lncRNA Biomarkers of Glioblastoma Multiforme

. 2024 Apr 23 ; 12 (5) : . [epub] 20240423

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38790894

Grantová podpora
260648/SVV/2023 Charles University
COOPERATIO: Medical Diagnostics and Basic Medical Sciences - Medical Genetics Charles University

Long noncoding RNAs (lncRNAs) are RNA molecules of 200 nucleotides or more in length that are not translated into proteins. Their expression is tissue-specific, with the vast majority involved in the regulation of cellular processes and functions. Many human diseases, including cancer, have been shown to be associated with deregulated lncRNAs, rendering them potential therapeutic targets and biomarkers for differential diagnosis. The expression of lncRNAs in the nervous system varies in different cell types, implicated in mechanisms of neurons and glia, with effects on the development and functioning of the brain. Reports have also shown a link between changes in lncRNA molecules and the etiopathogenesis of brain neoplasia, including glioblastoma multiforme (GBM). GBM is an aggressive variant of brain cancer with an unfavourable prognosis and a median survival of 14-16 months. It is considered a brain-specific disease with the highly invasive malignant cells spreading throughout the neural tissue, impeding the complete resection, and leading to post-surgery recurrences, which are the prime cause of mortality. The early diagnosis of GBM could improve the treatment and extend survival, with the lncRNA profiling of biological fluids promising the detection of neoplastic changes at their initial stages and more effective therapeutic interventions. This review presents a systematic overview of GBM-associated deregulation of lncRNAs with a focus on lncRNA fingerprints in patients' blood.

Zobrazit více v PubMed

Fernandes J.C., Acuña S.M., Aoki J.I., Floeter-Winter L.M., Muxel S.M. Long Non-Coding RNAs in the Regulation of Gene Expression: Physiology and Disease. Non-Coding RNA. 2019;5:17. doi: 10.3390/ncrna5010017. PubMed DOI PMC

Taft R.J., Pheasant M., Mattick J.S. The relationship between non-protein-coding DNA and eukaryotic complexity. BioEssays. 2007;29:288–299. doi: 10.1002/bies.20544. PubMed DOI

Lagarrigue S., Lorthiois M., Degalez F., Gilot D., Derrien T. LncRNAs in domesticated animals: From dog to livestock species. Mamm. Genome. 2022;33:248–270. doi: 10.1007/s00335-021-09928-7. PubMed DOI PMC

Ward M., McEwan C., Mills J.D., Janitz M. Conservation and tissue-specific transcription patterns of long noncoding RNAs. J. Hum. Transcr. 2015;1:2–9. doi: 10.3109/23324015.2015.1077591. PubMed DOI PMC

Murillo-Maldonado J.M., Riesgo-Escovar J.R. The various and shared roles of lncRNAs during development. Dev. Dyn. 2019;248:1059–1069. doi: 10.1002/dvdy.108. PubMed DOI

GENCODE. 2024. [(accessed on 31 January 2024)]. Available online: https://www.gencodegenes.org/human/stats.html.

Kazimierczyk M., Kasprowicz M.K., Kasprzyk M.E., Wrzesinski J. Human Long Noncoding RNA Interactome: Detection, Characterization and Function. Int. J. Mol. Sci. 2020;21:1027. doi: 10.3390/ijms21031027. PubMed DOI PMC

Derrien T., Johnson R., Bussotti G., Tanzer A., Djebali S., Tilgner H., Guernec G., Martin D., Merkel A., Knowles D.G., et al. The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome Res. 2012;22:1775–1789. doi: 10.1101/gr.132159.111. PubMed DOI PMC

Seal R.L., Chen L., Griffiths-Jones S., Lowe T.M., Mathews M.B., O’Reilly D., Pierce A.J., Stadler P.F., Ulitsky I., Wolin S.L., et al. A guide to naming human non-coding RNA genes. EMBO J. 2020;39:e103777. doi: 10.15252/embj.2019103777. PubMed DOI PMC

Kanderi T., Gupta V. Glioblastoma Multiforme. StatPearls Publishing; St. Petersburg, FL, USA: 2022. [(accessed on 8 April 2023)]. Glioblastoma Multiforme; pp. 1–20. Available online: https://www.ncbi.nlm.nih.gov/books/NBK558954/ PubMed

Melhem J.M., Detsky J., Lim-Fat M.J., Perry J.R. Updates in IDH-Wildtype Glioblastoma. Neurotherapeutics. 2022;19:1705–1723. doi: 10.1007/s13311-022-01251-6. PubMed DOI PMC

Rezaei O., Tamizkar K.H., Sharifi G., Taheri M., Ghafouri-Fard S. Emerging Role of Long Non-Coding RNAs in the Pathobiology of Glioblastoma. Front. Oncol. 2021;10:625884. doi: 10.3389/fonc.2020.625884. PubMed DOI PMC

Yadav B., Pal S., Rubstov Y., Goel A., Garg M., Pavlyukov M., Pandey A.K. LncRNAs associated with glioblastoma: From transcriptional noise to novel regulators with a promising role in therapeutics. Mol. Ther.-Nucleic Acids. 2021;24:728–742. doi: 10.1016/j.omtn.2021.03.018. PubMed DOI PMC

Akindona F.A., Frederico S.C., Hancock J.C., Gilbert M.R. Exploring the origin of the cancer stem cell niche and its role in anti-angiogenic treatment for glioblastoma. Front. Oncol. 2022;12:947634. doi: 10.3389/fonc.2022.947634. PubMed DOI PMC

Chaudhary R. Potential of long non-coding RNAs as a therapeutic target and molecular markers in glioblastoma pathogenesis. Heliyon. 2021;7:e06502. doi: 10.1016/j.heliyon.2021.e06502. PubMed DOI PMC

Paul Y., Thomas S., Patil V., Kumar N., Mondal B., Hegde A.S., Arivazhagan A., Santosh V., Mahalingam K., Somasundaram K. Genetic landscape of long noncoding RNA (lncRNAs) in glioblastoma: Identification of complex lncRNA regulatory networks and clinically relevant lncRNAs in glioblastoma. Oncotarget. 2018;9:29548–29564. doi: 10.18632/oncotarget.25434. PubMed DOI PMC

Bhan A., Soleimani M., Mandal S.S. Long Noncoding RNA and Cancer: A New Paradigm. Cancer Res. 2017;77:3965–3981. doi: 10.1158/0008-5472.CAN-16-2634. PubMed DOI PMC

Mattick J.S., Amaral P.P., Carninci P., Carpenter S., Chang H.Y., Chen L.-L., Chen R., Dean C., Dinger M.E., Fitzgerald K.A., et al. Long non-coding RNAs: Definitions, functions, challenges and recommendations. Nat. Rev. Mol. Cell Biol. 2023;24:430–447. doi: 10.1038/s41580-022-00566-8. PubMed DOI PMC

Quinn J.J., Chang H.Y. Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet. 2016;17:47–62. doi: 10.1038/nrg.2015.10. PubMed DOI

Chan J.J., Tay Y. Noncoding RNA: RNA Regulatory Networks in Cancer. Int. J. Mol. Sci. 2018;19:1310. doi: 10.3390/ijms19051310. PubMed DOI PMC

Ray I., Goswami S. Circadian rhythm genes in cancer: Insight into their functions and regulation involving noncoding RNAs. Chronobiol. Int. 2021;38:1231–1243. doi: 10.1080/07420528.2021.1928157. PubMed DOI

O’Leary V.B., Ovsepian S.V., Smida J., Atkinson M.J. PARTICLE−The RNA podium for genomic silencers. J. Cell. Physiol. 2019;234:19464–19470. doi: 10.1002/jcp.28739. PubMed DOI

