Predicting the Structural Effects of CUG Codon Translation on Uncharacterized Proteins in Candida albicans
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
41003184
PubMed Central
PMC12471149
DOI
10.3390/jof11090638
PII: jof11090638
Knihovny.cz E-zdroje
- Klíčová slova
- AlphaFold2, CUG codon, Candida albicans, codon usage, essential gene, orphan gene,
- Publikační typ
- časopisecké články MeSH
In the standard genetic code, the CUG triplet is translated as leucine. The pathogenic yeast Candida albicans and other CTG-clade yeasts contain tRNACAG, which is recognized by both leucine- and serine-tRNA synthetases. The CUG codon in these yeasts is translated most often as serine, and only in 3-5% of cases as leucine. Therefore, CTG Candida species have unstable proteomes. The effect of serine-leucine exchange on the structure and function of proteins has only been experimentally examined for a few cases. In C. albicans, CUG codons occur even in genes deemed to be essential. This means that serine-leucine ambiguity either does not affect the structure and function of the respective proteins, or that the presence of these amino acids at specific positions is associated with meaningful alteration of the proteins' function. This study employed AlphaFold2 to evaluate the potential effects of serine-to-leucine exchange in 12 proteins encoded by essential genes lacking orthologs in other yeasts and human genomes. The low homology with known proteins allowed us to make only low-confidence predictions. The analyzed proteins could be grouped into subsets based on the structural outcomes. Structural changes were observed only in four proteins. The remaining eight proteins showed no significant differences between serine and leucine variants.
Zobrazit více v PubMed
Chen W., Geng Y., Zhang B., Yan Y., Zhao F., Miao M. Stop or Not: Genome-Wide Profiling of Reassigned Stop Codons in Ciliates. Mol. Biol. Evol. 2023;40:msad064. doi: 10.1093/molbev/msad064. PubMed DOI PMC
Yamao F., Muto A., Kawauchi Y., Iwami M., Iwagami S., Azumi Y., Osawa S. UGA Is Read as Tryptophan in Mycoplasma Capricolum. Proc. Natl. Acad. Sci. USA. 1985;82:2306–2309. doi: 10.1073/pnas.82.8.2306. PubMed DOI PMC
Knight R.D., Landweber L.F., Yarus M. How Mitochondria Redefine the Code. J. Mol. Evol. 2001;53:299–313. doi: 10.1007/s002390010220. PubMed DOI
Miranda I., Silva R., Santos M.A.S. Evolution of the Genetic Code in Yeasts. Yeast. 2006;23:203–213. doi: 10.1002/yea.1350. PubMed DOI
Záhonová K., Kostygov A.Y., Ševčíková T., Yurchenko V., Eliáš M. An Unprecedented Non-Canonical Nuclear Genetic Code with All Three Termination Codons Reassigned as Sense Codons. Curr. Biol. 2016;26:2364–2369. doi: 10.1016/j.cub.2016.06.064. PubMed DOI
Swart E.C., Serra V., Petroni G., Nowacki M. Genetic Codes with No Dedicated Stop Codon: Context-Dependent Translation Termination. Cell. 2016;166:691–702. doi: 10.1016/j.cell.2016.06.020. PubMed DOI PMC
Kachale A., Pavlíková Z., Nenarokova A., Roithová A., Durante I.M., Miletínová P., Záhonová K., Nenarokov S., Votýpka J., Horáková E., et al. Short tRNA Anticodon Stem and Mutant eRF1 Allow Stop Codon Reassignment. Nature. 2023;613:751–758. doi: 10.1038/s41586-022-05584-2. PubMed DOI
Kollmar M., Mühlhausen S. Nuclear Codon Reassignments in the Genomics Era and Mechanisms behind Their Evolution. BioEssays. 2017;39:1600221. doi: 10.1002/bies.201600221. PubMed DOI
Ohama T., Suzuki T., Mori M., Osawa S., Ueda T., Watanabe K., Nakase T. Non-Universal Decoding of the Leucine Codon CUG in Several Candida Species. Nucleic Acids Res. 1993;21:4039–4045. doi: 10.1093/nar/21.17.4039. PubMed DOI PMC
Ueda T., Suzuki T., Tokogawa T., Nishikawa K., Watanabe K. Unique Structure of New Serine tRNAs Responsible for Decoding Leucine Codon CUG in Various Candida Species and Their Putative Ancestral tRNA Genes. Biochimie. 1994;76:1217–1222. doi: 10.1016/0300-9084(94)90052-3. PubMed DOI
Mühlhausen S., Findeisen P., Plessmann U., Urlaub H., Kollmar M. A Novel Nuclear Genetic Code Alteration in Yeasts and the Evolution of Codon Reassignment in Eukaryotes. Genome Res. 2016;26:945–955. doi: 10.1101/gr.200931.115. PubMed DOI PMC
Saini J.K., Saini R., Tewari L. Lignocellulosic Agriculture Wastes as Biomass Feedstocks for Second-Generation Bioethanol Production: Concepts and Recent Developments. 3 Biotech. 2015;5:337–353. doi: 10.1007/s13205-014-0246-5. PubMed DOI PMC
