Short tRNA anticodon stem and mutant eRF1 allow stop codon reassignment
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36631608
DOI
10.1038/s41586-022-05584-2
PII: 10.1038/s41586-022-05584-2
Knihovny.cz E-zdroje
- MeSH
- antikodon * chemie genetika metabolismus MeSH
- Ciliophora genetika MeSH
- eukaryotické buňky * MeSH
- genetický kód * genetika MeSH
- mutace * MeSH
- peptidy - faktory ukončení * genetika metabolismus MeSH
- RNA transferová Glu genetika MeSH
- RNA transferová Trp genetika MeSH
- RNA transferová * genetika metabolismus MeSH
- Saccharomyces cerevisiae genetika MeSH
- terminační kodon * genetika MeSH
- Trypanosoma brucei brucei genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antikodon * MeSH
- peptidy - faktory ukončení * MeSH
- RNA transferová Glu MeSH
- RNA transferová Trp MeSH
- RNA transferová * MeSH
- terminační kodon * MeSH
Cognate tRNAs deliver specific amino acids to translating ribosomes according to the standard genetic code, and three codons with no cognate tRNAs serve as stop codons. Some protists have reassigned all stop codons as sense codons, neglecting this fundamental principle1-4. Here we analyse the in-frame stop codons in 7,259 predicted protein-coding genes of a previously undescribed trypanosomatid, Blastocrithidia nonstop. We reveal that in this species in-frame stop codons are underrepresented in genes expressed at high levels and that UAA serves as the only termination codon. Whereas new tRNAsGlu fully cognate to UAG and UAA evolved to reassign these stop codons, the UGA reassignment followed a different path through shortening the anticodon stem of tRNATrpCCA from five to four base pairs (bp). The canonical 5-bp tRNATrp recognizes UGG as dictated by the genetic code, whereas its shortened 4-bp variant incorporates tryptophan also into in-frame UGA. Mimicking this evolutionary twist by engineering both variants from B. nonstop, Trypanosoma brucei and Saccharomyces cerevisiae and expressing them in the last two species, we recorded a significantly higher readthrough for all 4-bp variants. Furthermore, a gene encoding B. nonstop release factor 1 acquired a mutation that specifically restricts UGA recognition, robustly potentiating the UGA reassignment. Virtually the same strategy has been adopted by the ciliate Condylostoma magnum. Hence, we describe a previously unknown, universal mechanism that has been exploited in unrelated eukaryotes with reassigned stop codons.
Faculty of Science Charles University BIOCEV Prague Czech Republic
Faculty of Sciences University of South Bohemia České Budějovice Czech Republic
Institute of Microbiology Czech Academy of Sciences Prague Czech Republic
Institute of Microbiology Czech Academy of Sciences Třeboň Czech Republic
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
Life Science Research Centre Faculty of Science University of Ostrava Ostrava Czech Republic
School of Biological Sciences University of Bristol Bristol UK
Zobrazit více v PubMed
Záhonová, K., Kostygov, A. Y., Ševčíková, T., Yurchenko, V. & Eliáš, M. An unprecedented non-canonical nuclear genetic code with all three termination codons reassigned as sense codons. Curr. Biol. 26, 2364–2369 (2016). PubMed DOI
Bachvaroff, T. R. A precedented nuclear genetic code with all three termination codons reassigned as sense codons in the syndinean Amoebophrya sp. ex Karlodinium veneficum. PLoS ONE 14, e0212912 (2019). PubMed DOI PMC
Swart, E. C., Serra, V., Petroni, G. & Nowacki, M. Genetic codes with no dedicated stop codon: context-dependent translation termination. Cell 166, 691–702 (2016). PubMed DOI PMC
Heaphy, S. M., Mariotti, M., Gladyshev, V. N., Atkins, J. F. & Baranov, P. V. Novel ciliate genetic code variants including the reassignment of all three stop codons to sense codons in Condylostoma magnum. Mol. Biol. Evol. 33, 2885–2889 (2016). PubMed DOI PMC
Sella, G. & Ardell, D. H. The coevolution of genes and genetic codes: Crick’s frozen accident revisited. J. Mol. Evol. 63, 297–313 (2006). PubMed DOI
Koonin, E. V. & Novozhilov, A. S. Origin and evolution of the genetic code: the universal enigma. IUBMB Life 61, 99–111 (2009). PubMed DOI PMC
Lobanov, A. V. et al. Position-dependent termination and widespread obligatory frameshifting in Euplotes translation. Nat. Struct. Mol. Biol. 24, 61–68 (2017). PubMed DOI
Shulgina, Y. & Eddy, S. R. A computational screen for alternative genetic codes in over 250,000 genomes. eLife 10, e71402 (2021). PubMed DOI PMC
