All-Trans Retinoic Acid Fosters the Multifarious U87MG Cell Line as a Model of Glioblastoma

. 2021 Jun 18 ; 11 (6) : . [epub] 20210618

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34207434

Grantová podpora
PROGRES Q28 -Oncology and 260533/SVV/2021 Neurology Charles University research programmes

Glioblastoma multiforme (GBM) is a primary brain cancer of poor prognosis, with existing treatments remaining essentially palliative. Current GBM therapy fails due to rapid reappearance of the heterogeneous neoplasm, with models suggesting that the recurrent growth is from treatment-resistant glioblastoma stem-like cells (GSCs). Whether GSCs depend on survival/proliferative cues from their surrounding microenvironmental niche, particularly surrounding the leading edge after treatment remains unknown. Simulating human GBM in the laboratory relies on representative cell lines and xenograft models for translational medicine. Due to U87MG source discrepancy and differential proliferation responses to retinoic acid treatment, this study highlights the challenges faced by laboratory scientists working with this representative GBM cell line. Investigating the response to all trans-retinoic acid (ATRA) revealed its sequestering of the prominin-1 stem cell marker. ICAM-1 universally present throughout U87MG was enhanced by ATRA, of interest for chemotherapy targeting studies. ATRA triggered diverse expression patterns of long non-coding RNAs PARTICLE and GAS5 in the leading edge and established monolayer growth zone microenvironment. Karyotyping confirmed the female origin of U87MG sourced from Europe. Passaging U87MG revealed the presence of chromosomal anomalies reflective of structural genomic alterations in this glioblastoma cell line. All evidence considered, this study exposes further phenotypic nuances of U87MG which may belie researchers seeking data contributing towards the elusive cure for GBM.

Zobrazit více v PubMed

Lapointe S., Perry A., Butowski N.A. Primary brain tumours in adults. Lancet. 2018;392:432–446. doi: 10.1016/S0140-6736(18)30990-5. PubMed DOI

Qian B.Z., Pollard J.W. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141:39–51. doi: 10.1016/j.cell.2010.03.014. PubMed DOI PMC

Giakoumettis D., Kritis A., Foroglou N. C6 cell line: The gold standard in glioma research. Hippokratia. 2018;22:105–112. PubMed PMC

Furnari F.B., Fenton T., Bachoo R.M., Mukasa A., Stommel J.M., Stegh A., Hahn W.C., Ligon K.L., Louis D.N., Brennan C., et al. Malignant astrocytic glioma: Genetics, biology, and paths to treatment. Genes Dev. 2007;21:2683–2710. doi: 10.1101/gad.1596707. PubMed DOI

Irtenkauf S.M., Sobiechowski S., Hasselbach L.A., Nelson K.K., Transou A.D., Carlton E.T., Mikkelsen T., Decarvalho A.C. Optimization of Glioblastoma Mouse Orthotopic Xenograft Models for Translational Research. Comp. Med. 2017;67:300–314. PubMed PMC

Kutna V., O’Leary V.B., Newman E., Hoschl C., Ovsepian S.V. Revisiting Brain Tuberous Sclerosis Complex in Rat and Human: Shared Molecular and Cellular Pathology Leads to Distinct Neurophysiological and Behavioral Phenotypes. Neurotherapeutics. 2021 doi: 10.1007/s13311-020-01000-7. PubMed DOI PMC

Mawson A.R. Retinoids in the treatment of glioma: A new perspective. Cancer Manag. Res. 2012;4:233–241. doi: 10.2147/CMAR.S32449. PubMed DOI PMC

Jones T., Zhang B., Major S., Webb A. All-trans retinoic acid eluting poly(diol citrate) wafers for treatment of glioblastoma. J. Biomed. Mater. Res. B. 2020;108:619–628. doi: 10.1002/jbm.b.34416. PubMed DOI