Bugnon L.A., A Edera A., Prochetto S., Gerard M., Raad J., Fenoy E., Rubiolo M., Chorostecki U., Gabaldón T., Ariel F., et al. Secondary structure prediction of long noncoding RNA: Review and experimental comparison of existing approaches. Brief. Bioinform. 2022;23:4. doi: 10.1093/bib/bbac205. PubMed DOI

Kwok Z.H., Tay Y. Long noncoding RNAs: Lincs between human health and disease. Biochem. Soc. Trans. 2017;45:805–812. doi: 10.1042/BST20160376. PubMed DOI

Gao N., Li Y., Li J., Gao Z., Yang Z., Li Y., Liu H., Fan T. Long Non-Coding RNAs: The Regulatory Mechanisms, Research Strategies, and Future Directions in Cancers. Front. Oncol. 2020;10:598817. doi: 10.3389/fonc.2020.598817. PubMed DOI PMC

Beylerli O., Gareev I., Sufianov A., Ilyasova T., Guang Y. Long noncoding RNAs as promising biomarkers in cancer. Non-Coding RNA Res. 2022;7:66–70. doi: 10.1016/j.ncrna.2022.02.004. PubMed DOI PMC

Zhang M., He P., Bian Z. Long Noncoding RNAs in Neurodegenerative Diseases: Pathogenesis and Potential Implications as Clinical Biomarkers. Front. Mol. Neurosci. 2021;14:685143. doi: 10.3389/fnmol.2021.685143. PubMed DOI PMC

Hao W.-Z., Chen Q., Wang L., Tao G., Gan H., Deng L.-J., Huang J.-Q., Chen J.-X. Emerging roles of long non-coding RNA in depression. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2022;115:110515. doi: 10.1016/j.pnpbp.2022.110515. PubMed DOI

Lin C., Li Y., Zhang E., Feillet F., Zhang S., Blau N. Importance of the long non-coding RNA (lncRNA) transcript HULC for the regulation of phenylalanine hydroxylase and treatment of phenylketonuria. Mol. Genet. Metab. 2022;135:171–178. doi: 10.1016/j.ymgme.2022.01.004. PubMed DOI

Boussios S., Devo P., Goodall I.C.A., Sirlantzis K., Ghose A., Shinde S.D., Papadopoulos V., Sanchez E., Rassy E., Ovsepian S.V. Exosomes in the Diagnosis and Treatment of Renal Cell Cancer. Int. J. Mol. Sci. 2023;24:4356. doi: 10.3390/ijms241814356. PubMed DOI PMC

Sideris N., Dama P., Bayraktar S., Stiff T., Castellano L. LncRNAs in breast cancer: A link to future approaches. Cancer Gene Ther. 2022;29:1866–1877. doi: 10.1038/s41417-022-00487-w. PubMed DOI PMC

Pokorná M., Kútna V., Ovsepian S.V., Matěj R., Černá M., O’leary V.B. Biomolecules to Biomarkers? U87MG Marker Evaluation on the Path towards Glioblastoma Multiforme Pathogenesis. Pharmaceutics. 2024;16:123. doi: 10.3390/pharmaceutics16010123. PubMed DOI PMC

Ren S., Xu Y. AC016405.3, a novel long noncoding RNA, acts as a tumor suppressor through modulation of TET2 by microRNA-19a-5p sponging in glioblastoma. Cancer Sci. 2019;110:1621–1632. doi: 10.1111/cas.14002. PubMed DOI PMC

Wei M., Wang J., He Q., Liu L., Wang Z. AC016405.3 functions as an oncogenic long non-coding RNA by regulating ERBB3 via sponging miR-22-3p in breast cancer. J. Clin. Lab. Anal. 2021;35:e23952. doi: 10.1002/jcla.23952. PubMed DOI PMC

LncRNAfunc: Database. [(accessed on 24 March 2023)]. Available online: https://ccsm.uth.edu/lncRNAfunc/index.html.

Stackhouse C.T., Gillespie G.Y., Willey C.D. Exploring the Roles of lncRNAs in GBM Pathophysiology and Their Therapeutic Potential. Cells. 2020;9:2369. doi: 10.3390/cells9112369. PubMed DOI PMC

Amirmahani F., Vallian S., Asadi M.H. The LncRNA MIAT is identified as a regulator of stemness-associated transcript in glioma. Mol. Biol. Rep. 2023;50:517–530. doi: 10.1007/s11033-022-07962-5. PubMed DOI

Chen W., Xu X.-K., Li J.-L., Kong K.-K., Li H., Chen C., He J., Wang F., Li P., Ge X.-S., et al. MALAT1 is a prognostic factor in glioblastoma multiforme and induces chemoresistance to temozolomide through suppressing miR-203 and promoting thymidylate synthase expression. Oncotarget. 2017;8:22783–22799. doi: 10.18632/oncotarget.15199. PubMed DOI PMC

Tang F., Wang H., Chen E., Bian E., Xu Y., Ji X., Yang Z., Hua X., Zhang Y., Zhao B. LncRNA-ATB promotes TGF-β-induced glioma cells invasion through NF-κB and P38/MAPK pathway. J. Cell. Physiol. 2019;234:23302–23314. doi: 10.1002/jcp.28898. PubMed DOI

Ma C.-C., Xiong Z., Zhu G.-N., Wang C., Zong G., Wang H.-L., Bian E.-B., Zhao B. Long non-coding RNA ATB promotes glioma malignancy by negatively regulating miR-200a. J. Exp. Clin. Cancer Res. 2016;35:1–13. doi: 10.1186/s13046-016-0367-2. PubMed DOI PMC

Yin T., Wu J., Hu Y., Zhang M., He J. Long non-coding RNA HULC stimulates the epithelial–mesenchymal transition process and vasculogenic mimicry in human glioblastoma. Cancer Med. 2021;10:5270–5282. doi: 10.1002/cam4.4083. PubMed DOI PMC

ZZhang P., Liu Y., Fu C., Wang C., Duan X., Zou W., Zhao T. Knockdown of long non-coding RNA PCAT1 in glioma stem cells promotes radiation sensitivity. Med. Mol. Morphol. 2019;52:114–122. doi: 10.1007/s00795-018-0209-8. PubMed DOI

Gong X., Liao X., Huang M. LncRNA CASC7 inhibits the progression of glioma via regulating Wnt/β-catenin signaling pathway. Pathol.-Res. Pract. 2019;215:564–570. doi: 10.1016/j.prp.2019.01.018. PubMed DOI

Liu D., Wan Y., Qu N., Fu Q., Liang C., Zeng L., Yang Y. LncRNA-FAM66C Was Identified as a Key Regulator for Modulating Tumor Microenvironment and Hypoxia-Related Pathways in Glioblastoma. Front. Public Health. 2022;10:898270. doi: 10.3389/fpubh.2022.898270. PubMed DOI PMC

Ho K., Shih C., Liu A., Chen K. Hypoxia-inducible lncRNA MIR210HG interacting with OCT1 is involved in glioblastoma multiforme malignancy. Cancer Sci. 2022;113:540–552. doi: 10.1111/cas.15240. PubMed DOI PMC

Katsushima K., Natsume A., Ohka F., Shinjo K., Hatanaka A., Ichimura N., Sato S., Takahashi S., Kimura H., Totoki Y., et al. Targeting the Notch-regulated non-coding RNA TUG1 for glioma treatment. Nat. Commun. 2016;7:13616. doi: 10.1038/ncomms13616. PubMed DOI PMC

Dai J., Ma J., Yu B., Zhu Z., Hu Y. Long Noncoding RNA TUNAR Represses Growth, Migration, and Invasion of Human Glioma Cells Through Regulating miR-200a and Rac1. Oncol. Res. Featur. Preclin. Clin. Cancer Ther. 2018;27:107–115. doi: 10.3727/096504018X15205622257163. PubMed DOI PMC