Keeling, P. J. Evolution of the genetic code. Curr. Biol. 26, R851–R853 (2016). PubMed DOI
Baranov, P. V., Atkins, J. F. & Yordanova, M. M. Augmented genetic decoding: global, local and temporal alterations of decoding processes and codon meaning. Nat. Rev. Genet. 16, 517–529 (2015). PubMed DOI
Keeling, P. J. & Leander, B. S. Characterisation of a non-canonical genetic code in the oxymonad Streblomastix strix. J. Mol. Biol. 326, 1337–1349 (2003). PubMed DOI
Karpov, S. A. et al. Obligately phagotrophic aphelids turned out to branch with the earliest-diverging fungi. Protist 164, 195–205 (2013). PubMed DOI
Lozupone, C. A., Knight, R. D. & Landweber, L. F. The molecular basis of nuclear genetic code change in ciliates. Curr. Biol. 11, 65–74 (2001). PubMed DOI
Sanchez-Silva, R., Villalobo, E., Morin, L. & Torres, A. A new noncanonical nuclear genetic code: translation of UAA into glutamate. Curr. Biol. 13, 442–447 (2003). PubMed DOI
Osawa, S. & Jukes, T. H. Codon reassignment (codon capture) in evolution. J. Mol. Evol. 28, 271–278 (1989). PubMed DOI
Schultz, D. W. & Yarus, M. Transfer RNA mutation and the malleability of the genetic code. J. Mol. Biol. 235, 1377–1380 (1994). PubMed DOI
Sengupta, S. & Higgs, P. G. A unified model of codon reassignment in alternative genetic codes. Genetics 170, 831–840 (2005). PubMed DOI PMC
Lukeš, J. et al. Trypanosomatids are much more than just trypanosomes: clues from the expanded family tree. Trends Parasitol. 34, 466–480 (2018). PubMed DOI
Maslov, D. A. et al. Recent advances in trypanosomatid research: genome organization, expression, metabolism, taxonomy and evolution. Parasitology 146, 1–27 (2019). PubMed DOI
He, F. & Jacobson, A. Nonsense-mediated mRNA decay: degradation of defective transcripts is only part of the story. Annu. Rev. Genet. 49, 339–366 (2015). PubMed DOI PMC
Baejen, C. et al. Transcriptome maps of mRNP biogenesis factors define pre-mRNA recognition. Mol. Cell 55, 745–757 (2014). PubMed DOI
Kini, H. K., Silverman, I. M., Ji, X., Gregory, B. D. & Liebhaber, S. A. Cytoplasmic poly(A) binding protein-1 binds to genomically encoded sequences within mammalian mRNAs. RNA 22, 61–74 (2016). PubMed DOI PMC
Sladic, R. T., Lagnado, C. A., Bagley, C. J. & Goodall, G. J. Human PABP binds AU-rich RNA via RNA-binding domains 3 and 4. Eur. J. Biochem. 271, 450–457 (2004). PubMed DOI
Alfonzo, J. D., Blanc, V., Estevez, A. M., Rubio, M. A. & Simpson, L. C to U editing of the anticodon of imported mitochondrial tRNA(Trp) allows decoding of the UGA stop codon in Leishmania tarentolae. EMBO J. 18, 7056–7062 (1999). PubMed DOI PMC
Wohlgamuth-Benedum, J. M. et al. Thiolation controls cytoplasmic tRNA stability and acts as a negative determinant for tRNA editing in mitochondria. J. Biol. Chem. 284, 23947–23953 (2009). PubMed DOI PMC
Paris, Z. et al. A mitochondrial cytidine deaminase is responsible for C to U editing of tRNA(Trp) to decode the UGA codon in Trypanosoma brucei. RNA Biol. 18, 278–286 (2021).
Hirsh, D. Tryptophan transfer RNA as the UGA suppressor. J. Mol. Biol. 58, 439–458 (1971). PubMed DOI
Nenarokova, A. & Paris, Z. tRNAseq analysis of Blastocrithidia nonstop. figshare https://doi.org/10.6084/m9.figshare.17934200.v2 (2022).
Chan, P. P. & Lowe, T. M. tRNAscan-SE: searching for tRNA genes in genomic sequences. Methods Mol. Biol. 1962, 1–14 (2019). PubMed DOI PMC
Laslett, D. & Canback, B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 32, 11–16 (2004). PubMed DOI PMC
Van Haute, L., Powell, C. A. & Minczuk, M. Dealing with an unconventional genetic code in mitochondria: the biogenesis and pathogenic defects of the 5-formylcytosine modification in mitochondrial tRNA(Met). Biomolecules 7, 24 (2017). PubMed DOI PMC
Agris, P. F. et al. Celebrating wobble decoding: half a century and still much is new. RNA Biol 15, 537–553 (2018). PubMed DOI
Beznosková, P., Gunisová, S. & Valášek, L. S. Rules of UGA-N decoding by near-cognate tRNAs and analysis of readthrough on short uORFs in yeast. RNA 22, 456–466 (2016). PubMed DOI PMC
Beznosková, P., Pavlíková, Z., Zeman, J., Echeverria Aitken, C. & Valášek, L. S. Yeast applied readthrough inducing system (YARIS): an in vivo assay for the comprehensive study of translational readthrough. Nucleic Acids Res. 47, 6339–6350 (2019). PubMed DOI PMC
Pineyro, D., Torres, A. G. & de Pouplana, L. R. In Fungal RNA Biology (eds Sesma, A. & von der Haar, T.) 233–267 (Springer, 2014).
