LmxM.22.0250-Encoded Dual Specificity Protein/Lipid Phosphatase Impairs Leishmania mexicana Virulence In Vitro
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-10656S
Grantová Agentura České Republiky
19-15- 00054
Russian Science Foundation
CZ LL1601
European Research Council - International
CZ.02.1.01/0.0/ 0.0/16_019/0000759
European Regional Development Fund
UNCE 20472
Grantová Agentura, Univerzita Karlova
PubMed
31744234
PubMed Central
PMC6969907
DOI
10.3390/pathogens8040241
PII: pathogens8040241
Knihovny.cz E-zdroje
- Klíčová slova
- Leishmania infection, LmDUSP1, virulence factor,
- Publikační typ
- časopisecké články MeSH
Protein phosphorylation/dephosphorylation is an important regulatory mechanism that controls many key physiological processes. Numerous pathogens successfully use kinases and phosphatases to internalize, replicate, and survive, modifying the host's phosphorylation profile or signal transduction pathways. Multiple phosphatases and kinases from diverse bacterial pathogens have been implicated in human infections before. In this work, we have identified and characterized the dual specificity protein/lipid phosphatase LmDUSP1 as a novel virulence factor governing Leishmania mexicana infection. The LmDUSP1-encoding gene (LmxM.22.0250 in L. mexicana) has been acquired from bacteria via horizontal gene transfer. Importantly, its orthologues have been associated with virulence in several bacterial species, such as Mycobacterium tuberculosis and Listeria monocytogenes. Leishmania mexicana with ablated LmxM.22.0250 demonstrated severely attenuated virulence in the experimental infection of primary mouse macrophages, suggesting that this gene facilitates Leishmania pathogenicity in vertebrates. Despite significant upregulation of LmxM.22.0250 expression in metacyclic promastigotes, its ablation did not affect the ability of mutant cells to differentiate into virulent stages in insects. It remains to be further investigated which specific biochemical pathways involve LmDUSP1 and how this facilitates the parasite's survival in the host. One of the interesting possibilities is that LmDUSP1 may target host's substrate(s), thereby affecting its signal transduction pathways.
Department of Parasitology Faculty of Science Charles University 12844 Prague Czech Republic
Life Sciences Research Centre Faculty of Science University of Ostrava 71000 Ostrava Czech Republic
University of South Bohemia Faculty of Sciences 37005 České Budejovice Czech Republic
Zoological Institute of the Russian Academy of Sciences 199034 St Petersburg Russia
Zobrazit více v PubMed
Bruschi F., Gradoni L. The leishmaniases: Old Neglected Tropical Diseases. Springer; Cham, Switzerland: 2018. p. 245.
Maslov D.A., Opperdoes F.R., Kostygov A.Y., Hashimi H., Lukeš J., Yurchenko V. Recent advances in trypanosomatid research: Genome organization, expression, metabolism, taxonomy and evolution. Parasitology. 2019;146:1–27. doi: 10.1017/S0031182018000951. PubMed DOI
Lukeš J., Butenko A., Hashimi H., Maslov D.A., Votýpka J., Yurchenko V. Trypanosomatids are much more than just trypanosomes: Clues from the expanded family tree. Trends Parasitol. 2018;34:466–480. doi: 10.1016/j.pt.2018.03.002. PubMed DOI
Dostálová A., Volf P. Leishmania development in sand flies: Parasite-vector interactions overview. Parasites Vectors. 2012;5:276. doi: 10.1186/1756-3305-5-276. PubMed DOI PMC
Bates P.A., Rogers M.E. New insights into the developmental biology and transmission mechanisms of Leishmania. Curr. Mol. Med. 2004;4:601–609. doi: 10.2174/1566524043360285. PubMed DOI
Cantacessi C., Dantas-Torres F., Nolan M.J., Otranto D. The past, present, and future of Leishmania genomics and transcriptomics. Trends Parasitol. 2015;31:100–108. doi: 10.1016/j.pt.2014.12.012. PubMed DOI PMC
