Tuberous Sclerosis (tsc2+/-) Model Eker Rats Reveals Extensive Neuronal Loss with Microglial Invasion and Vascular Remodeling Related to Brain Neoplasia
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31820275
PubMed Central
PMC7007483
DOI
10.1007/s13311-019-00812-6
PII: S1878-7479(23)01400-9
Knihovny.cz E-zdroje
- Klíčová slova
- Eker rat, Glioma, Hamartomas, Microglial activation, Nascent capillaries, Neuro-oncology, Tuberous sclerosis complex,
- MeSH
- astrocyty patologie MeSH
- axony patologie MeSH
- mikroglie patologie MeSH
- mozek krevní zásobení patologie MeSH
- nádory mozku krevní zásobení etiologie patologie MeSH
- neurony patologie MeSH
- potkani Long-Evans MeSH
- remodelace cév * MeSH
- tuberin genetika MeSH
- tuberózní skleróza komplikace patologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- Tsc2 protein, rat MeSH Prohlížeč
- tuberin MeSH
Tuberous sclerosis complex (TSC) is a genetic disorder characterized by frequent noncancerous neoplasia in the brain, which can induce a range of severe neuropsychiatric symptoms in humans, resulting from out of control tissue growth. The causative spontaneous loss-of-function mutations have been also identified in rats. Herein, we studied histopathological and molecular changes in brain lesions of the Eker rat model carrying germline mutation of the tsc2 gene, predisposed to multiple neoplasias. Predominant subcortical tumors were analyzed, along with a rare form occurring within the pyriform lobe. The uniform composition of lesions supports the histochemical parity of malformations, with immunofluorescence data supporting their neuro-glial origin. Massive depletion of mature neurons and axonal loss were evident within lesions, with occasional necrotic foci implying advanced stage of pathology. Enrichment of mesenchymal-derived cell markers with hallmarks of neurogenesis and active microglia imply enhanced cell proliferation, with local immune response. The depletion of capillaries within the core was complemented by the formation of dense mesh of nascent vessels at the interface of neoplasia with healthy tissue, implying large-scale vascular remodeling. Taken as a whole, these findings present several novel features of brain tumors in Eker rat model, rendering it suitable for studies of the pathobiology and progression of primary brain tumors, with therapeutic interventions.
Zobrazit více v PubMed
Osborne JP, Fryer A, Webb D. Epidemiology of tuberous sclerosis. Ann N Y Acad Sci. 1991;615:125–7. doi: 10.1111/j.1749-6632.1991.tb37754.x. PubMed DOI
Yeung RS, Katsetos CD, Klein-Szanto A. Subependymal astrocytic hamartomas in the Eker rat model of tuberous sclerosis. Am J Pathol. 1997;151(5):1477–86. PubMed PMC
Fryer AE, et al. Evidence that the gene for tuberous sclerosis is on chromosome 9. Lancet. 1987;1(8534):659–61. doi: 10.1016/S0140-6736(87)90416-8. PubMed DOI
van Slegtenhorst M, et al. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science. 1997;277(5327):805–8. doi: 10.1126/science.277.5327.805. PubMed DOI
Kandt RS, et al. Linkage of an important gene locus for tuberous sclerosis to a chromosome 16 marker for polycystic kidney disease. Nat Genet. 1992;2(1):37–41. doi: 10.1038/ng0992-37. PubMed DOI
Tee AR, et al. Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proc Natl Acad Sci U S A. 2002;99(21):13571–6. doi: 10.1073/pnas.202476899. PubMed DOI PMC
Jones AC, et al. Molecular genetic and phenotypic analysis reveals differences between TSC1 and TSC2 associated familial and sporadic tuberous sclerosis. Hum Mol Genet. 1997;6(12):2155–61. doi: 10.1093/hmg/6.12.2155. PubMed DOI
Kozlowski P, et al. Identification of 54 large deletions/duplications in TSC1 and TSC2 using MLPA, and genotype-phenotype correlations. Hum Genet. 2007;121(3–4):389–400. doi: 10.1007/s00439-006-0308-9. PubMed DOI
Curatolo P, Bombardieri R, Jozwiak S. Tuberous sclerosis. Lancet. 2008;372(9639):657–68. doi: 10.1016/S0140-6736(08)61279-9. PubMed DOI