Wu P., Cai J., Chen Q., Han B., Meng X., Li Y., Li Z., Wang R., Lin L., Duan C., et al. Lnc-TALC promotes O6-methylguanine-DNA methyltransferase expression via regulating the c-Met pathway by competitively binding with miR-20b-3p. Nat. Commun. 2019;10:1–15. doi: 10.1038/s41467-019-10025-2. PubMed DOI PMC

Yan Y., Xu Z., Chen X., Wang X., Zeng S., Zhao Z., Qian L., Li Z., Wei J., Huo L., et al. Novel Function of lncRNA ADAMTS9-AS2 in Promoting Temozolomide Resistance in Glioblastoma via Upregulating the FUS/MDM2 Ubiquitination Axis. Front. Cell Dev. Biol. 2019;7:217. doi: 10.3389/fcell.2019.00217. PubMed DOI PMC

Li J., Ji X., Wang H. Targeting Long Noncoding RNA HMMR-AS1 Suppresses and Radiosensitizes Glioblastoma. Neoplasia. 2018;20:456–466. doi: 10.1016/j.neo.2018.02.010. PubMed DOI PMC

Liu X., Xiao X., Han X., Yao L., Lan W. Natural flavonoids alleviate glioblastoma multiforme by regulating long non-coding RNA. Biomed. Pharmacother. 2023;161:114477. doi: 10.1016/j.biopha.2023.114477. PubMed DOI

Zheng Y., Lu S., Xu Y., Zheng J. Long non-coding RNA AGAP2-AS1 promotes the proliferation of glioma cells by sponging miR-15a/b-5p to upregulate the expression of HDGF and activating Wnt/β-catenin signaling pathway. Int. J. Biol. Macromol. 2019;128:521–530. doi: 10.1016/j.ijbiomac.2019.01.121. PubMed DOI

Dai X., Liao K., Zhuang Z., Chen B., Zhou Z., Zhou S., Lin G., Zhang F., Lin Y., Miao Y., et al. AHIF promotes glioblastoma progression and radioresistance via exosomes. Int. J. Oncol. 2018;54:261–270. doi: 10.3892/ijo.2018.4621. PubMed DOI

Sun Y., Jing Y., Zhang Y. Serum lncRNA-ANRIL and SOX9 expression levels in glioma patients and their relationship with poor prognosis. World J. Surg. Oncol. 2021;19:1–10. doi: 10.1186/s12957-021-02392-2. PubMed DOI PMC

Skiriute D., Stakaitis R., Steponaitis G., Tamasauskas A., Vaitkiene P. The Role of CASC2 and miR-21 Interplay in Glioma Malignancy and Patient Outcome. Int. J. Mol. Sci. 2020;21:7962. doi: 10.3390/ijms21217962. PubMed DOI PMC

Liu H., Li C., Yang J., Sun Y., Zhang S., Yang J., Yang L., Wang Y., Jiao B. Long noncoding RNA CASC9/miR-519d/STAT3 positive feedback loop facilitate the glioma tumourigenesis. J. Cell. Mol. Med. 2018;22:6338–6344. doi: 10.1111/jcmm.13932. PubMed DOI PMC

Zhang H., Wei D.-L., Wan L., Yan S.-F., Sun Y.-H. Highly expressed lncRNA CCND2-AS1 promotes glioma cell proliferation through Wnt/β-catenin signaling. Biochem. Biophys. Res. Commun. 2017;482:1219–1225. doi: 10.1016/j.bbrc.2016.12.016. PubMed DOI

Zhao Z., Liu M., Long W., Yuan J., Li H., Zhang C., Tang G., Jiang W., Yuan X., Wu M., et al. Knockdown lncRNA CRNDE enhances temozolomide chemosensitivity by regulating autophagy in glioblastoma. Cancer Cell Int. 2021;21:1–15. doi: 10.1186/s12935-021-02153-x. PubMed DOI PMC

Hu S., Yao Y., Hu X., Zhu Y. LncRNA DCST1-AS1 downregulates miR-29b through methylation in glioblastoma (GBM) to promote cancer cell proliferation. Clin. Transl. Oncol. 2020;22:2230–2235. doi: 10.1007/s12094-020-02363-1. PubMed DOI

He Z., Long J., Yang C., Gong B., Cheng M., Wang Q., Tang J. LncRNA DGCR5 plays a tumor-suppressive role in glioma via the miR-21/Smad7 and miR-23a/PTEN axes. Aging. 2020;12:20285–20307. doi: 10.18632/aging.103800. PubMed DOI PMC

Lv Q.-L., Wang L.-C., Li D.-C., Lin Q.-X., Shen X.-L., Liu H.-Y., Li M., Ji Y.-L., Qin C.-Z., Chen S.-H. Knockdown lncRNA DLEU1 Inhibits Gliomas Progression and Promotes Temozolomide Chemosensitivity by Regulating Autophagy. Front. Pharmacol. 2020;11:560543. doi: 10.3389/fphar.2020.560543. PubMed DOI PMC

Deguchi S., Katsushima K., Hatanaka A., Shinjo K., Ohka F., Wakabayashi T., Zong H., Natsume A., Kondo Y. Oncogenic effects of evolutionarily conserved noncoding RNA ECONEXIN on gliomagenesis. Oncogene. 2017;36:4629–4640. doi: 10.1038/onc.2017.88. PubMed DOI

Li G., Cai Y., Wang C., Huang M., Chen J. LncRNA GAS5 regulates the proliferation, migration, invasion and apoptosis of brain glioma cells through targeting GSTM3 expression. The effect of LncRNA GAS5 on glioma cells. J. Neuro-Oncol. 2019;143:525–536. doi: 10.1007/s11060-019-03185-0. PubMed DOI

Wang G., Lin X., Han H., Zhang H., Li X., Feng M., Jiang C. LncRNA H19 promotes glioblastoma multiforme development by activating autophagy by sponging miR-491-5p. Bioengineered. 2022;13:11440–11455. doi: 10.1080/21655979.2022.2065947. PubMed DOI PMC

Li Q., Dong C., Cui J., Wang Y., Hong X. Over-expressed lncRNA HOTAIRM1 promotes tumor growth and invasion through up-regulating HOXA1 and sequestering G9a/EZH2/Dnmts away from the HOXA1 gene in glioblastoma multiforme. J. Exp. Clin. Cancer Res. 2018;37:265. doi: 10.1186/s13046-018-0941-x. PubMed DOI PMC

Tan S.K., Pastori C., Penas C., Komotar R.J., Ivan M.E., Wahlestedt C., Ayad N.G. Serum long noncoding RNA HOTAIR as a novel diagnostic and prognostic biomarker in glioblastoma multiforme. Mol. Cancer. 2018;17:1–7. doi: 10.1186/s12943-018-0822-0. PubMed DOI PMC

Ahmadov U., Picard D., Bartl J., Silginer M., Trajkovic-Arsic M., Qin N., Blümel L., Wolter M., Lim J.K.M., Pauck D., et al. The long non-coding RNA HOTAIRM1 promotes tumor aggressiveness and radiotherapy resistance in glioblastoma. Cell Death Dis. 2021;12:885. doi: 10.1038/s41419-021-04146-0. PubMed DOI PMC

Gao Y., Yu H., Liu Y., Liu X., Zheng J., Ma J., Gong W., Chen J., Zhao L., Tian Y., et al. Long Non-Coding RNA HOXA-AS2 Regulates Malignant Glioma Behaviors and Vasculogenic Mimicry Formation via the MiR-373/EGFR Axis. Cell. Physiol. Biochem. 2018;45:131–147. doi: 10.1159/000486253. PubMed DOI

Xiong Y., Kuang W., Lu S., Guo H., Wu M., Ye M., Wu L. Long noncoding RNA HOXB 13- AS 1 regulates HOXB 13 gene methylation by interacting with EZH 2 in glioma. Cancer Med. 2018;7:4718–4728. doi: 10.1002/cam4.1718. PubMed DOI PMC