Beneke T., Madden R., Makin L., Valli J., Sunter J., Gluenz E. A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids. R. Soc. Open Sci. 2017;4:170095. doi: 10.1098/rsos.170095. PubMed DOI PMC
Dean S., Sunter J., Wheeler R.J., Hodkinson I., Gluenz E., Gull K. A toolkit enabling efficient, scalable and reproducible gene tagging in trypanosomatids. Open Biol. 2015;5:140197. doi: 10.1098/rsob.140197. PubMed DOI PMC
Ishemgulova A., Hlavacova J., Majerova K., Butenko A., Lukes J., Votypka J., Volf P., Yurchenko V. CRISPR/Cas9 in Leishmania mexicana: A case study of LmxBTN1. PLoS ONE. 2018;13:e0192723. doi: 10.1371/journal.pone.0192723. PubMed DOI PMC
Sollelis L., Ghorbal M., MacPherson C.R., Martins R.M., Kuk N., Crobu L., Bastien P., Scherf A., Lopez-Rubio J.J., Sterkers Y. First efficient CRISPR-Cas9-mediated genome editing in Leishmania parasites. Cell Microbiol. 2015;17:1405–1412. doi: 10.1111/cmi.12456. PubMed DOI
Zhang W.W., Matlashewski G. CRISPR-Cas9-mediated genome editing in Leishmania donovani. Microbiology. 2015;6:e00861. doi: 10.1128/mBio.00861-15. PubMed DOI PMC
Flegontov P., Butenko A., Firsov S., Kraeva N., Eliáš M., Field M.C., Filatov D., Flegontova O., Gerasimov E.S., Hlaváčová J., et al. Genome of Leptomonas pyrrhocoris: A high-quality reference for monoxenous trypanosomatids and new insights into evolution of Leishmania. Sci. Rep. 2016;6:23704. doi: 10.1038/srep23704. PubMed DOI PMC
Inbar E., Hughitt V.K., Dillon L.A., Ghosh K., El-Sayed N.M., Sacks D.L. The transcriptome of Leishmania major developmental stages in their natural sand fly vector. Microbiology. 2017;8:e00029-17. doi: 10.1128/mBio.00029-17. PubMed DOI PMC
Aslett M., Aurrecoechea C., Berriman M., Brestelli J., Brunk B.P., Carrington M., Depledge D.P., Fischer S., Gajri B., Gao X., et al. TriTrypDB: A functional genomic resource for the Trypanosomatidae. Nucleic Acids Res. 2010;38:D457–D462. doi: 10.1093/nar/gkp851. PubMed DOI PMC
Opperdoes F.R., Butenko A., Flegontov P., Yurchenko V., Lukeš J. Comparative metabolism of free-living Bodo saltans and parasitic trypanosomatids. J. Eukaryot. Microbiol. 2016;63:657–678. doi: 10.1111/jeu.12315. PubMed DOI
Soulat D., Bogdan C. Function of macrophage and parasite phosphatases in leishmaniasis. Front. Immunol. 2017;8:1838. doi: 10.3389/fimmu.2017.01838. PubMed DOI PMC
Denu J.M., Dixon J.E. A catalytic mechanism for the dual-specific phosphatases. Proc. Natl. Acad. Sci. USA. 1995;92:5910–5914. doi: 10.1073/pnas.92.13.5910. PubMed DOI PMC
Beresford N.J., Saville C., Bennett H.J., Roberts I.S., Tabernero L. A new family of phosphoinositide phosphatases in microorganisms: Identification and biochemical analysis. BMC Genom. 2010;11:457. doi: 10.1186/1471-2164-11-457. PubMed DOI PMC
Tautz L., Critton D.A., Grotegut S. Protein tyrosine phosphatases: Structure, function, and implication in human disease. Methods Mol. Biol. 2013;1053:179–221. PubMed PMC
Christensen S.M., Dillon L.A., Carvalho L.P., Passos S., Novais F.O., Hughitt V.K., Beiting D.P., Carvalho E.M., Scott P., El-Sayed N.M., et al. Meta-transcriptome profiling of the human Leishmania braziliensis cutaneous lesion. PLOS Negl. Trop. Dis. 2016;10:e0004992. PubMed PMC
Beresford N., Patel S., Armstrong J., Szoor B., Fordham-Skelton A.P., Tabernero L. MptpB, a virulence factor from Mycobacterium tuberculosis, exhibits triple-specificity phosphatase activity. Biochem. J. 2007;406:13–18. doi: 10.1042/BJ20070670. PubMed DOI PMC
Kastner R., Dussurget O., Archambaud C., Kernbauer E., Soulat D., Cossart P., Decker T. LipA, a tyrosine and lipid phosphatase involved in the virulence of Listeria monocytogenes. Infect. Immun. 2011;79:2489–2498. doi: 10.1128/IAI.05073-11. PubMed DOI PMC