Davis, P.E., et al., Presentation and Diagnosis of Tuberous Sclerosis Complex in Infants. Pediatrics, 2017. 140(6). PubMed PMC
Mizuguchi M, et al. Novel cerebral lesions in the Eker rat model of tuberous sclerosis: cortical tuber and anaplastic ganglioglioma. J Neuropathol Exp Neurol. 2000;59(3):188–96. doi: 10.1093/jnen/59.3.188. PubMed DOI
Gillberg IC, Gillberg C, Ahlsen G. Autistic behaviour and attention deficits in tuberous sclerosis: a population-based study. Dev Med Child Neurol. 1994;36(1):50–6. doi: 10.1111/j.1469-8749.1994.tb11765.x. PubMed DOI
de Vries PJ, et al. A clinical update on tuberous sclerosis complex-associated neuropsychiatric disorders (TAND) Am J Med Genet C Semin Med Genet. 2018;178(3):309–320. doi: 10.1002/ajmg.c.31637. PubMed DOI PMC
Bender BL, Yunis EJ. Central nervous system pathology of tuberous sclerosis in children. Ultrastruct Pathol. 1980;1(3):287–99. doi: 10.3109/01913128009141432. PubMed DOI
Nabbout R, et al. Early diagnosis of subependymal giant cell astrocytoma in children with tuberous sclerosis. J Neurol Neurosurg Psychiatry. 1999;66(3):370–5. doi: 10.1136/jnnp.66.3.370. PubMed DOI PMC
Eker R. Familial renal adenomas in Wistar rats; a preliminary report. Acta Pathol Microbiol Scand. 1954;34(6):554–62. doi: 10.1111/j.1699-0463.1954.tb00301.x. PubMed DOI
Waltereit R, et al. Enhanced episodic-like memory and kindling epilepsy in a rat model of tuberous sclerosis. J Neurochem. 2006;96(2):407–13. doi: 10.1111/j.1471-4159.2005.03538.x. PubMed DOI
Rennebeck G, et al. Loss of function of the tuberous sclerosis 2 tumor suppressor gene results in embryonic lethality characterized by disrupted neuroepithelial growth and development. Proc Natl Acad Sci U S A. 1998;95(26):15629–34. doi: 10.1073/pnas.95.26.15629. PubMed DOI PMC
Paxinos, G. and C. Watson, The Rat Brain In stereotaxic coordinates. 2007: Academic Press. 462.
Ovsepian SV, et al. Ambient Glutamate Promotes Paroxysmal Hyperactivity in Cortical Pyramidal Neurons at Amyloid Plaques via Presynaptic mGluR1 Receptors. Cereb Cortex. 2017;27(10):4733–4749. PubMed
O'Leary VB, et al. Innocuous full-length botulinum neurotoxin targets and promotes the expression of lentiviral vectors in central and autonomic neurons. Gene Ther. 2011;18(7):656–65. doi: 10.1038/gt.2011.8. PubMed DOI
Ovsepian SV, et al. Neurotrophin receptor p75 mediates the uptake of the amyloid beta (Abeta) peptide, guiding it to lysosomes for degradation in basal forebrain cholinergic neurons. Brain Struct Funct. 2014;219(5):1527–41. doi: 10.1007/s00429-013-0583-x. PubMed DOI PMC
Bateup HS, et al. Excitatory/inhibitory synaptic imbalance leads to hippocampal hyperexcitability in mouse models of tuberous sclerosis. Neuron. 2013;78(3):510–22. doi: 10.1016/j.neuron.2013.03.017. PubMed DOI PMC
Nelson SB, Valakh V. Excitatory/Inhibitory Balance and Circuit Homeostasis in Autism Spectrum Disorders. Neuron. 2015;87(4):684–98. doi: 10.1016/j.neuron.2015.07.033. PubMed DOI PMC
Noroxe DS, Poulsen HS, Lassen U. Hallmarks of glioblastoma: a systematic review. ESMO Open. 2016;1(6):e000144. doi: 10.1136/esmoopen-2016-000144. PubMed DOI PMC
Bernal A, Arranz L. Nestin-expressing progenitor cells: function, identity and therapeutic implications. Cell Mol Life Sci. 2018;75(12):2177–2195. doi: 10.1007/s00018-018-2794-z. PubMed DOI PMC
Lin L, et al. Analysis of expression and prognostic significance of vimentin and the response to temozolomide in glioma patients. Tumour Biol. 2016;37(11):15333–15339. doi: 10.1007/s13277-016-5462-7. PubMed DOI
Ito D, et al. Enhanced expression of Iba1, ionized calcium-binding adapter molecule 1, after transient focal cerebral ischemia in rat brain. Stroke. 2001;32(5):1208–15. doi: 10.1161/01.STR.32.5.1208. PubMed DOI
Farnsworth RH, et al. Vascular remodeling in cancer. Oncogene. 2014;33(27):3496–505. doi: 10.1038/onc.2013.304. PubMed DOI