Rhinn M., Dolle P. Retinoic acid signalling during development. Development. 2012;139:843–858. doi: 10.1242/dev.065938. PubMed DOI

Környei Z., Gócza E., Rühl R., Orsolits B., Vörös E., Szabó B., Vágovits B., Madarász E. Astroglia-derived retinoic acid is a key factor in glia-induced neurogenesis. FASEB J. 2007;21:2496–2509. doi: 10.1096/fj.06-7756com. PubMed DOI

Dolgin E. Venerable brain-cancer cell line faces identity crisis. Nature. 2016;537:149–150. doi: 10.1038/nature.2016.20515. PubMed DOI

Allen M., Bjerke M., Edlund H., Nelander S., Westermark B. Origin of the U87MG glioma cell line: Good news and bad news. Sci. Transl. Med. 2016;8:354re3. doi: 10.1126/scitranslmed.aaf6853. PubMed DOI

O’Leary V.B., Hain S., Maugg D., Smida J., Azimzadeh O., Tapio S., Ovsepian S.V., Atkinson M.J. Long non-coding RNA PARTICLE bridges histone and DNA methylation. Sci. Rep. 2017;7:1790. doi: 10.1038/s41598-017-01875-1. PubMed DOI PMC

O’Leary V.B., Maugg D., Smida J., Baumhoer D., Nathrath M., Ovsepian S.V., Atkinson M.J. The long non-coding RNA PARTICLE is associated with WWOX and the absence of FRA16D breakage in osteosarcoma patients. Oncotarget. 2017;8:87431–87441. doi: 10.18632/oncotarget.21086. PubMed DOI PMC

O’Leary V.B., Ovsepian S.V., Carrascosa L.G., Buske F.A., Radulovic V., Niyazi M., Moertl S., Trau M., Atkinson M.J., Anastasov N. PARTICLE, a Triplex-Forming Long ncRNA, Regulates Locus-Specific Methylation in Response to Low-Dose Irradiation. Cell Rep. 2015;11:474–485. doi: 10.1016/j.celrep.2015.03.043. PubMed DOI

O’Leary V.B., Ovsepian S.V., Smida J., Atkinson M.J. PARTICLE—The RNA podium for genomic silencers. J. Cell. Physiol. 2019;234:19464–19470. doi: 10.1002/jcp.28739. PubMed DOI

O’Leary V.B., Smida J., Buske F.A., Carrascosa L.G., Azimzadeh O., Maugg D., Hain S., Tapio S., Heidenreich W., Kerr J., et al. PARTICLE triplexes cluster in the tumor suppressor WWOX and may extend throughout the human genome. Sci. Rep. 2017;7:7163. doi: 10.1038/s41598-017-07295-5. PubMed DOI PMC

Shen J., Hodges T.R., Song R., Gong Y., Calin G.A., Heimberger A.B., Zhao H. Serum HOTAIR and GAS5 levels as predictors of survival in patients with glioblastoma. Mol. Carcinog. 2018;57:137–141. doi: 10.1002/mc.22739. PubMed DOI

Toraih E.A., Alghamdi S.A., El-Wazir A., Hosny M.M., Hussein M.H., Khashana M.S., Fawzy M.S. Dual biomarkers long non-coding RNA GAS5 and microRNA-34a co-expression signature in common solid tumors. PLoS ONE. 2018;13:e0198231. doi: 10.1371/journal.pone.0198231. PubMed DOI PMC

Wang Y., Xin S., Zhang K., Shi R., Bao X. Low GAS5 Levels as a Predictor of Poor Survival in Patients with Lower-Grade Gliomas. J. Oncol. 2019;2019:1785042. doi: 10.1155/2019/1785042. PubMed DOI PMC

Gadji M., Crous-Tsanaclis A.M., Mathieu D., Mai S., Fortin D., Drouin R. A new der(1;7)(q10;p10) leading to a singular 1p loss in a case of glioblastoma with oligodendroglioma component. Neuropathology. 2014;34:170–178. doi: 10.1111/neup.12060. PubMed DOI

