Predicting the Structural Effects of CUG Codon Translation on Uncharacterized Proteins in Candida albicans

. 2025 Aug 29 ; 11 (9) : . [epub] 20250829

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41003184

In the standard genetic code, the CUG triplet is translated as leucine. The pathogenic yeast Candida albicans and other CTG-clade yeasts contain tRNACAG, which is recognized by both leucine- and serine-tRNA synthetases. The CUG codon in these yeasts is translated most often as serine, and only in 3-5% of cases as leucine. Therefore, CTG Candida species have unstable proteomes. The effect of serine-leucine exchange on the structure and function of proteins has only been experimentally examined for a few cases. In C. albicans, CUG codons occur even in genes deemed to be essential. This means that serine-leucine ambiguity either does not affect the structure and function of the respective proteins, or that the presence of these amino acids at specific positions is associated with meaningful alteration of the proteins' function. This study employed AlphaFold2 to evaluate the potential effects of serine-to-leucine exchange in 12 proteins encoded by essential genes lacking orthologs in other yeasts and human genomes. The low homology with known proteins allowed us to make only low-confidence predictions. The analyzed proteins could be grouped into subsets based on the structural outcomes. Structural changes were observed only in four proteins. The remaining eight proteins showed no significant differences between serine and leucine variants.

Zobrazit více v PubMed

Chen W., Geng Y., Zhang B., Yan Y., Zhao F., Miao M. Stop or Not: Genome-Wide Profiling of Reassigned Stop Codons in Ciliates. Mol. Biol. Evol. 2023;40:msad064. doi: 10.1093/molbev/msad064. PubMed DOI PMC

Yamao F., Muto A., Kawauchi Y., Iwami M., Iwagami S., Azumi Y., Osawa S. UGA Is Read as Tryptophan in Mycoplasma Capricolum. Proc. Natl. Acad. Sci. USA. 1985;82:2306–2309. doi: 10.1073/pnas.82.8.2306. PubMed DOI PMC

Knight R.D., Landweber L.F., Yarus M. How Mitochondria Redefine the Code. J. Mol. Evol. 2001;53:299–313. doi: 10.1007/s002390010220. PubMed DOI

Miranda I., Silva R., Santos M.A.S. Evolution of the Genetic Code in Yeasts. Yeast. 2006;23:203–213. doi: 10.1002/yea.1350. PubMed DOI

Záhonová K., Kostygov A.Y., Ševčíková T., Yurchenko V., Eliáš M. An Unprecedented Non-Canonical Nuclear Genetic Code with All Three Termination Codons Reassigned as Sense Codons. Curr. Biol. 2016;26:2364–2369. doi: 10.1016/j.cub.2016.06.064. PubMed DOI

Swart E.C., Serra V., Petroni G., Nowacki M. Genetic Codes with No Dedicated Stop Codon: Context-Dependent Translation Termination. Cell. 2016;166:691–702. doi: 10.1016/j.cell.2016.06.020. PubMed DOI PMC

Kachale A., Pavlíková Z., Nenarokova A., Roithová A., Durante I.M., Miletínová P., Záhonová K., Nenarokov S., Votýpka J., Horáková E., et al. Short tRNA Anticodon Stem and Mutant eRF1 Allow Stop Codon Reassignment. Nature. 2023;613:751–758. doi: 10.1038/s41586-022-05584-2. PubMed DOI

Kollmar M., Mühlhausen S. Nuclear Codon Reassignments in the Genomics Era and Mechanisms behind Their Evolution. BioEssays. 2017;39:1600221. doi: 10.1002/bies.201600221. PubMed DOI

Ohama T., Suzuki T., Mori M., Osawa S., Ueda T., Watanabe K., Nakase T. Non-Universal Decoding of the Leucine Codon CUG in Several Candida Species. Nucleic Acids Res. 1993;21:4039–4045. doi: 10.1093/nar/21.17.4039. PubMed DOI PMC

Ueda T., Suzuki T., Tokogawa T., Nishikawa K., Watanabe K. Unique Structure of New Serine tRNAs Responsible for Decoding Leucine Codon CUG in Various Candida Species and Their Putative Ancestral tRNA Genes. Biochimie. 1994;76:1217–1222. doi: 10.1016/0300-9084(94)90052-3. PubMed DOI

Mühlhausen S., Findeisen P., Plessmann U., Urlaub H., Kollmar M. A Novel Nuclear Genetic Code Alteration in Yeasts and the Evolution of Codon Reassignment in Eukaryotes. Genome Res. 2016;26:945–955. doi: 10.1101/gr.200931.115. PubMed DOI PMC