Matheisl, S., Berninghausen, O., Becker, T. & Beckmann, R. Structure of a human translation termination complex. Nucleic Acids Res. 43, 8615–8626 (2015). PubMed DOI PMC
Brown, A., Shao, S., Murray, J., Hegde, R. S. & Ramakrishnan, V. Structural basis for stop codon recognition in eukaryotes. Nature 524, 493–496 (2015). PubMed DOI PMC
Blanchet, S. et al. New insights into stop codon recognition by eRF1. Nucleic Acids Res. 43, 3298–3308 (2015). PubMed DOI PMC
Eliseev, B., Kryuchkova, P., Alkalaeva, E. & Frolova, L. A single amino acid change of translation termination factor eRF1 switches between bipotent and omnipotent stop-codon specificity. Nucleic Acids Res. 39, 599–608 (2011). PubMed DOI
Xue, H., Shen, W., Giege, R. & Wong, J. T. Identity elements of tRNA(Trp). Identification and evolutionary conservation. J. Biol. Chem. 268, 9316–9322 (1993). PubMed DOI
Ulmasov, B., Topin, A., Chen, Z., He, S. H. & Folk, W. R. Identity elements and aminoacylation of plant tRNATrp. Nucleic Acids Res. 26, 5139–5141 (1998). PubMed DOI PMC
Sekine, S. et al. Major identity determinants in the “augmented D helix” of tRNA(Glu) from Escherichia coli. J. Mol. Biol. 256, 685–700 (1996). PubMed DOI
Robertson, W. E. et al. Sense codon reassignment enables viral resistance and encoded polymer synthesis. Science 372, 1057–1062 (2021). PubMed DOI PMC
Grybchuk, D. et al. Viral discovery and diversity in trypanosomatid protozoa with a focus on relatives of the human parasite Leishmania. Proc. Natl Acad. Sci. USA 115, E506–E515 (2018). PubMed DOI
Chin, J. W. Expanding and reprogramming the genetic code. Nature 550, 53–60 (2017). PubMed DOI
Wang, J. et al. AAV-delivered suppressor tRNA overcomes a nonsense mutation in mice. Nature 604, 343–348 (2022). PubMed DOI PMC
Janssen, B. D., Diner, E. J. & Hayes, C. S. Analysis of aminoacyl- and peptidyl-tRNAs by gel electrophoresis. Methods Mol. Biol. 905, 291–309 (2012). PubMed PMC
Grentzmann, G., Ingram, J. A., Kelly, P. J., Gesteland, R. F. & Atkins, J. F. A dual-luciferase reporter system for studying recoding signals. RNA 4, 479–486 (1998). PubMed PMC
Muhlrad, D. & Parker, R. Recognition of yeast mRNAs as “nonsense containing” leads to both inhibition of mRNA translation and mRNA degradation: implications for the control of mRNA decapping. Mol. Biol. Cell 10, 3971–3978 (1999). PubMed DOI PMC
Loughran, G., Howard, M. T., Firth, A. E. & Atkins, J. F. Avoidance of reporter assay distortions from fused dual reporters. RNA 23, 1285–1289 (2017). PubMed DOI PMC
Ross, R., Cao, X., Yu, N. & Limbach, P. A. Sequence mapping of transfer RNA chemical modifications by liquid chromatography tandem mass spectrometry. Methods 107, 73–78 (2016). PubMed DOI PMC
Beznosková, P. et al. Translation initiation factors eIF3 and HCR1 control translation termination and stop codon read-through in yeast cells. PLoS Genet. 9, e1003962 (2013). PubMed DOI PMC
Kouba, T. et al. Small ribosomal protein RPS0 stimulates translation initiation by mediating 40S-binding of eIF3 via its direct contact with the eIF3a/TIF32 subunit. PLoS ONE 7, e40464 (2012). PubMed DOI PMC
Perez-Riverol, Y. et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 50, D543–D552 (2022). PubMed DOI
Nenarokova, A., Záhonová, K. & Nenarokov, S. The high-throughput sequencing datasets. figshare https://doi.org/10.6084/m9.figshare.21401541 (2022).
Nenarokova, A., Záhonová, K. & Nenarokov, S. Additional data and analyses. figshare https://figshare.com/projects/tRNA_anticodon_stem_length_variations_are_critical_for_stop_codon_reassignment/129167 (2022).
Nenarokov, S. & Nenarokova, A. Seraff/blasto: annotator & utilities for Blastocrithidia project (v1.0.2). Zenodo https://doi.org/10.5281/zenodo.7116082 (2022).
Potěšil, D. MS analysis of B. nonstop proteins. figshare https://doi.org/10.6084/m9.figshare.20105417.v2 (2022).
Ribosomal A-site interactions with near-cognate tRNAs drive stop codon readthrough
Multiple and frequent trypanosomatid co-infections of insects: the Cuban case study
Cysteine tRNA acts as a stop codon readthrough-inducing tRNA in the human HEK293T cell line
Stops making sense - For the people?