Kútna V., Uttl L., Waltereit R., Krištofiková Z., Kaping D., Petrásek T., Hoschl C., Ovsepian S.V. Tuberous Sclerosis (tsc2+/−) Model Eker Rats Reveals Extensive Neuronal Loss with Microglial Invasion and Vascular Remodeling Related to Brain Neoplasia. Neurotherapeutics. 2020;17:329–339. doi: 10.1007/s13311-019-00812-6. PubMed DOI PMC

Wang D., Guo Y., Li Y., Li W., Zheng X., Xia H., Mao Q. Detection of CD133 expression in U87 glioblastoma cells using a novel anti-CD133 monoclonal antibody. Oncol. Lett. 2015;9:2603–2608. doi: 10.3892/ol.2015.3079. PubMed DOI PMC

Mei D., Lv B., Chen B., Xiao S., Jiang J., Xie Y., Jiang L. All-trans retinoic acid suppresses malignant characteristics of CD133-positive thyroid cancer stem cells and induces apoptosis. PLoS ONE. 2017;12:e0182835. doi: 10.1371/journal.pone.0182835. PubMed DOI PMC

Piao Y., Henry V., Tiao N., Park S.Y., Martinez-Ledesma J., Dong J.W. Targeting intercellular adhesion molecule-1 prolongs survival in mice bearing bevacizumab-resistant glioblastoma. Oncotarget. 2017;8:96970–96983. doi: 10.18632/oncotarget.18859. PubMed DOI PMC

Shi L., Li H., Zhan Y. All-trans retinoic acid enhances temozolomide-induced autophagy in human glioma cells U251 via targeting Keap1/Nrf2/ARE signaling pathway. Oncol. Lett. 2017;14:2709–2714. doi: 10.3892/ol.2017.6482. PubMed DOI PMC

Jia P.F., Gu W.T., Zhang W.F., Li F. Treatment of recurrent malignant gliomas with 13-cis-retinoic acid naphthalene triazole. Neurol. Sci. 2015;36:717–721. doi: 10.1007/s10072-014-2025-9. PubMed DOI

Chen P.H., Shih C.M., Chang W.C., Cheng C.H., Lin C.W., Ho K.H., Su P.C., Chen K.C. MicroRNA-302b-inhibited E2F3 transcription factor is related to all trans retinoic acid-induced glioma cell apoptosis. J. Neurochem. 2014;131:731–742. doi: 10.1111/jnc.12820. PubMed DOI

Das A., Banik N.L., Ray S.K. Molecular mechanisms of the combination of retinoid and interferon-gamma for inducing differentiation and increasing apoptosis in human glioblastoma T98G and U87MG cells. Neurochem. Res. 2009;34:87–101. doi: 10.1007/s11064-008-9669-x. PubMed DOI

Liang C., Yang L., Guo S. All-trans retinoic acid inhibits migration, invasion and proliferation, and promotes apoptosis in glioma cells in vitro. Oncol. Lett. 2015;9:2833–2838. doi: 10.3892/ol.2015.3120. PubMed DOI PMC

Johnston A.L., Lun X., Rahn J.J., Liacini A., Wang L., Hamilton M.G., Parney I.F., Hempstead B.L., Robbins S.M., Forsyth P.A., et al. The p75 neurotrophin receptor is a central regulator of glioma invasion. PLoS Biol. 2007;5:e212. doi: 10.1371/journal.pbio.0050212. PubMed DOI PMC

Guo X., Deng K., Wang H., Xia J., Shan T., Liang Z., Yao L., Jin S. GAS5 Inhibits Gastric Cancer Cell Proliferation Partly by Modulating CDK6. Oncol. Res. Treat. 2015;38:362–366. doi: 10.1159/000433499. PubMed DOI