Xu L.-M., Chen L., Li F., Zhang R., Li Z.-Y., Chen F.-F., Jiang X.-D. Over-expression of the long non-coding RNA HOTTIP inhibits glioma cell growth by BRE. J. Exp. Clin. Cancer Res. 2016;35:162. doi: 10.1186/s13046-016-0431-y. PubMed DOI PMC

Mu Y., Tang Q., Feng H., Zhu L., Wang Y. LncRNA KTN1 AS1 promotes glioma cell proliferation and invasion by negatively regulating miR 505 3p. Oncol. Rep. 2020;44:2645–2655. doi: 10.3892/or.2020.7821. PubMed DOI PMC

Zhang Y., Jiang X., Wu Z., Hu D., Jia J., Guo J., Tang T., Yao J., Liu H., Tang H. Long Noncoding RNA LINC00467 Promotes Glioma Progression through Inhibiting P53 Expression via Binding to DNMT1. J. Cancer. 2020;11:2935–2944. doi: 10.7150/jca.41942. PubMed DOI PMC

Amer R.G., El Arab L.R.E., El Ghany D.A., Saad A.S., Bahie-Eldin N., Swellam M. Prognostic utility of lncRNAs (LINC00565 and LINC00641) as molecular markers in glioblastoma multiforme (GBM) J. Neuro-Oncol. 2022;158:435–444. doi: 10.1007/s11060-022-04030-7. PubMed DOI PMC

Li D., Hu J., Li S., Zhou C., Feng M., Li L., Gao Y., Chen X., Wu X., Cao Y., et al. LINC01393, a Novel Long Non-Coding RNA, Promotes the Cell Proliferation, Migration and Invasion through MiR-128-3p/NUSAP1 Axis in Glioblastoma. Int. J. Mol. Sci. 2023;24:5878. doi: 10.3390/ijms24065878. PubMed DOI PMC

Cao J., Tang Z., Su Z. Long non-coding RNA LINC01426 facilitates glioblastoma progression via sponging miR-345-3p and upregulation of VAMP8. Cancer Cell Int. 2020;20:327. doi: 10.1186/s12935-020-01416-3. PubMed DOI PMC

Zhang L., Wang Q., Wang F., Zhang X., Tang Y., Wang S. LncRNA LINC01446 promotes glioblastoma progression by modulating miR-489-3p/TPT1 axis. Biochem. Biophys. Res. Commun. 2018;503:1484–1490. doi: 10.1016/j.bbrc.2018.07.067. PubMed DOI

Li C., Hu G., Wei B., Wang L., Liu N. PlncRNA LINC01494 Promotes Proliferation, Migration and Invasion in Glioma Through miR-122-5p/CCNG1 Axis/p. OncoTargets Ther. 2019;12:7655–7662. doi: 10.2147/OTT.S213345. PubMed DOI PMC

Wei P., Jiang J., Xiao M., Zeng M., Liu X., Zhao B., Chen F. The transcript ENST00000444125 of lncRNA LINC01503 promotes cancer stem cell properties of glioblastoma cells via reducing FBXW1 mediated GLI2 degradation. Exp. Cell Res. 2022;412:113009. doi: 10.1016/j.yexcr.2022.113009. PubMed DOI

Shree B., Sengar S., Tripathi S., Sharma V. TRIPATHI, Shraddha and SHARMA, Vivek. LINC01711 promotes transforming growth factor-beta (TGF-β) induced invasion in glioblastoma multiforme (GBM) by acting as a competing endogenous RNA for miR-34a and promoting ZEB1 expression. Neurosci. Lett. 2023;792:136937. doi: 10.1016/j.neulet.2022.136937. PubMed DOI

Goenka A., Song X., Tiek D., Iglesia R.P., Lu M., Zeng C., Horbinski C., Zhang W., Hu B., Cheng S.-Y. Oncogenic long noncoding RNA LINC02283 enhances PDGF receptor A-mediated signaling and drives glioblastoma tumorigenesis. Neuro-Oncol. 2023;25:1592–1604. doi: 10.1093/neuonc/noad065. PubMed DOI PMC

Kovalenko T.F., Yadav B., Anufrieva K.S., Rubtsov Y.P., Zatsepin T.S., Shcherbinina E.Y., Solyus E.M., Staroverov D.B., Larionova T.D., Latyshev Y.A., et al. Functions of long non-coding RNA ROR in patient-derived glioblastoma cells. Biochimie. 2022;200:131–139. doi: 10.1016/j.biochi.2022.05.015. PubMed DOI

Zhao H., Li J., Yan X., Bian X. LncRNA MAFG-AS1 Suppresses the Maturation of miR-34a to Promote Glioblastoma Cell Proliferation. Cancer Manag. Res. 2021;13:3493–3501. doi: 10.2147/CMAR.S274615. PubMed DOI PMC

Yue H., Zhu J., Xie S., Li F., Xu Q. MDC1-AS, an antisense long noncoding RNA, regulates cell proliferation of glioma. Biomed. Pharmacother. 2016;81:203–209. doi: 10.1016/j.biopha.2016.03.002. PubMed DOI

Zhang S., Guo W. Long non coding RNA MEG3 suppresses the growth of glioma cells by regulating the miR 96 5p/MTSS1 signaling pathway. Mol. Med. Rep. 2019;20:4215–4225. doi: 10.3892/mmr.2019.10659. PubMed DOI PMC

Gao Y., Xu Y., Wang J., Yang X., Wen L., Feng J. LncRNA MNX1-AS1 Promotes Glioblastoma Progression through Inhibition of miR-4443. Oncol. Res. Featur. Preclin. Clin. Cancer Ther. 2019;27:341–347. doi: 10.3727/096504018X15228909735079. PubMed DOI PMC

Chen M., Cheng Y., Yuan Z., Wang F., Yang L., Zhao H. NCK1-AS1 Increases Drug Resistance of Glioma Cells to Temozolomide by Modulating miR-137/TRIM24. Cancer Biother. Radiopharm. 2020;35:101–108. doi: 10.1089/cbr.2019.3054. PubMed DOI

Zhou K., Zhang C., Yao H., Zhang X., Zhou Y., Che Y., Huang Y. Knockdown of long non-coding RNA NEAT1 inhibits glioma cell migration and invasion via modulation of SOX2 targeted by miR-132. Mol. Cancer. 2018;17:105. doi: 10.1186/s12943-018-0849-2. PubMed DOI PMC

Jin Z., Piao L., Sun G., Lv C., Jing Y., Jin R. Long Non-Coding RNA PART1 Exerts Tumor Suppressive Functions in Glioma via Sponging miR-190a-3p and Inactivation of PTEN/AKT Pathway/p. OncoTargets Ther. 2020;13:1073–1086. doi: 10.2147/OTT.S232848. PubMed DOI PMC

Pokorná M., Hudec M., Juříčková I., Vácha M., Polívková Z., Kútna V., Pala J., Ovsepian S.V., Černá M., O’leary V.B. All-Trans Retinoic Acid Fosters the Multifarious U87MG Cell Line as a Model of Glioblastoma. Brain Sci. 2021;11:812. doi: 10.3390/brainsci11060812. PubMed DOI PMC

Lv T., Jin Y., Miao Y., Xu T., Jia F., Feng H., Zhang X. LncRNA PVT1 promotes tumorigenesis of glioblastoma by recruiting COPS5 to deubiquitinate and stabilize TRIM24. Mol. Ther.-Nucleic Acids. 2022;27:109–121. doi: 10.1016/j.omtn.2021.11.012. PubMed DOI PMC

Li W., Cui Y., Ma W., Wang M., Cai Y., Jiang Y. LncRNA RBPMS-AS1 promotes NRGN transcription to enhance the radiosensitivity of glioblastoma through the microRNA-301a-3p/CAMTA1 axis. Transl. Oncol. 2022;15:101282. doi: 10.1016/j.tranon.2021.101282. PubMed DOI PMC