Krassowski T., Coughlan A.Y., Shen X.-X., Zhou X., Kominek J., Opulente D.A., Riley R., Grigoriev I.V., Maheshwari N., Shields D.C., et al. Evolutionary Instability of CUG-Leu in the Genetic Code of Budding Yeasts. Nat. Commun. 2018;9:1887. doi: 10.1038/s41467-018-04374-7. PubMed DOI PMC
Suzuki T. The ‘polysemous’ Codon_a Codon with Multiple Amino Acid Assignment Caused by Dual Specificity of tRNA Identity. EMBO J. 1997;16:1122–1134. doi: 10.1093/emboj/16.5.1122. PubMed DOI PMC
Knight R.D., Freeland S.J., Landweber L.F. Rewiring the Keyboard: Evolvability of the Genetic Code. Nat. Rev. Genet. 2001;2:49–58. doi: 10.1038/35047500. PubMed DOI
Massey S.E., Moura G., Beltrão P., Almeida R., Garey J.R., Tuite M.F., Santos M.A.S. Comparative Evolutionary Genomics Unveils the Molecular Mechanism of Reassignment of the CTG Codon in Candida spp. Genome Res. 2003;13:544–557. doi: 10.1101/gr.811003. PubMed DOI PMC
Butler G., Rasmussen M.D., Lin M.F., Santos M.A.S., Sakthikumar S., Munro C.A., Rheinbay E., Grabherr M., Forche A., Reedy J.L., et al. Evolution of Pathogenicity and Sexual Reproduction in Eight Candida Genomes. Nature. 2009;459:657–662. doi: 10.1038/nature08064. PubMed DOI PMC
Santos M.A., Perreau V.M., Tuite M.F. Transfer RNA Structural Change Is a Key Element in the Reassignment of the CUG Codon in Candida albicans. EMBO J. 1996;15:5060–5068. doi: 10.1002/j.1460-2075.1996.tb00886.x. PubMed DOI PMC
Santos M.A.S., Cheesman C., Costa V., Moradas-Ferreira P., Tuite M.F. Selective Advantages Created by Codon Ambiguity Allowed for the Evolution of an Alternative Genetic Code in Candida spp. Mol. Microbiol. 1999;31:937–947. doi: 10.1046/j.1365-2958.1999.01233.x. PubMed DOI
Bezerra A.R., Simões J., Lee W., Rung J., Weil T., Gut I.G., Gut M., Bayés M., Rizzetto L., Cavalieri D., et al. Reversion of a Fungal Genetic Code Alteration Links Proteome Instability with Genomic and Phenotypic Diversification. Proc. Natl. Acad. Sci. USA. 2013;110:11079–11084. doi: 10.1073/pnas.1302094110. PubMed DOI PMC
Brown A.J.P., Budge S., Kaloriti D., Tillmann A., Jacobsen M.D., Yin Z., Ene I.V., Bohovych I., Sandai D., Kastora S., et al. Stress Adaptation in a Pathogenic Fungus. J. Exp. Biol. 2014;217:144–155. doi: 10.1242/jeb.088930. PubMed DOI PMC
Katsipoulaki M., Stappers M.H.T., Malavia-Jones D., Brunke S., Hube B., Gow N.A.R. Candida albicans and Candida glabrata: Global Priority Pathogens. Microbiol. Mol. Biol. Rev. 2024;88:e00021-23. doi: 10.1128/mmbr.00021-23. PubMed DOI PMC
Rai L.S., Wijlick L.V., Bougnoux M., Bachellier-Bassi S., d’Enfert C. Regulators of Commensal and Pathogenic Life-styles of an Opportunistic Fungus—Candida albicans. Yeast. 2021;38:243–250. doi: 10.1002/yea.3550. PubMed DOI
Lass-Flörl C., Steixner S. The Changing Epidemiology of Fungal Infections. Mol. Aspects Med. 2023;94:101215. doi: 10.1016/j.mam.2023.101215. PubMed DOI
Pappas P.G., Lionakis M.S., Arendrup M.C., Ostrosky-Zeichner L., Kullberg B.J. Invasive Candidiasis. Nat. Rev. Dis. Primer. 2018;4:18026. doi: 10.1038/nrdp.2018.26. PubMed DOI
Wall G., Lopez-Ribot J.L. Current Antimycotics, New Prospects, and Future Approaches to Antifungal Therapy. Antibiotics. 2020;9:445. doi: 10.3390/antibiotics9080445. PubMed DOI PMC
Segal E.S., Gritsenko V., Levitan A., Yadav B., Dror N., Steenwyk J.L., Silberberg Y., Mielich K., Rokas A., Gow N.A.R., et al. Gene Essentiality Analyzed by In Vivo Transposon Mutagenesis and Machine Learning in a Stable Haploid Isolate of Candida albicans. mBio. 2018;9:e02048-18. doi: 10.1128/mBio.02048-18. PubMed DOI PMC
Tautz D., Domazet-Lošo T. The Evolutionary Origin of Orphan Genes. Nat. Rev. Genet. 2011;12:692–702. doi: 10.1038/nrg3053. PubMed DOI
Klausen M.S., Jespersen M.C., Nielsen H., Jensen K.K., Jurtz V.I., Sønderby C.K., Sommer M.O.A., Winther O., Nielsen M., Petersen B., et al. NetSurfP-2.0: Improved Prediction of Protein Structural Features by Integrated Deep Learning. Proteins Struct. Funct. Bioinforma. 2019;87:520–527. doi: 10.1002/prot.25674. PubMed DOI
Jumper J., Evans R., Pritzel A., Green T., Figurnov M., Ronneberger O., Tunyasuvunakool K., Bates R., Žídek A., Potapenko A., et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature. 2021;596:583–589. doi: 10.1038/s41586-021-03819-2. PubMed DOI PMC
Bisong E. Building Machine Learning and Deep Learning Models on Google Cloud Platform. Apress; Berkeley, CA, USA: 2019. Google Colaboratory; pp. 59–64.
