codon usage
Dotaz
Zobrazit nápovědu
The genomic signature of an organism captures the characteristics of repeated oligonucleotide patterns in its genome 1, such as oligomer frequencies, GC content, and differences in codon usage. Viruses, however, are obligate intracellular parasites that are dependent on their host cells for replication, and information about genomic signatures in viruses has hitherto been sparse.Here, we investigate the presence and specificity of genomic signatures in 2,768 eukaryotic viral species from 105 viral families, aiming to illuminate dependencies and selective pressures in viral genome evolution. We demonstrate that most viruses have highly specific genomic signatures that often also differ significantly between species within the same family. The species-specificity is most prominent among dsDNA viruses and viruses with large genomes. We also reveal consistent dissimilarities between viral genomic signatures and those of their host cells, although some viruses present slight similarities, which may be explained by genetic adaptation to their native hosts. Our results suggest that significant evolutionary selection pressures act upon viral genomes to shape and preserve their genomic signatures, which may have implications for the field of synthetic biology in the construction of live attenuated vaccines and viral vectors.
Transfer RNAs (tRNAs) are key players in protein synthesis. To be fully active, tRNAs undergo extensive post-transcriptional modifications, including queuosine (Q), a hypermodified 7-deaza-guanosine present in the anticodon of several tRNAs in bacteria and eukarya. Here, molecular and biochemical approaches revealed that in the protozoan parasite Trypanosoma brucei, Q-containing tRNAs have a preference for the U-ending codons for asparagine, aspartate, tyrosine and histidine, analogous to what has been described in other systems. However, since a lack of tRNA genes in T. brucei mitochondria makes it essential to import a complete set from the cytoplasm, we surprisingly found that Q-modified tRNAs are preferentially imported over their unmodified counterparts. In turn, their absence from mitochondria has a pronounced effect on organellar translation and affects function. Although Q modification in T. brucei is globally important for codon selection, it is more so for mitochondrial protein synthesis. These results provide a unique example of the combined regulatory effect of codon usage and wobble modifications on protein synthesis; all driven by tRNA intracellular transport dynamics.
- MeSH
- antikodon genetika MeSH
- buněčné jádro genetika ultrastruktura MeSH
- cytoplazma genetika ultrastruktura MeSH
- guanosin genetika MeSH
- kodon genetika MeSH
- konformace nukleové kyseliny * MeSH
- mitochondrie genetika MeSH
- nukleosid Q genetika MeSH
- posttranskripční úpravy RNA genetika MeSH
- proteosyntéza genetika MeSH
- RNA transferová genetika ultrastruktura MeSH
- Trypanosoma brucei brucei genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
This study deals with the potential of Pichia pastoris X-33 for the production of penicillin G acylase (PGAA) from Achromobacter sp. CCM 4824. Synthetic gene matching the codon usage of P. pastoris was designed for intracellular and secretion-based production strategies and cloned into vectors pPICZ and pPICZα under the control of AOX1 promoter. The simple method was developed to screen Pichia transformants with the intracellularly produced enzyme. The positive correlation between acylase production and pga gene dosage for both expression systems was demonstrated in small scale experiments. In fed-batch bioreactor cultures of X-33/PENS2, an extracellular expression system, total PGAA expressed from five copies reached 14,880 U/L of an active enzyme after 142 h; however, 60% of this amount retained in the cytosol. The maximum PGAA production of 31,000 U/L was achieved intracellularly from nine integrated gene copies of X-33/PINS2 after 90 h under methanol induction. The results indicate that in both expression systems the production level of PGAA is similar but there is a limitation in secretion efficiency.