Takahashi DK, et al. Abnormal cortical cells and astrocytomas in the Eker rat model of tuberous sclerosis complex. Epilepsia. 2004;45(12):1525–30. doi: 10.1111/j.0013-9580.2004.23004.x. PubMed DOI
Wenzel HJ, et al. Morphology of cerebral lesions in the Eker rat model of tuberous sclerosis. Acta Neuropathol. 2004;108(2):97–108. doi: 10.1007/s00401-004-0865-8. PubMed DOI
Tschuluun N, Wenzel HJ, Schwartzkroin PA. Irradiation exacerbates cortical cytopathology in the Eker rat model of tuberous sclerosis complex, but does not induce hyperexcitability. Epilepsy Res. 2007;73(1):53–64. doi: 10.1016/j.eplepsyres.2006.08.003. PubMed DOI PMC
Lopes MB, et al. Immunohistochemical characterization of subependymal giant cell astrocytomas. Acta Neuropathol. 1996;91(4):368–75. doi: 10.1007/s004010050438. PubMed DOI
Hirose T, et al. Tuber and subependymal giant cell astrocytoma associated with tuberous sclerosis: an immunohistochemical, ultrastructural, and immunoelectron and microscopic study. Acta Neuropathol. 1995;90(4):387–99. doi: 10.1007/BF00315012. PubMed DOI
Krinke GJ, et al. Morphologic characterization of spontaneous nervous system tumors in mice and rats. Toxicol Pathol. 2000;28(1):178–92. doi: 10.1177/019262330002800123. PubMed DOI
Nakamura R, et al. Availability of a microglia and macrophage marker, iba-1, for differential diagnosis of spontaneous malignant reticuloses from astrocytomas in rats. J Toxicol Pathol. 2013;26(1):55–60. doi: 10.1293/tox.26.55. PubMed DOI PMC
Lendahl U, Zimmerman LB, McKay RD. CNS stem cells express a new class of intermediate filament protein. Cell. 1990;60(4):585–95. doi: 10.1016/0092-8674(90)90662-X. PubMed DOI
Tohyama T, et al. Nestin expression in embryonic human neuroepithelium and in human neuroepithelial tumor cells. Lab Invest. 1992;66(3):303–13. PubMed
Kitai R, et al. Nestin expression in astrocytic tumors delineates tumor infiltration. Brain Tumor Pathol. 2010;27(1):17–21. doi: 10.1007/s10014-009-0261-0. PubMed DOI
Mokry J, et al. Nestin expression by newly formed human blood vessels. Stem Cells Dev. 2004;13(6):658–64. doi: 10.1089/scd.2004.13.658. PubMed DOI
Suzuki S, et al. The neural stem/progenitor cell marker nestin is expressed in proliferative endothelial cells, but not in mature vasculature. J Histochem Cytochem. 2010;58(8):721–30. doi: 10.1369/jhc.2010.955609. PubMed DOI PMC
Sugawara K, et al. Nestin as a marker for proliferative endothelium in gliomas. Lab Invest. 2002;82(3):345–51. doi: 10.1038/labinvest.3780428. PubMed DOI
Mendez-Ferrer S, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010;466(7308):829–34. doi: 10.1038/nature09262. PubMed DOI PMC
Sorrells SF, et al. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature. 2018;555(7696):377–381. doi: 10.1038/nature25975. PubMed DOI PMC
Arai H, et al. Nestin expression in brain tumors: its utility for pathological diagnosis and correlation with the prognosis of high-grade gliomas. Brain Tumor Pathol. 2012;29(3):160–7. doi: 10.1007/s10014-012-0081-5. PubMed DOI
Mizuguchi M, et al. Doublecortin immunoreactivity in giant cells of tuberous sclerosis and focal cortical dysplasia. Acta Neuropathol. 2002;104(4):418–24. doi: 10.1007/s00401-002-0575-z. PubMed DOI
Boer K, et al. Doublecortin-like (DCL) expression in focal cortical dysplasia and cortical tubers. Epilepsia. 2009;50(12):2629–37. doi: 10.1111/j.1528-1167.2009.02191.x. PubMed DOI
Kolenda-Roberts HM, et al. Immunohistochemical characterization of spontaneous and acrylonitrile-induced brain tumors in the rat. Toxicol Pathol. 2013;41(1):98–108. doi: 10.1177/0192623312452492. PubMed DOI
Tremblay R, Lee S, Rudy B. GABAergic Interneurons in the Neocortex: From Cellular Properties to Circuits. Neuron. 2016;91(2):260–92. doi: 10.1016/j.neuron.2016.06.033. PubMed DOI PMC
De Palma M, Biziato D, Petrova TV. Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer. 2017;17(8):457–474. doi: 10.1038/nrc.2017.51. PubMed DOI
All-Trans Retinoic Acid Fosters the Multifarious U87MG Cell Line as a Model of Glioblastoma