Saini J.K., Saini R., Tewari L. Lignocellulosic Agriculture Wastes as Biomass Feedstocks for Second-Generation Bioethanol Production: Concepts and Recent Developments. 3 Biotech. 2015;5:337–353. doi: 10.1007/s13205-014-0246-5. PubMed DOI PMC

Krassowski T., Coughlan A.Y., Shen X.-X., Zhou X., Kominek J., Opulente D.A., Riley R., Grigoriev I.V., Maheshwari N., Shields D.C., et al. Evolutionary Instability of CUG-Leu in the Genetic Code of Budding Yeasts. Nat. Commun. 2018;9:1887. doi: 10.1038/s41467-018-04374-7. PubMed DOI PMC

Suzuki T. The ‘polysemous’ Codon_a Codon with Multiple Amino Acid Assignment Caused by Dual Specificity of tRNA Identity. EMBO J. 1997;16:1122–1134. doi: 10.1093/emboj/16.5.1122. PubMed DOI PMC

Knight R.D., Freeland S.J., Landweber L.F. Rewiring the Keyboard: Evolvability of the Genetic Code. Nat. Rev. Genet. 2001;2:49–58. doi: 10.1038/35047500. PubMed DOI

Massey S.E., Moura G., Beltrão P., Almeida R., Garey J.R., Tuite M.F., Santos M.A.S. Comparative Evolutionary Genomics Unveils the Molecular Mechanism of Reassignment of the CTG Codon in Candida spp. Genome Res. 2003;13:544–557. doi: 10.1101/gr.811003. PubMed DOI PMC

Butler G., Rasmussen M.D., Lin M.F., Santos M.A.S., Sakthikumar S., Munro C.A., Rheinbay E., Grabherr M., Forche A., Reedy J.L., et al. Evolution of Pathogenicity and Sexual Reproduction in Eight Candida Genomes. Nature. 2009;459:657–662. doi: 10.1038/nature08064. PubMed DOI PMC

Santos M.A., Perreau V.M., Tuite M.F. Transfer RNA Structural Change Is a Key Element in the Reassignment of the CUG Codon in Candida albicans. EMBO J. 1996;15:5060–5068. doi: 10.1002/j.1460-2075.1996.tb00886.x. PubMed DOI PMC

Santos M.A.S., Cheesman C., Costa V., Moradas-Ferreira P., Tuite M.F. Selective Advantages Created by Codon Ambiguity Allowed for the Evolution of an Alternative Genetic Code in Candida spp. Mol. Microbiol. 1999;31:937–947. doi: 10.1046/j.1365-2958.1999.01233.x. PubMed DOI

Bezerra A.R., Simões J., Lee W., Rung J., Weil T., Gut I.G., Gut M., Bayés M., Rizzetto L., Cavalieri D., et al. Reversion of a Fungal Genetic Code Alteration Links Proteome Instability with Genomic and Phenotypic Diversification. Proc. Natl. Acad. Sci. USA. 2013;110:11079–11084. doi: 10.1073/pnas.1302094110. PubMed DOI PMC

Brown A.J.P., Budge S., Kaloriti D., Tillmann A., Jacobsen M.D., Yin Z., Ene I.V., Bohovych I., Sandai D., Kastora S., et al. Stress Adaptation in a Pathogenic Fungus. J. Exp. Biol. 2014;217:144–155. doi: 10.1242/jeb.088930. PubMed DOI PMC

Katsipoulaki M., Stappers M.H.T., Malavia-Jones D., Brunke S., Hube B., Gow N.A.R. Candida albicans and Candida glabrata: Global Priority Pathogens. Microbiol. Mol. Biol. Rev. 2024;88:e00021-23. doi: 10.1128/mmbr.00021-23. PubMed DOI PMC

Rai L.S., Wijlick L.V., Bougnoux M., Bachellier-Bassi S., d’Enfert C. Regulators of Commensal and Pathogenic Life-styles of an Opportunistic Fungus—Candida albicans. Yeast. 2021;38:243–250. doi: 10.1002/yea.3550. PubMed DOI

Lass-Flörl C., Steixner S. The Changing Epidemiology of Fungal Infections. Mol. Aspects Med. 2023;94:101215. doi: 10.1016/j.mam.2023.101215. PubMed DOI

Pappas P.G., Lionakis M.S., Arendrup M.C., Ostrosky-Zeichner L., Kullberg B.J. Invasive Candidiasis. Nat. Rev. Dis. Primer. 2018;4:18026. doi: 10.1038/nrdp.2018.26. PubMed DOI

Wall G., Lopez-Ribot J.L. Current Antimycotics, New Prospects, and Future Approaches to Antifungal Therapy. Antibiotics. 2020;9:445. doi: 10.3390/antibiotics9080445. PubMed DOI PMC