Koul A., Choidas A., Treder M., Tyagi A.K., Drlica K., Singh Y., Ullrich A. Cloning and characterization of secretory tyrosine phosphatases of Mycobacterium tuberculosis. J. Bacteriol. 2000;182:5425–5432. doi: 10.1128/JB.182.19.5425-5432.2000. PubMed DOI PMC
Beresford N.J., Mulhearn D., Szczepankiewicz B., Liu G., Johnson M.E., Fordham-Skelton A., Abad-Zapatero C., Cavet J.S., Tabernero L. Inhibition of MptpB phosphatase from Mycobacterium tuberculosis impairs mycobacterial survival in macrophages. J. Antimicrob. Chemother. 2009;63:928–936. doi: 10.1093/jac/dkp031. PubMed DOI
Singh R., Rao V., Shakila H., Gupta R., Khera A., Dhar N., Singh A., Koul A., Singh Y., Naseema M., et al. Disruption of mptpB impairs the ability of Mycobacterium tuberculosis to survive in guinea pigs. Mol. Microbiol. 2003;50:751–762. doi: 10.1046/j.1365-2958.2003.03712.x. PubMed DOI
Rawls K.A., Grundner C., Ellman J.A. Design and synthesis of nonpeptidic, small molecule inhibitors for the Mycobacterium tuberculosis protein tyrosine phosphatase PtpB. Organ. Biomol. Chem. 2010;8:4066–4070. doi: 10.1039/c0ob00182a. PubMed DOI PMC
Espinosa O.A., Serrano M.G., Camargo E.P., Teixeira M.M., Shaw J.J. An appraisal of the taxonomy and nomenclature of trypanosomatids presently classified as Leishmania and Endotrypanum. Parasitology. 2018;145:430–442. doi: 10.1017/S0031182016002092. PubMed DOI
Kostygov A.Y., Yurchenko V. Revised classification of the subfamily Leishmaniinae (Trypanosomatidae) Folia Parasitol. 2017;64:020. doi: 10.14411/fp.2017.020. PubMed DOI
Ishemgulova A., Kraeva N., Faktorová D., Podešvová L., Lukeš J., Yurchenko V. T7 polymerase-driven transcription is downregulated in metacyclic promastigotes and amastigotes of Leishmania mexicana. Folia Parasitol. 2016;63 doi: 10.14411/fp.2016.016. PubMed DOI
Sádlová J., Svobodová M., Volf P. Leishmania major: Effect of repeated passages through sandfly vectors or murine hosts. Ann. Trop. Med. Parasitol. 1999;93:599–611. doi: 10.1080/00034983.1999.11813463. PubMed DOI
Ishemgulova A., Kraeva N., Hlavacova J., Zimmer S.L., Butenko A., Podesvova L., Lestinova T., Lukes J., Kostygov A., Votypka J., et al. A putative ATP/GTP binding protein affects Leishmania mexicana growth in insect vectors and vertebrate hosts. PLOS Negl. Trop. Dis. 2017;11:e0005782. doi: 10.1371/journal.pntd.0005782. PubMed DOI PMC
Loría-Cervera E.N., Andrade-Narváez F.J. Animal models for the study of leishmaniasis immunology. Rev. Inst. Med. Trop. Sao Paulo. 2014;56:1–11. doi: 10.1590/S0036-46652014000100001. PubMed DOI PMC
Wang W.Q., Sun J.P., Zhang Z.Y. An overview of the protein tyrosine phosphatase superfamily. Curr. Top. Med. Chem. 2003;3:739–748. doi: 10.2174/1568026033452302. PubMed DOI
DeVinney R., Steele-Mortimer O., Finlay B.B. Phosphatases and kinases delivered to the host cell by bacterial pathogens. Trends Microbiol. 2000;8:29–33. doi: 10.1016/S0966-842X(99)01657-1. PubMed DOI
Norris F.A., Wilson M.P., Wallis T.S., Galyov E.E., Majerus P.W. SopB, a protein required for virulence of Salmonella dublin, is an inositol phosphate phosphatase. Proc. Natl. Acad. Sci. USA. 1998;95:14057–14059. doi: 10.1073/pnas.95.24.14057. PubMed DOI PMC
Galyov E.E., Hakansson S., Forsberg A., Wolf-Watz H. A secreted protein kinase of Yersinia pseudotuberculosis is an indispensable virulence determinant. Nature. 1993;361:730–732. doi: 10.1038/361730a0. PubMed DOI
Singh R., Singh A., Tyagi A.K. Deciphering the genes involved in pathogenesis of Mycobacterium tuberculosis. Tuberculosis (Edinb) 2005;85:325–335. doi: 10.1016/j.tube.2005.08.015. PubMed DOI
