessment. Bioinformatics. 2019;35(16):2801–2808. PubMed
Hou, J., et al., Protein tertiary structure modeling driven by deep learning and contact distance prediction in CASP13. Proteins, 2019. 87(12): p. 1165-1178 PubMed PMC
Hou, J., et al., The MULTICOM Protein Structure Prediction Server Empowered by Deep Learning and Contact Distance Prediction, in Protein Structure Prediction, D. Kihara, Editor. 2020, Springer US: New York, NY. p. 13-26 PubMed
Park H. High-accuracy refinement using Rosetta in CASP13. Proteins. 2019;87(12):1276–1282. PubMed PMC
Wikipedia contributors. Collective intelligence. 2020 22 October 2020 [cited 2020 1 November 2020]; Available from: https://en.wikipedia.org/w/index.php?title=Collective_intelligence&oldid=984808145.
Bohm G. New approaches in molecular structure prediction. Biophys. Chem. 1996;59(1–2):1–32. PubMed
Torrisi M., Pollastri G., Le Q. Deep learning methods in protein structure prediction. Comput. Struct. Biotechnol. J. 2020;18:1301–1310. PubMed PMC
Ji S. DeepCDpred: Inter-residue distance and contact prediction for improved prediction of protein structure. PLoS ONE. 2019;14(1):1–15. PubMed PMC
Wang S. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model. PLoS Comput. Biol. 2017;13(1):1–22. PubMed PMC
Li Y. Ensembling multiple raw coevolutionary features with deep residual neural networks for contact-map prediction in CASP13. Proteins. 2019;87(12):1082–1091. PubMed PMC
Gao, W., et al., Deep Learning in Protein Structural Modeling and Design. arXiv preprint arXiv:2007.08383, 2020. PubMed PMC
Bhowmik D. Deep clustering of protein folding simulations. BMC Bioinf. 2018;19(18):47–58. PubMed PMC
Guo, X., et al., Generating Tertiary Protein Structures via an Interpretative Variational Autoencoder. arXiv preprint arXiv:2004.07119, 2020.
Li P., Merz K.M. Metal Ion Modeling Using Classical Mechanics. Chem. Rev. 2017;117(3):1564–1686. PubMed PMC
Sabban, S. and M. Markovsky, RamaNet: Computational de novo helical protein backbone design using a long short-term memory generative adversarial neural network. F1000Res., 2020. 9(298): p. 1-14
Anand, N. and P. Huang. Generative modeling for protein structures. in Advances in Neural Information Processing Systems. 2018. Montreal, Canada.
Feng S.-H., Xu J.-Y., Shen H.-B. Biomedical Information Technology. Elsevier; 2020. Artificial intelligence in bioinformatics: Automated methodology development for protein residue contact map prediction; pp. 217–237.
Feng, S.-H., J.-Y. Xu, and H.-B. Shen, Artificial intelligence in bioinformatics: Automated methodology development for protein residue contact map prediction, in Biomedical Information Technology (Second Edition), D.D. Feng, Editor. 2020, Academic Press. p. 217-237.