Pettersen E.F., Goddard T.D., Huang C.C., Meng E.C., Couch G.S., Croll T.I., Morris J.H., Ferrin T.E. UCSF ChimeraX: Structure Visualization for Researchers, Educators, and Developers. Protein Sci. 2021;30:70–82. doi: 10.1002/pro.3943. PubMed DOI PMC
Chaillot J., Cook M.A., Corbeil J., Sellam A. Genome-Wide Screen for Haploinsufficient Cell Size Genes in the Opportunistic Yeast Candida albicans. G3 Genes|Genomes|Genetics. 2017;7:355–360. doi: 10.1534/g3.116.037986. PubMed DOI PMC
Sellam A., Hogues H., Askew C., Tebbji F., Van Het Hoog M., Lavoie H., Kumamoto C.A., Whiteway M., Nantel A. Experimental Annotation of the Human Pathogen Candida albicans Coding and Noncoding Transcribed Regions Using High-Resolution Tiling Arrays. Genome Biol. 2010;11:R71. doi: 10.1186/gb-2010-11-7-r71. PubMed DOI PMC
Goodwin T.J.D., Ormandy J.E., Poulter R.T.M. L1-like Non-LTR Retrotransposons in the Yeast Candida albicans. Curr. Genet. 2001;39:83–91. doi: 10.1007/s002940000181. PubMed DOI
Nobile C.J., Fox E.P., Nett J.E., Sorrells T.R., Mitrovich Q.M., Hernday A.D., Tuch B.B., Andes D.R., Johnson A.D. A Recently Evolved Transcriptional Network Controls Biofilm Development in Candida albicans. Cell. 2012;148:126–138. doi: 10.1016/j.cell.2011.10.048. PubMed DOI PMC
Sárkány Z., Silva A., Pereira P.J.B., Macedo-Ribeiro S. Ser or Leu: Structural Snapshots of Mistranslation in Candida albicans. Front. Mol. Biosci. 2014;1:27. doi: 10.3389/fmolb.2014.00027. PubMed DOI PMC
Feketová Z., Mašek T., Vopálenský V., Pospíšek M. Ambiguous Decoding of the CUG Codon Alters the Functionality of the Candida albicans Translation Initiation Factor 4E: Candida albicans eIF4E. FEMS Yeast Res. 2010;10:558–569. doi: 10.1111/j.1567-1364.2010.00629.x. PubMed DOI
Cutfield J.F., Sullivan P.A., Cutfield S.M. Minor Structural Consequences of Alternative CUG Codon Usage (Ser for Leu) in Candida albicans Exoglucanase. Protein Eng. Des. Sel. 2000;13:735–738. doi: 10.1093/protein/13.10.735. PubMed DOI
Dostál J., Brynda J., Hrušková-Heidingsfeldová O., Sieglová I., Pichová I., Řezáčová P. The Crystal Structure of the Secreted Aspartic Protease 1 from Candida parapsilosis in Complex with Pepstatin A. J. Struct. Biol. 2009;167:145–152. doi: 10.1016/j.jsb.2009.04.004. PubMed DOI
Botova M., Camacho-Zarco A.R., Tognetti J., Bessa L.M., Guseva S., Mikkola E., Salvi N., Maurin D., Herrmann T., Blackledge M. A Specific Phosphorylation-Dependent Conformational Switch in SARS-CoV-2 Nucleocapsid Protein Inhibits RNA Binding. Sci. Adv. 2024;10:eaax2323. doi: 10.1126/sciadv.aax2323. PubMed DOI PMC