- MeSH
- Achromobacter genetika metabolismus MeSH
- bioreaktory mikrobiologie MeSH
- exprese genu MeSH
- genetické vektory MeSH
- genová dávka MeSH
- klonování DNA MeSH
- kodon genetika MeSH
- penicilinamidasa genetika metabolismus MeSH
- Pichia genetika metabolismus MeSH
- promotorové oblasti (genetika) MeSH
- průmyslová mikrobiologie metody MeSH
- rekombinantní proteiny genetika metabolismus MeSH
- transformace genetická MeSH
- Publikační typ
- časopisecké články MeSH
Incipient sympatric speciation in blind mole rat, Spalax galili, in Israel, caused by sharp ecological divergence of abutting chalk-basalt ecologies, has been proposed previously based on mitochondrial and whole-genome nuclear DNA. Here, we present new evidence, including transcriptome, DNA editing, microRNA, and codon usage, substantiating earlier evidence for adaptive divergence in the abutting chalk and basalt populations. Genetic divergence, based on the previous and new evidence, is ongoing despite restricted gene flow between the two populations. The principal component analysis, neighbor-joining tree, and genetic structure analysis of the transcriptome clearly show the clustered divergent two mole rat populations. Gene-expression level analysis indicates that the population transcriptome divergence is displayed not only by soil divergence but also by sex. Gene ontology enrichment of the differentially expressed genes from the two abutting soil populations highlights reproductive isolation. Alternative splicing variation of the two abutting soil populations displays two distinct splicing patterns. L-shaped FST distribution indicates that the two populations have undergone divergence with gene flow. Transcriptome divergent genes highlight neurogenetics and nutrition characterizing the chalk population, and energetics, metabolism, musculature, and sensory perception characterizing the abutting basalt population. Remarkably, microRNAs also display divergence between the two populations. The GC content is significantly higher in chalk than in basalt, and stress-response genes mostly prefer nonoptimal codons. The multiple lines of evidence of ecological-genomic and genetic divergence highlight that natural selection overrules the gene flow between the two abutting populations, substantiating the sharp ecological chalk-basalt divergence driving sympatric speciation.
- MeSH
- ekosystém MeSH
- mikro RNA metabolismus MeSH
- půda MeSH
- silikáty MeSH
- Spalax genetika metabolismus MeSH
- sympatrie * MeSH
- tok genů MeSH
- transkriptom * MeSH
- uhličitan vápenatý MeSH
- vznik druhů (genetika) * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
Ca2+-insensitive and -sensitive E1 subunits of the 2-oxoglutarate dehydrogenase complex (OGDHC) regulate tissue-specific NADH and ATP supply by mutually exclusive OGDH exons 4a and 4b. Here we show that their splicing is enforced by distant lariat branch points (dBPs) located near the 5' splice site of the intervening intron. dBPs restrict the intron length and prevent transposon insertions, which can introduce or eliminate dBP competitors. The size restriction was imposed by a single dominant dBP in anamniotes that expanded into a conserved constellation of four dBP adenines in amniotes. The amniote clusters exhibit taxon-specific usage of individual dBPs, reflecting accessibility of their extended motifs within a stable RNA hairpin rather than U2 snRNA:dBP base-pairing. The dBP expansion took place in early terrestrial species and was followed by a uridine enrichment of large downstream polypyrimidine tracts in mammals. The dBP-protected megatracts permit reciprocal regulation of exon 4a and 4b by uridine-binding proteins, including TIA-1/TIAR and PUF60, which promote U1 and U2 snRNP recruitment to the 5' splice site and BP, respectively, but do not significantly alter the relative dBP usage. We further show that codons for residues critically contributing to protein binding sites for Ca2+ and other divalent metals confer the exon inclusion order that mirrors the Irving-Williams affinity series, linking the evolution of auxiliary splicing motifs in exons to metallome constraints. Finally, we hypothesize that the dBP-driven selection for Ca2+-dependent ATP provision by E1 facilitated evolution of endothermy by optimizing the aerobic scope in target tissues.
- MeSH
- alternativní sestřih * MeSH
- exony MeSH
- HEK293 buňky MeSH
- introny * MeSH
- ketoglutarátdehydrogenasový komplex genetika metabolismus MeSH
- lidé MeSH
- messenger RNA chemie metabolismus MeSH
- místa sestřihu RNA MeSH
- molekulární evoluce MeSH
- obratlovci genetika MeSH
- prekurzory RNA chemie metabolismus MeSH
- protein - isoformy genetika metabolismus MeSH
- rozptýlené repetitivní sekvence MeSH
- sestřihové faktory metabolismus MeSH
- spliceozomy metabolismus MeSH
- termoregulace genetika MeSH
- vápník metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
... An mRNA Sequence Is Decoded in Sets of Three Nucleotides 334 tRNA Molecules Match Amino Acids to Codons ... ... Ribozyme 346 -- Nucleotide Sequences in mRNA Signal Where to Start Protein -- Synthesis 347 -- Stop Codons ... ... \"rarsation -- Pxscrorylation of an Initiation Factor Regulates Protein S nnesis Globally r* -UG Codons ... ... Mitochondria Are Topologically Accesses -- Contain the Simplest Genetic Systems -- -e.e a Relaxed Codon ... ... Usage and Can Have a Genetic Code -- ??? ...
Sixth edition xxxiv, 1430 stran v různém stránkování : ilustrace (převážně barevné) ; 29 cm
- Konspekt
- Biochemie. Molekulární biologie. Biofyzika
- NLK Obory
- molekulární biologie, molekulární medicína
- NLK Publikační typ
- učebnice vysokých škol