Shrestha R. Assessing the accuracy of contact predictions in CASP13. Proteins. 2019;87(12):1058–1068. PubMed PMC
Jones D.T. PSICOV: precise structural contact prediction using sparse inverse covariance estimation on large multiple sequence alignments. Bioinformatics. 2011;28(2):184–190. PubMed
Kamisetty H., Ovchinnikov S., Baker D. Assessing the utility of coevolution-based residue-residue contact predictions in a sequence- and structure-rich era. Proc. Natl. Acad. Sci. U. S. A. 2013;110(39):15674–15679. PubMed PMC
Kajan L. FreeContact: fast and free software for protein contact prediction from residue co-evolution. BMC Bioinf. 2014;15(1):1–6. PubMed PMC
Seemayer S., Gruber M., Söding J. CCMpred—fast and precise prediction of protein residue–residue contacts from correlated mutations. Bioinformatics. 2014;30(21):3128–3130. PubMed PMC
Zhang H. Predicting protein inter-residue contacts using composite likelihood maximization and deep learning. BMC Bioinf. 2019;20(1):1–11. PubMed PMC
Jones D.T. MetaPSICOV: combining coevolution methods for accurate prediction of contacts and long range hydrogen bonding in proteins. Bioinformatics. 2015;31(7):999–1006. PubMed PMC
Skwark M.J. Improved Contact Predictions Using the Recognition of Protein Like Contact Patterns. PloS Comput. Biol. 2014;10(11):1–14. PubMed PMC
Sun H.P. Improving accuracy of protein contact prediction using balanced network deconvolution. Proteins. 2015;83(3):485–496. PubMed PMC
Yang J. R2C: improving ab initio residue contact map prediction using dynamic fusion strategy and Gaussian noise filter. Bioinformatics. 2016;32(16):2435–2443. PubMed
Wang S. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model. PLoS Comput Biol. 2017;13(1) PubMed PMC
Liu Y. Enhancing Evolutionary Couplings with Deep Convolutional Neural Networks. Cell Syst. 2018;6(1):65–74. PubMed PMC
Jones D.T., Kandathil S.M. High precision in protein contact prediction using fully convolutional neural networks and minimal sequence features. Bioinformatics. 2018;34(19):3308–3315. PubMed PMC
Hanson J. Accurate prediction of protein contact maps by coupling residual two-dimensional bidirectional long short-term memory with convolutional neural networks. Bioinformatics. 2018;34(23):4039–4045. PubMed
Li Y. ResPRE: high-accuracy protein contact prediction by coupling precision matrix with deep residual neural networks. Bioinformatics. 2019;35(22):4647–4655. PubMed PMC
Kandathil S.M., Greener J.G., Jones D.T. Prediction of inter-residue contacts with DeepMetaPSICOV in CASP13. Proteins. 2019;87(12):1092–1099. PubMed PMC
Gao M., Zhou H., Skolnick J. DESTINI: A deep-learning approach to contact-driven protein structure prediction. Sci. Rep. 2019;9(1):1–13. PubMed PMC
Stahl, K., M. Schneider, and O. Brock, EPSILON-CP: using deep learning to combine information from multiple sources for protein contact prediction. BMC Bioinformatics, 2017. 18(1): p. 303-303 PubMed PMC
Michel M., Hurtado D.M., Elofsson A. PconsC4: fast, free, easy, and accurate contact predictions. Bioinformatics. 2018;35(1):2677–2679. PubMed
Adhikari B., Hou J., Cheng J. DNCON2: improved protein contact prediction using two-level deep convolutional neural networks. Bioinformatics. 2018;34(9):1466–1472. PubMed PMC
Uversky V.N. The mysterious unfoldome: structureless, underappreciated, yet vital part of any given proteome. J. Biomed. Biotechnol. 2010;2010:1–14. PubMed PMC
Pancsa R., Tompa P. Structural Disorder in Eukaryotes. PLoS ONE. 2012;7(4):1–10. PubMed PMC
Schad E., Tompa P., Hegyi H. The relationship between proteome size, structural disorder and organism complexity. Genome Biol. 2011;12(12):1–13. PubMed PMC
DeForte S., Uversky V.N. Resolving the ambiguity: Making sense of intrinsic disorder when PDB structures disagree. Protein Sci. 2016;25(3):676–688. PubMed PMC
Uversky V.N. Unusual biophysics of intrinsically disordered proteins. Biochim. Biophys. Acta. 2013;1834(5):932–951. PubMed
DeForte S., Uversky V.N. Intrinsically disordered proteins in PubMed: what can the tip of the iceberg tell us about what lies below? RSC Adv. 2016;6(14):11513–11521.
Tompa P. Intrinsically disordered proteins: a 10-year recap. Trends Biochem. Sci. 2012;37(12):509–516. PubMed
Uversky V.N. Intrinsically Disordered Proteins and Their “Mysterious” (Meta)Physics. Front. Phys. 2019;7(10):1–18.