Segal E.S., Gritsenko V., Levitan A., Yadav B., Dror N., Steenwyk J.L., Silberberg Y., Mielich K., Rokas A., Gow N.A.R., et al. Gene Essentiality Analyzed by In Vivo Transposon Mutagenesis and Machine Learning in a Stable Haploid Isolate of Candida albicans. mBio. 2018;9:e02048-18. doi: 10.1128/mBio.02048-18. PubMed DOI PMC

Tautz D., Domazet-Lošo T. The Evolutionary Origin of Orphan Genes. Nat. Rev. Genet. 2011;12:692–702. doi: 10.1038/nrg3053. PubMed DOI

Klausen M.S., Jespersen M.C., Nielsen H., Jensen K.K., Jurtz V.I., Sønderby C.K., Sommer M.O.A., Winther O., Nielsen M., Petersen B., et al. NetSurfP-2.0: Improved Prediction of Protein Structural Features by Integrated Deep Learning. Proteins Struct. Funct. Bioinforma. 2019;87:520–527. doi: 10.1002/prot.25674. PubMed DOI

Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A., et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature. 2021;596:583–589. doi: 10.1038/s41586-021-03819-2. PubMed DOI PMC

Bisong E. Building Machine Learning and Deep Learning Models on Google Cloud Platform. Apress; Berkeley, CA, USA: 2019. Google Colaboratory; pp. 59–64.

Pettersen E.F., Goddard T.D., Huang C.C., Meng E.C., Couch G.S., Croll T.I., Morris J.H., Ferrin T.E. UCSF ChimeraX: Structure Visualization for Researchers, Educators, and Developers. Protein Sci. 2021;30:70–82. doi: 10.1002/pro.3943. PubMed DOI PMC

Chaillot J., Cook M.A., Corbeil J., Sellam A. Genome-Wide Screen for Haploinsufficient Cell Size Genes in the Opportunistic Yeast Candida albicans. G3 Genes|Genomes|Genetics. 2017;7:355–360. doi: 10.1534/g3.116.037986. PubMed DOI PMC

Sellam A., Hogues H., Askew C., Tebbji F., Van Het Hoog M., Lavoie H., Kumamoto C.A., Whiteway M., Nantel A. Experimental Annotation of the Human Pathogen Candida albicans Coding and Noncoding Transcribed Regions Using High-Resolution Tiling Arrays. Genome Biol. 2010;11:R71. doi: 10.1186/gb-2010-11-7-r71. PubMed DOI PMC

Goodwin T.J.D., Ormandy J.E., Poulter R.T.M. L1-like Non-LTR Retrotransposons in the Yeast Candida albicans. Curr. Genet. 2001;39:83–91. doi: 10.1007/s002940000181. PubMed DOI

Nobile C.J., Fox E.P., Nett J.E., Sorrells T.R., Mitrovich Q.M., Hernday A.D., Tuch B.B., Andes D.R., Johnson A.D. A Recently Evolved Transcriptional Network Controls Biofilm Development in Candida albicans. Cell. 2012;148:126–138. doi: 10.1016/j.cell.2011.10.048. PubMed DOI PMC

Sárkány Z., Silva A., Pereira P.J.B., Macedo-Ribeiro S. Ser or Leu: Structural Snapshots of Mistranslation in Candida albicans. Front. Mol. Biosci. 2014;1:27. doi: 10.3389/fmolb.2014.00027. PubMed DOI PMC

Feketová Z., Mašek T., Vopálenský V., Pospíšek M. Ambiguous Decoding of the CUG Codon Alters the Functionality of the Candida albicans Translation Initiation Factor 4E: Candida albicans eIF4E. FEMS Yeast Res. 2010;10:558–569. doi: 10.1111/j.1567-1364.2010.00629.x. PubMed DOI

Cutfield J.F., Sullivan P.A., Cutfield S.M. Minor Structural Consequences of Alternative CUG Codon Usage (Ser for Leu) in Candida albicans Exoglucanase. Protein Eng. Des. Sel. 2000;13:735–738. doi: 10.1093/protein/13.10.735. PubMed DOI

Dostál J., Brynda J., Hrušková-Heidingsfeldová O., Sieglová I., Pichová I., Řezáčová P. The Crystal Structure of the Secreted Aspartic Protease 1 from Candida parapsilosis in Complex with Pepstatin A. J. Struct. Biol. 2009;167:145–152. doi: 10.1016/j.jsb.2009.04.004. PubMed DOI

Botova M., Camacho-Zarco A.R., Tognetti J., Bessa L.M., Guseva S., Mikkola E., Salvi N., Maurin D., Herrmann T., Blackledge M. A Specific Phosphorylation-Dependent Conformational Switch in SARS-CoV-2 Nucleocapsid Protein Inhibits RNA Binding. Sci. Adv. 2024;10:eaax2323. doi: 10.1126/sciadv.aax2323. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...