Yan Z., Ruoyu L., Xing L., Hua L., Jun Z., Yaqin P., Lu W., Aili T., Yuzi Z., Lin M., et al. Long non-coding RNA GAS5 regulates the growth and metastasis of human cervical cancer cells via induction of apoptosis and cell cycle arrest. Arch. Biochem. Biophys. 2020;684:108320. doi: 10.1016/j.abb.2020.108320. PubMed DOI

Wick W., Platten M. Understanding and Treating Glioblastoma. Neurol. Clin. 2018;36:485–499. doi: 10.1016/j.ncl.2018.04.006. PubMed DOI

Bhatia M. AC133 expression in human stem cells. Leukemia. 2001;15:1685–1688. doi: 10.1038/sj.leu.2402255. PubMed DOI

Motegi H., Kamoshima Y., Terasaka S., Kobayashi H., Houkin K. A novel adherent culture method of glioblastoma cells expressing CD133 using collagen-1-coated plates. Hokkaido Igaku Zasshi Hokkaido J. Med. Sci. 2012;87:147–151. PubMed

Piao Y., Liang J., Holmes L., Zurita A.J., Henry V., Heymach J.V., De Groot J.F. Glioblastoma resistance to anti-VEGF therapy is associated with myeloid cell infiltration, stem cell accumulation, and a mesenchymal phenotype. Neuro-Oncology. 2012;14:1379–1392. doi: 10.1093/neuonc/nos158. PubMed DOI PMC

Tang X.H., Gudas L.J. Retinoids, retinoic acid receptors, and cancer. Annu. Rev. Pathol. 2011;6:345–364. doi: 10.1146/annurev-pathol-011110-130303. PubMed DOI

Lu J., Zhang F., Zhao D., Hong L., Min J., Zhang L., Li F., Yan Y., Li H., Ma Y., et al. ATRA-inhibited proliferation in glioma cells is associated with subcellular redistribution of beta-catenin via up-regulation of Axin. J. Neurooncol. 2008;87:271–277. doi: 10.1007/s11060-008-9518-4. PubMed DOI

Zhao X., Wang P., Liu J., Zheng J., Liu Y., Chen J., Xue Y. GAS5 Exerts Tumor-suppressive Functions in Human Glioma Cells by Targeting miR-222. Mol. Ther. 2015;23:1899–1911. doi: 10.1038/mt.2015.170. PubMed DOI PMC

Zeng T., Li L., Zhou Y., Gao L. Exploring Long Noncoding RNAs in Glioblastoma: Regulatory Mechanisms and Clinical Potentials. Int. J. Genom. 2018;2018:2895958. doi: 10.1155/2018/2895958. PubMed DOI PMC

Salta E., De Strooper B. Non-coding RNAs with essential roles in neurodegenerative disorders. Lancet Neurol. 2012;11:189–200. doi: 10.1016/S1474-4422(11)70286-1. PubMed DOI

Ma X.L., Zhu W.D., Tian L.X., Sun W.D., Shang F., Lin Q.T., Zhang H.Q. Long non-coding RNA TUSC7 expression is independently predictive of outcome in glioma. Eur. Rev. Med. Pharmacol. Sci. 2017;21:3605–3610. PubMed

Zhang X., Sun S., Pu J.K.S., Tsang A.C.O., Lee D., Man V.O.Y., Lui W.M., Wong S.T.S., Leung G.K.K. Long non-coding RNA expression profiles predict clinical phenotypes in glioma. Neurobiol. Dis. 2012;48:1–8. doi: 10.1016/j.nbd.2012.06.004. PubMed DOI

Clark M.J., Homer N., O’Connor B.D., Chen Z., Eskin A., Lee H., Merriman B., Nelson S.F. U87MG decoded: The genomic sequence of a cytogenetically aberrant human cancer cell line. PLoS Genet. 2010;6:e1000832. doi: 10.1371/journal.pgen.1000832. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...