Williams R.M. The protein non-folding problem: amino acid determinants of intrinsic order and disorder. Pac. Symp. Biocomput. 2001:89–100. PubMed
Jorda J. Protein tandem repeats - the more perfect, the less structured. FEBS J. 2010;277(12):2673–2682. PubMed PMC
Uversky V.N. Paradoxes and wonders of intrinsic disorder: Complexity of simplicity. Intrinsically Disord. Proteins. 2016;4(1):1–10. PubMed PMC
Uversky V.N. Dancing Protein Clouds: The Strange Biology and Chaotic Physics of Intrinsically Disordered Proteins. J. Biol. Chem. 2016;291(13):6681–6688. PubMed PMC
Fisher C.K., Stultz C.M. Constructing ensembles for intrinsically disordered proteins. Curr. Opin. Struct. Biol. 2011;21(3):426–431. PubMed PMC
Huang F. Multiple conformations of full-length p53 detected with single-molecule fluorescence resonance energy transfer. Proc. Natl. Acad. Sci. U. S. A. 2009;106(49):20758–20763. PubMed PMC
Kodera N. Video imaging of walking myosin V by high-speed atomic force microscopy. Nature. 2010;468(7320):72–76. PubMed
Oldfield C.J. Addressing the intrinsic disorder bottleneck in structural proteomics. Proteins. 2005;59(3):444–453. PubMed
Ersoz Kaya I., Ibrikci T., Ersoy O.K. Prediction of disorder with new computational tool: BVDEA. Expert Syst. Appl. 2011;38(12):14451–14459.
He H., Zhao J., Sun G. The Prediction of Intrinsically Disordered Proteins Based on Feature Selection. Algorithms. 2019;12(2):1–1046.
Lobanov M.Y., Galzitskaya O.V. The Ising model for prediction of disordered residues from protein sequence alone. Phys. Biol. 2011;8(3):1–10. PubMed
Zhang T. SPINE-D: accurate prediction of short and long disordered regions by a single neural-network based method. J. Biomol. Struct. Dyn. 2012;29(4):799–813. PubMed PMC
Schlessinger A. Improved Disorder Prediction by Combination of Orthogonal Approaches. PLoS ONE. 2009;4(2):1–10. PubMed PMC
Liu Y., Wang X.F., Liu B. A comprehensive review and comparison of existing computational methods for intrinsically disordered protein and region prediction. Brief. Bioinformatics. 2017;20(1):330–346. PubMed
Necci, M., D. Piovesan, and S.C.E. Tosatto, Critical Assessment of Protein Intrinsic Disorder Prediction. bioRxiv preprint: 2020.08.11.245852, 2020.
Monastyrskyy B. Assessment of protein disorder region predictions in CASP10. Proteins. 2014;82(2):127–137. PubMed PMC
Monastyrskyy B. Evaluation of disorder predictions in CASP9. Proteins. 2011;79(10):107–118. PubMed PMC
Xu D. AIDA: ab initio domain assembly for automated multi-domain protein structure prediction and domain–domain interaction prediction. Bioinformatics. 2015;31(13):2098–2105. PubMed PMC
Hertig S. Multidomain assembler (MDA) generates models of large multidomain proteins. Biophys. J. 2015;108(9):2097–2102. PubMed PMC
Berliner N. Combining structural modeling with ensemble machine learning to accurately predict protein fold stability and binding affinity effects upon mutation. PLoS ONE. 2014;9(9):1–12. PubMed PMC
Rudenko, O., A. Thureau, and J. Perez. Evolutionary refinement of the 3D structure of multi-domain protein complexes from small angle X-ray scattering data. in GECCO 19: Genetic and Evolutionary Computation Conference. 2019. Prague, Czech Republic.
Huang W. Multidomain architecture of estrogen receptor reveals interfacial cross-talk between its DNA-binding and ligand-binding domains. Nat. Commun. 2018;9(1):1–10. PubMed PMC
Hou J. SAXSDom: Modeling multidomain protein structures using small-angle X-ray scattering data. Proteins. 2020;88(6):775–787. PubMed PMC
Zhou X. Assembling multidomain protein structures through analogous global structural alignments. Proc. Natl. Acad. Sci. U. S. A. 2019;116(32):15930–15938. PubMed PMC
Shen Y., Bax A. Homology modeling of larger proteins guided by chemical shifts. Nat. Methods. 2015;12(8):747–750. PubMed PMC
Aggarwal, C.C., Neural Networks and Deep Learning. 2018: Springer.