Wang S., Guo X., Lv W., Li Y., Zhang L., Dong C., Zhang J., Cheng G. PLncRNA RPSAP52 Upregulates TGF-β1 to Increase Cancer Cell Stemness and Predict Postoperative Survival in Glioblastoma/p. Cancer Manag. Res. 2020;12:2541–2547. doi: 10.2147/CMAR.S227496. PubMed DOI PMC

Wu Z. MiR-195 connects lncRNA RUNX1-IT1 and cyclin D1 to regulate the proliferation of glioblastoma cells. Int. J. Neurosci. 2023;133:13–18. doi: 10.1080/00207454.2021.1881090. PubMed DOI

Ni H., Wang K., Xie P., Zuo J., Liu W., Liu C. LncRNA SAMMSON Knockdown Inhibits the Malignancy of Glioblastoma Cells by Inactivation of the PI3K/Akt Pathway. Cell. Mol. Neurobiol. 2021;41:79–90. doi: 10.1007/s10571-020-00833-2. PubMed DOI PMC

Brodie S., Lee H.K., Jiang W., Cazacu S., Xiang C., Poisson L.M., Datta I., Kalkanis S., Ginsberg D., Brodie C. Correction: The novel long non-coding RNA TALNEC2, regulates tumor cell growth and the stemness and radiation response of glioma stem cells. Oncotarget. 2021;12:2546–2547. doi: 10.18632/oncotarget.27383. PubMed DOI PMC

Zhang B., Li Q., Wu B., Zhang S., Li L., Jin K., Li S., Li K., Wang Z., Lu Y., et al. Long non-coding RNA TP73-AS1 is a potential immune related prognostic biomarker for glioma. Aging. 2021;13:5638–5649. doi: 10.18632/aging.202490. PubMed DOI PMC

Qin X., Yao J., Geng P., Fu X., Xue J., Zhang Z. LncRNA TSLC1-AS1 is a novel tumor suppressor in glioma. Int. J. Clin. Exp. Pathol. 2014;7:3065–3072. PubMed PMC

Shang C., Tang W., Pan C., Hu X., Hong Y. Long non-coding RNA TUSC7 inhibits temozolomide resistance by targeting miR-10a in glioblastoma. Cancer Chemother. Pharmacol. 2018;81:671–678. doi: 10.1007/s00280-018-3522-y. PubMed DOI

Cao Y., Chai W., Wang Y., Tang D., Shao D., Song H., Long J. LncRNA TUG1 inhibits the cancer stem cell like properties of temozolomide resistant glioma cells by interacting with EZH2. Mol. Med. Rep. 2021;24:533. doi: 10.3892/mmr.2021.12172. PubMed DOI PMC

Xin H., Liu N., Xu X., Zhang J., Li Y., Ma Y., Li G., Liang J. Knockdown of lncRNA-UCA1 inhibits cell viability and migration of human glioma cells by miR-193a-mediated downregulation of CDK6. J. Cell. Biochem. 2019;120:15157–15169. doi: 10.1002/jcb.28777. PubMed DOI

Xiao Q., Lin C., Peng M., Ren J., Jing Y., Lei L., Tao Y., Huang J., Yang J., Sun M., et al. Circulating plasma exosomal long non-coding RNAs LINC00265, LINC00467, UCA1, and SNHG1 as biomarkers for diagnosis and treatment monitoring of acute myeloid leukemia. Front. Oncol. 2022;12:1033143. doi: 10.3389/fonc.2022.1033143. PubMed DOI PMC

Cheng Z., Li Z., Ma K., Li X., Tian N., Duan J., Xiao X., Wang Y. Long Non-coding RNA XIST Promotes Glioma Tumorigenicity and Angiogenesis by Acting as a Molecular Sponge of miR-429. J. Cancer. 2017;8:4106–4116. doi: 10.7150/jca.21024. PubMed DOI PMC

Ghafouri-Fard S., Askari A., Moghadam K.B., Hussen B.M., Taheri M., Samadian M. A review on the role of ZEB1-AS1 in human disorders. Pathol.-Res. Pract. 2023;245:154486. doi: 10.1016/j.prp.2023.154486. PubMed DOI

Dong J., Peng Y., Zhong M., Xie Z., Jiang Z., Wang K., Wu Y. Implication of lncRNA ZBED3-AS1 downregulation in acquired resistance to Temozolomide and glycolysis in glioblastoma. Eur. J. Pharmacol. 2023;938:175444. doi: 10.1016/j.ejphar.2022.175444. PubMed DOI

Zhang X., Hong R., Chen W., Xu M., Wang L. The role of long noncoding RNA in major human disease. Bioorganic Chem. 2019;92:103214. doi: 10.1016/j.bioorg.2019.103214. PubMed DOI

Cao M., Luo H., Li D., Wang S., Xuan L., Sun L. Research advances on circulating long noncoding RNAs as biomarkers of cardiovascular diseases. Int. J. Cardiol. 2022;353:109–117. doi: 10.1016/j.ijcard.2022.01.070. PubMed DOI

Kabzinski J., Kucharska-Lusina A., Majsterek I. RNA-Based Liquid Biopsy in Head and Neck Cancer. Cells. 2023;12:1916. doi: 10.3390/cells12141916. PubMed DOI PMC

Zhou R., Chen K.K., Zhang J., Xiao B., Huang Z., Ju C., Sun J., Zhang F., Lv X.-B., Huang G. The decade of exosomal long RNA species: An emerging cancer antagonist. Mol. Cancer. 2018;17:75. doi: 10.1186/s12943-018-0823-z. PubMed DOI PMC

Badowski C., He B., Garmire L.X. Blood-derived lncRNAs as biomarkers for cancer diagnosis: The Good, the Bad and the Beauty. Npj Precis. Oncol. 2022;6:1. doi: 10.1038/s41698-022-00283-7. PubMed DOI PMC

Turner A.W., Wong D., Khan M.D., Dreisbach C.N., Palmore M., Miller C.L. Multi-Omics Approaches to Study Long Non-coding RNA Function in Atherosclerosis. Front. Cardiovasc. Med. 2019;6:9. doi: 10.3389/fcvm.2019.00009. PubMed DOI PMC

Feng N., Wang Z., Wu Y., Zheng H., Jiang X., Wang Z., Qu F., Zhang Z. ADAMTS9-AS2 Promotes Angiogenesis of Brain Microvascular Endothelial Cells Through Regulating miR-185-5p/IGFBP-2 Axis in Ischemic Stroke. Mol. Neurobiol. 2022;59:2593–2604. doi: 10.1007/s12035-021-02641-1. PubMed DOI

Abdul-Maksoud R.S., Rashad N.M., Elsayed W.S.H., Elsayed R.S., Sherif M.M., Abbas A., El Shabrawy M. The diagnostic significance of circulating lncRNA ADAMTS9-AS2 tumor biomarker in non-small cell lung cancer among the Egyptian population. J. Gene Med. 2021;23:e3381. doi: 10.1002/jgm.3381. PubMed DOI

Alkhathami A.G., Hadi A., Alfaifi M., Alshahrani M.Y., Verma A.K., Beg M.M.A. Serum-Based lncRNA ANRIL, TUG1, UCA1, and HIT Expressions in Breast Cancer Patients. Dis. Markers. 2022;2022:9997212. doi: 10.1155/2022/9997212. PubMed DOI PMC

Hu Y., Hu J. Diagnostic value of circulating lncRNA ANRIL and its correlation with coronary artery disease parameters. Braz. J. Med. Biol. Res. 2019;52:e8309. doi: 10.1590/1414-431x20198309. PubMed DOI PMC