Leitherer S., Clos J., Liebler-Tenorio E.M., Schleicher U., Bogdan C., Soulat D. Characterization of the protein tyrosine phosphatase LmPRL-1 secreted by Leishmania major via the exosome pathway. Infect. Immun. 2017;85:e00084-17. doi: 10.1128/IAI.00084-17. PubMed DOI PMC
Nascimento M., Zhang W.W., Ghosh A., Houston D.R., Berghuis A.M., Olivier M., Matlashewski G. Identification and characterization of a protein-tyrosine phosphatase in Leishmania: Involvement in virulence. J. Biol. Chem. 2006;281:36257–36268. doi: 10.1074/jbc.M606256200. PubMed DOI
Coughlan S., Taylor A.S., Feane E., Sanders M., Schonian G., Cotton J.A., Downing T. Leishmania naiffi and Leishmania guyanensis reference genomes highlight genome structure and gene evolution in the Viannia subgenus. R. Soc. Open Sci. 2018;5:172212. doi: 10.1098/rsos.172212. PubMed DOI PMC
Llanes A., Restrepo C.M., del Vecchio G., Anguizola F.J., Lleonart R. The genome of Leishmania panamensis: Insights into genomics of the L. (Viannia) subgenus. Sci. Rep. 2015;5:8550. doi: 10.1038/srep08550. PubMed DOI PMC
Silverman J.M., Chan S.K., Robinson D.P., Dwyer D.M., Nandan D., Foster L.J., Reiner N.E. Proteomic analysis of the secretome of Leishmania donovani. Genome Biol. 2008;9:R35. doi: 10.1186/gb-2008-9-2-r35. PubMed DOI PMC
Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Capella-Gutiérrez S., Silla-Martinez J.M., Gabaldon T. TrimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–1973. doi: 10.1093/bioinformatics/btp348. PubMed DOI PMC
Nguyen L.T., Schmidt H.A., von Haeseler A., Minh B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC
Kalyaanamoorthy S., Minh B.Q., Wong T.K.F., von Haeseler A., Jermiin L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods. 2017;14:587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC
Ronquist F., Teslenko M., van der Mark P., Ayres D.L., Darling A., Hohna S., Larget B., Liu L., Suchard M.A., Huelsenbeck J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012;61:539–542. PubMed PMC
Finn R.D., Coggill P., Eberhardt R.Y., Eddy S.R., Mistry J., Mitchell A.L., Potter S.C., Punta M., Qureshi M., Sangrador-Vegas A., et al. The Pfam protein families database: Towards a more sustainable future. Nucleic Acids Res. 2016;44:D279–D285. doi: 10.1093/nar/gkv1344. PubMed DOI PMC
Merritt C., Stuart K. Identification of essential and non-essential protein kinases by a fusion PCR method for efficient production of transgenic Trypanosoma brucei. Mol. Biochem. Parasitol. 2013;190:44–49. doi: 10.1016/j.molbiopara.2013.05.002. PubMed DOI PMC
Kushnir S., Gase K., Breitling R., Alexandrov K. Development of an inducible protein expression system based on the protozoan host Leishmania tarentolae. Protein Expr. Purif. 2005;42:37–46. doi: 10.1016/j.pep.2005.03.004. PubMed DOI
Kraeva N., Ishemgulova A., Lukeš J., Yurchenko V. Tetracycline-inducible gene expression system in Leishmania mexicana. Mol. Biochem. Parasitol. 2014;198:11–13. doi: 10.1016/j.molbiopara.2014.11.002. PubMed DOI
Southern E.M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 1975;98:503–517. doi: 10.1016/S0022-2836(75)80083-0. PubMed DOI
Volf P., Volfová V. Establishment and maintenance of sand fly colonies. J. Vector Ecol. 2011;36:S1–S9. doi: 10.1111/j.1948-7134.2011.00106.x. PubMed DOI
Lawyer P., Killick-Kendrick M., Rowland T., Rowton E., Volf P. Laboratory colonization and mass rearing of phlebotomine sand flies (Diptera, Psychodidae) Parasite. 2017;24:42. doi: 10.1051/parasite/2017041. PubMed DOI PMC
Myšková J., Votýpka J., Volf P. Leishmania in sand flies: Comparison of quantitative polymerase chain reaction with other techniques to determine the intensity of infection. J. Med. Entomol. 2008;45:133–138. doi: 10.1093/jmedent/45.1.133. PubMed DOI
Catalase impairs Leishmania mexicana development and virulence
Diverse telomeres in trypanosomatids