Rahni Z., Hosseini S.M., Shahrokh S., Niasar M.S., Shoraka S., Mirjalali H., Nazemalhosseini-Mojarad E., Rostami-Nejad M., Malekpour H., Zali M.R., et al. Long non-coding RNAs ANRIL, THRIL, and NEAT1 as potential circulating biomarkers of SARS-CoV-2 infection and disease severity. Virus Res. 2023;336:199214. doi: 10.1016/j.virusres.2023.199214. PubMed DOI PMC

Erfan R., Shaker O.G., Khalil M.A.F., Mahmoud F.A.M., Gomaa M.S., Abu-El-Azayem A.K., Zaki O.M., Ahmed A.M., Samy A., Mohammed A. Circulating miR-199a and long noncoding-RNA ANRIL as Promising Diagnostic Biomarkers for Inflammatory Bowel Disease. Inflamm. Bowel Dis. :2024. doi: 10.1093/ibd/izad210. PubMed DOI

Biswas S., Coyle A., Chen S., Gostimir M., Gonder J., Chakrabarti S. Expressions of Serum lncRNAs in Diabetic Retinopathy—A Potential Diagnostic Tool. Front. Endocrinol. 2022;13:851967. doi: 10.3389/fendo.2022.851967. PubMed DOI PMC

Permuth J.B., Chen D.-T., Yoder S.J., Li J., Smith A.T., Choi J.W., Kim J., Balagurunathan Y., Jiang K., Coppola D., et al. Linc-ing Circulating Long Non-coding RNAs to the Diagnosis and Malignant Prediction of Intraductal Papillary Mucinous Neoplasms of the Pancreas. Sci. Rep. 2017;7:10484. doi: 10.1038/s41598-017-09754-5. PubMed DOI PMC

Zhang K., Qi M., Yang Y., Xu P., Zhua Y., Zhang J. Circulating lncRNA ANRIL in the Serum of Patients with Ischemic Stroke. Clin. Lab. 2019;65:1459–1465. doi: 10.7754/Clin.Lab.2019.190143. PubMed DOI

Zeng W., Jin J. The correlation of serum long non-coding RNA ANRIL with risk factors, functional outcome, and prognosis in atrial fibrillation patients with ischemic stroke. J. Clin. Lab. Anal. 2020;34:e23352. doi: 10.1002/jcla.23352. PubMed DOI PMC

Yin Y., Yang W., Zhang L., Liu K., Luo Z. Long non-coding RNA ANRIL and its target microRNAs (microRNA-34a, microRNA-125a and microRNA-186) relate to risk stratification and prognosis in multiple myeloma. Hematology. 2021;26:160–169. doi: 10.1080/16078454.2021.1872275. PubMed DOI

AbdAllah N.B., Al Ageeli E., Shbeer A., A Abdulhakim J., A Toraih E., O Salman D., Fawzy M.S., Nassar S.S. Long Non-Coding RNAs ANRIL and HOTAIR Upregulation is Associated with Survival in Neonates with Sepsis in a Neonatal Intensive Care Unit. Int. J. Gen. Med. 2022;15:6237–6247. doi: 10.2147/IJGM.S373434. PubMed DOI PMC

Xie Y., Zhang Y., Du L., Jiang X., Yan S., Duan W., Li J., Zhan Y., Wang L., Zhang S., et al. Circulating long noncoding RNA act as potential novel biomarkers for diagnosis and prognosis of non-small cell lung cancer. Mol. Oncol. 2018;12:648–658. doi: 10.1002/1878-0261.12188. PubMed DOI PMC

Hu X., Bao J., Wang Z., Zhang Z., Gu P., Tao F., Cui D., Jiang W. The plasma lncRNA acting as fingerprint in non-small-cell lung cancer. Tumor Biol. 2016;37:3497–3504. doi: 10.1007/s13277-015-4023-9. PubMed DOI

Beylerli O., Khasanov D., Gareev I., Valitov E., Sokhatskii A., Wang C., Pavlov V., Khasanova G., Ahmad A. Differential non-coding RNAs expression profiles of invasive and non-invasive pituitary adenomas. Non-Coding RNA Res. 2021;6:115–122. doi: 10.1016/j.ncrna.2021.06.004. PubMed DOI PMC

Gui F., Peng H., Liu Y. Elevated circulating lnc-ANRIL/miR-125a axis level predicts higher risk, more severe disease condition, and worse prognosis of sepsis. J. Clin. Lab. Anal. 2019;33:e22917. doi: 10.1002/jcla.22917. PubMed DOI PMC

Jiao Y., Meng F., Ma G., Lei H., Liu J. An increase in a long noncoding RNA ANRIL in peripheral plasma is an indicator of stable angina. Clinics. 2023;78:100289. doi: 10.1016/j.clinsp.2023.100289. PubMed DOI PMC

Ge J., Geng S., Jiang H. Long noncoding RNA s antisense noncoding RNA in the INK 4 locus (ANRIL) correlates with lower acute exacerbation risk, decreased inflammatory cytokines, and mild GOLD stage in patients with chronic obstructive pulmonary disease. J. Clin. Lab. Anal. 2019;33:e22678. doi: 10.1002/jcla.22678. PubMed DOI PMC

Feng L., Guo J., Ai F. Circulating long noncoding RNA ANRIL downregulation correlates with increased risk, higher disease severity and elevated pro-inflammatory cytokines in patients with acute ischemic stroke. J. Clin. Lab. Anal. 2019;33:e22629. doi: 10.1002/jcla.22629. PubMed DOI PMC

Zheng M., Zheng Y., Gao M., Ma H., Zhang X., Li Y., Wang F., Huang H. Expression and clinical value of lncRNA MALAT1 and lncRNA ANRIL in glaucoma patients. Exp. Ther. Med. 2019;19:1329–1335. doi: 10.3892/etm.2019.8345. PubMed DOI PMC

Fenoglio C., Oldoni E., Serpente M., De Riz M.A., Arcaro M., D’Anca M., Pietroboni A.M., Calvi A., Lecchi E., Goris A., et al. LncRNAs expression profile in peripheral blood mononuclear cells from multiple sclerosis patients. J. Neuroimmunol. 2018;324:129–135. doi: 10.1016/j.jneuroim.2018.08.008. PubMed DOI

Xia H., Li S., He Y., Ren Q., Qin S. Long non-coding RNA ANRIL serves as a potential marker of disease risk, inflammation, and disease activity of pediatric inflammatory bowel disease. Clin. Res. Hepatol. Gastroenterol. 2022;46:101895. doi: 10.1016/j.clinre.2022.101895. PubMed DOI

Ayoub S.E., Shaker O.G., Aboshama R.A., Etman M.K., Khalefa A.A., Elguaad M.M.K.A., Zaki O.M., Ali D.Y., Hemeda N.F., Amin A., et al. Expression profile of LncRNA ANRIL, miR-186, miR-181a, and MTMR-3 in patients with preeclampsia. Non-Coding RNA Res. 2023;8:481–486. doi: 10.1016/j.ncrna.2023.06.001. PubMed DOI PMC

Huang T., Wang J., Zhou Y., Zhao Y., Hang D., Cao Y. LncRNA CASC2 is up-regulated in osteoarthritis and participates in the regulation of IL-17 expression and chondrocyte proliferation and apoptosis. Biosci. Rep. 2019;39:BSR20182454. doi: 10.1042/BSR20182454. PubMed DOI PMC

Lu J., Zhang N., Wu C. LncRNA CASC 2 is upregulated in aphthous stomatitis and predicts the recurrence. BMC Oral Health. 2020;20:12. doi: 10.1186/s12903-019-0993-0. PubMed DOI PMC

Yang H., e Kan Q., Su Y., Man H. Long Non-Coding RNA CASC2 Improves Diabetic Nephropathy by Inhibiting JNK Pathway. Exp. Clin. Endocrinol. Diabetes. 2019;127:533–537. doi: 10.1055/a-0629-9958. PubMed DOI

Refai N.S., Louka M.L., Halim H.Y., Montasser I. Long non-coding RNAs (CASC2 and TUG1) in hepatocellular carcinoma: Clinical significance. J. Gene Med. 2019;21:e3112. doi: 10.1002/jgm.3112. PubMed DOI

Yang Y., Sun Z., Ren T., Lei W. Differential Expression of lncRNA CASC2 in the Serum of Childhood Asthma and Its Role in Airway Smooth Muscle Cells Proliferation and Migration. J. Asthma Allergy. 2022;15:197–207. doi: 10.2147/JAA.S337236. PubMed DOI PMC

Wang L., Su N., Zhang Y., Wang G. Clinical Significance of Serum lncRNA Cancer Susceptibility Candidate 2 (CASC2) for Chronic Renal Failure in Patients with Type 2 Diabetes. Med. Sci. Monit. 2018;24:6079–6084. doi: 10.12659/MSM.909510. PubMed DOI PMC

Dong Y., Wu W. Downregulation of lncRNA CASC2 promotes the postoperative local recurrence of early oral squamous cell carcinoma. Eur. Arch. Oto-Rhino-Laryngol. 2019;276:605–610. doi: 10.1007/s00405-018-5209-8. PubMed DOI

Ye Z., Wei L., Yin X., Li H., Qin G., Li S., Peng T., Liu B., Zhao S., Zhuo Q. Long non-coding RNA cancer susceptibility candidate 2 regulates the function of human fibroblast-like synoviocytes via the microRNA-18a-5p/B-cell translocation gene 3 signaling axis in rheumatoid arthritis. Bioengineered. 2022;13:3240–3250. doi: 10.1080/21655979.2021.2022075. PubMed DOI PMC

Liu C., Guo X., Bai S., Zeng G., Wang H. LncRNA CASC2 downregulation participates in rheumatoid arthritis, and CASC2 overexpression promotes the apoptosis of fibroblast like synoviocytes by downregulating IL 17. Mol. Med. Rep. 2020;21:2131–2137. doi: 10.3892/mmr.2020.11018. PubMed DOI PMC

Wang M., Wei J., Shang F., Zang K., Ji T. Long non coding RNA CASC2 ameliorates sepsis induced acute kidney injury by regulating the miR 155 and NF κB pathway. Int. J. Mol. Med. 2020;45:1554–1562. doi: 10.3892/ijmm.2020.4518. PubMed DOI

Wang R., Zhao J., Wei Q., Wang H., Zhao C., Hu C., Han Y., Hui Z., Yang L., Dai Q., et al. Potential of circulating lncRNA CASC2 as a biomarker in reflecting the inflammatory cytokines, multi-organ dysfunction, disease severity, and mortality in sepsis patients. J. Clin. Lab. Anal. 2022;36:e24569. doi: 10.1002/jcla.24569. PubMed DOI PMC

Hola M.A.M., Ali M.A.M., ElNahass Y., Salem T.A.E., Mohamed M.R. Expression and prognostic relevance of long noncoding RNAs CRNDE and AOX2P in adult acute myeloid leukemia. Int. J. Lab. Hematol. 2021;43:732–742. doi: 10.1111/ijlh.13586. PubMed DOI

Zhang P., Shi L., Song L., Long Y., Yuan K., Ding W., Deng L. PLncRNA CRNDE and lncRNA SNHG7 are Promising Biomarkers for Prognosis in Synchronous Colorectal Liver Metastasis Following Hepatectomy/p. Cancer Manag. Res. 2020;12:1681–1692. doi: 10.2147/CMAR.S233147. PubMed DOI PMC

Graham L.D., Pedersen S.K., Brown G.S., Ho T., Kassir Z., Moynihan A.T., Vizgoft E.K., Dunne R., Pimlott L., Young G.P., et al. Colorectal Neoplasia Differentially Expressed (CRNDE), a Novel Gene with Elevated Expression in Colorectal Adenomas and Adenocarcinomas. Genes Cancer. 2012;2:829–840. doi: 10.1177/1947601911431081. PubMed DOI PMC

Wang T., Zhu H., Xiao M., Zhou S. Serum exosomal long noncoding RNA CRNDE as a prognostic biomarker for hepatocellular carcinoma. J. Clin. Lab. Anal. 2021;35:e23959. doi: 10.1002/jcla.23959. PubMed DOI PMC

Liu Y., Wu C. Serum Colorectal Neoplasia Differentially Expressed Level and Prognostic Factors in Patients with RLNM of NPC. Altern. Ther. Health Med. 2023. ahead of print . PubMed

Yuan R., Dai C., Chen P., Lv M., Shu Y., Wang Z., Xu Y., Li J. Circulating TP73-AS1 and CRNDE serve as diagnostic and prognostic biomarkers for non-small cell lung cancer. Cancer Med. 2023;12:1655–1672. doi: 10.1002/cam4.5013. PubMed DOI PMC

Yang J., Liu W., Xu M., Yu L. Long non-coding RNA CRNDE and toll-like receptor 3 correlate with disease severity, inflammation, and mortality in sepsis. J. Clin. Lab. Anal. 2020;34:9. doi: 10.1002/jcla.23360. PubMed DOI PMC

Peng M., Ma L. Clinical and prognostic significance of long non-coding RNA CRNDE expression in severe pneumonia and its correlation with inflammatory factor levels. Am. J. Transl. Res. 2023;15:1798–1806. PubMed PMC

Shehata A.M.F., Gohar S.F., Muharram N.M., Soliman S.S., Shalaby H.M., Eldin S.M.K., El-Bassal F.I. LncRNA CRNDE is downregulated and associated with poor prognostic markers in chronic lymphocytic leukemia. Int. J. Lab. Hematol. 2024;46:107–112. doi: 10.1111/ijlh.14186. PubMed DOI

Yue C., He M., Teng Y., Bian X. Long non-coding RNA metastasis-related lung adenocarcinoma transcript 1 (MALAT1) forms a negative feedback loop with long non-coding RNA colorectal neoplasia differentially expressed (CRNDE) in sepsis to regulate lung cell apoptosis. Bioengineered. 2022;13:8201–8207. doi: 10.1080/21655979.2021.2023727. PubMed DOI PMC

Xu Y., Zhang G., Zou C., Gong Z., Wang S., Liu J., Ma G., Liu X., Zhang W., Jiang P. Long noncoding RNA DGCR5 suppresses gastric cancer progression by acting as a competing endogenous RNA of PTEN and BTG1. J. Cell. Physiol. 2019;234:11999–12010. doi: 10.1002/jcp.27861. PubMed DOI

Huang R., Wang X., Zhang W., Zhangyuan G., Jin K., Yu W., Xie Y., Xu X., Wang H., Sun B. Down-Regulation of LncRNA DGCR5 Correlates with Poor Prognosis in Hepatocellular Carcinoma. Cell. Physiol. Biochem. 2016;40:707–715. doi: 10.1159/000452582. PubMed DOI

Yang M., Gu Y. LncRNA DLEU1 promotes angiogenesis in diabetic foot ulcer wound healing by regulating miR-96-5p. Ir. J. Med. Sci. 2024;193:241–247. doi: 10.1007/s11845-023-03471-x. PubMed DOI

Shan L., Zhao T., Wang Y. Upregulation of Serum lncRNA DLEU1 Predicts Progression of Premalignant Endometrial Lesion and Unfavorable Clinical Outcome of Endometrial Cancer. Technol. Cancer Res. Treat. 2020;19:1533033820965589. doi: 10.1177/1533033820965589. PubMed DOI PMC

Zhang Y., Lu X., Yang M., Shangguan J., Yin Y. GAS5 knockdown suppresses inflammation and oxidative stress induced by oxidized low-density lipoprotein in macrophages by sponging miR-135a. Mol. Cell. Biochem. 2021;476:949–957. doi: 10.1007/s11010-020-03962-w. PubMed DOI

Weber D.G., Casjens S., Brik A., Raiko I., Lehnert M., Taeger D., Gleichenhagen J., Kollmeier J., Bauer T.T., et al. The MoMar Study Group Circulating long non-coding RNA GAS5 (growth arrest-specific transcript 5) as a complement marker for the detection of malignant mesothelioma using liquid biopsies. Biomark. Res. 2020;8:15. doi: 10.1186/s40364-020-00194-4. PubMed DOI PMC

Senousy M.A., Shaker O.G., Sayed N.H., Fathy N., Kortam M.A. LncRNA GAS5 and miR-137 Polymorphisms and Expression are Associated with Multiple Sclerosis Risk: Mechanistic Insights and Potential Clinical Impact. ACS Chem. Neurosci. 2020;11:1651–1660. doi: 10.1021/acschemneuro.0c00150. PubMed DOI

Fantini S., Rontauroli S., Sartini S., Mirabile M., Bianchi E., Badii F., Maccaferri M., Guglielmelli P., Ottone T., Palmieri R., et al. Increased Plasma Levels of lncRNAs LINC01268, GAS5 and MALAT1 Correlate with Negative Prognostic Factors in Myelofibrosis. Cancers. 2021;13:4744. doi: 10.3390/cancers13194744. PubMed DOI PMC

Cong C., Tian J., Gao T., Zhou C., Wang Y., Cui X., Zhu L. PlncRNA GAS5 Is Upregulated in Osteoporosis and Downregulates miR-21 to Promote Apoptosis of Osteoclasts/p. Clin. Interv. Aging. 2020;15:1163–1169. doi: 10.2147/CIA.S235197. PubMed DOI PMC

Visconti V.V., Fittipaldi S., Ciuffi S., Marini F., Isaia G., D’amelio P., Migliaccio S., Marcocci C., Minisola S., Nuti R., et al. Circulating Long Non-Coding RNA GAS5 Is Overexpressed in Serum from Osteoporotic Patients and Is Associated with Increased Risk of Bone Fragility. Int. J. Mol. Sci. 2020;21:6930. doi: 10.3390/ijms21186930. PubMed DOI PMC

Wang C., Yue S., Jiang Y., Mao Y., Zhao Z., Liu X., Zhang X., Pei D., Li Y. LncRNA GAS5 is upregulated in polycystic ovary syndrome and regulates cell apoptosis and the expression of IL-6. J. Ovarian Res. 2020;13:145. doi: 10.1186/s13048-020-00748-y. PubMed DOI PMC

Shen J., Hodges T.R., Song R., Gong Y., Calin G.A., Heimberger A.B., Zhao H. Serum HOTAIR and GAS5 levels as predictors of survival in patients with glioblastoma. Mol. Carcinog. 2018;57:137–141. doi: 10.1002/mc.22739. PubMed DOI

Toraih E.A., El-Wazir A., Al Ageeli E., Hussein M.H., Eltoukhy M.M., Killackey M.T., Kandil E., Fawzy M.S. Unleash multifunctional role of long noncoding RNAs biomarker panel in breast cancer: A predictor classification model. Epigenomics. 2020;12:1215–1237. doi: 10.2217/epi-2019-0291. PubMed DOI

Ali M.A., Shaker O.G., Khalifa A.A., Ezzat E.M., Elghobary H.A., Mawla T.S.A., Elkhateeb A.F., Elebiary A.M.A., Elamir A.M. LncRNAs NEAT1, HOTAIR, and GAS5 expression in hypertensive and non-hypertensive associated cerebrovascular stroke patients, and its link to clinical characteristics and severity score of the disease. Non-Coding RNA Res. 2023;8:96–108. doi: 10.1016/j.ncrna.2022.10.004. PubMed DOI PMC

Yin Q., Wu A., Liu M. Plasma Long Non-Coding RNA (lncRNA) GAS5 is a New Biomarker for Coronary Artery Disease. Med. Sci. Monit. 2017;23:6042–6048. doi: 10.12659/MSM.907118. PubMed DOI PMC

Ayeldeen G., Shaker O.G., Amer E., Zaafan M.A., Herzalla M.R., Keshk M.A., Abdelhamid A.M. The Impact of lncRNA-GAS5/miRNA-200/ACE2 Molecular Pathway on the Severity of COVID-19. Curr. Med. Chem. 2024;31:1142–1151. doi: 10.2174/0929867330666230515144133. PubMed DOI

Sun H., Chen T., Li X., Zhu Y., Zhang S., He P., Peng Y., Fan Q. The relevance of the non-invasive biomarkers lncRNA GAS5/miR-21 ceRNA regulatory network in the early identification of diabetes and diabetic nephropathy. Diabetol. Metab. Syndr. 2023;15:197. doi: 10.1186/s13098-023-01179-7. PubMed DOI PMC

Wang Y., Jing W., Ma W., Liang C., Chai H., Tu J. Down-regulation of long non-coding RNA GAS5-AS1 and its prognostic and diagnostic significance in hepatocellular carcinoma. Cancer Biomark. 2018;22:227–236. doi: 10.3233/CBM-170781. PubMed DOI

Guo Y., Li C., Zhang R., Zhan Y., Yu J., Tu J., Zheng J. Epigenetically-regulated serum GAS5 as a potential biomarker for patients with chronic hepatitis B virus infection. Cancer Biomark. 2021;32:137–146. doi: 10.3233/CBM-203169. PubMed DOI

Li Y., Sun L., Liu J., Xu G., Hu Y., Qin A. Down-regulation of GAS5 has diagnostic value for tuberculosis and regulates the inflammatory response in mycobacterium tuberculosis infected THP-1 cells. Tuberculosis. 2022;132:102141. doi: 10.1016/j.tube.2021.102141. PubMed DOI

Li C., Lv Y., Shao C., Chen C., Zhang T., Wei Y., Fan H., Lv T., Liu H., Song Y. Tumor-derived exosomal lncRNA GAS5 as a biomarker for early-stage non-small-cell lung cancer diagnosis. J. Cell. Physiol. 2019;234:20721–20727. doi: 10.1002/jcp.28678. PubMed DOI

Liang W., Lv T., Shi X., Liu H., Zhu Q., Zeng J., Yang W., Yin J., Song Y. Circulating long noncoding RNA GAS5 is a novel biomarker for the diagnosis of nonsmall cell lung cancer. Medicine. 2016;95:e4608. doi: 10.1097/MD.0000000000004608. PubMed DOI PMC

Wu W., Li Q., Liu Y.-F., Li Y. LncRNA GAS5 regulates angiogenesis by targeting miR 10a 3p/VEGFA in osteoporosis. Mol. Med. Rep. 2021;24:4. doi: 10.3892/mmr.2021.12350. PubMed DOI

Lin H., Xing W., Li Y., Xie Y., Tang X., Zhang Q. Downregulation of serum long noncoding RNA GAS5 may contribute to insulin resistance in PCOS patients. Gynecol. Endocrinol. 2018;34:784–788. doi: 10.1080/09513590.2018.1459548. PubMed DOI

Tofigh R., Hosseinpourfeizi M., Safaralizadeh R., Ghoddusifar S., Baradaran B. Serum Levels of Long Non-coding RNAs NEAT1, GAS5, and GAPLINC Altered in Rheumatoid Arthritis. Curr. Rheumatol. Rev. 2024;20:182–190. doi: 10.2174/0115733971251184230921042511. PubMed DOI

Ma C., Wang W., Li P. LncRNA GAS5 overexpression downregulates IL-18 and induces the apoptosis of fibroblast-like synoviocytes. Clin. Rheumatol. 2019;38:3275–3280. doi: 10.1007/s10067-019-04691-2. PubMed DOI

Zeng Z., Lan Y., Chen Y., Zuo F., Gong Y., Luo G., Peng Y., Yuan Z. LncRNA GAS5 suppresses inflammatory responses by inhibiting HMGB1 release via miR-155-5p/SIRT1 axis in sepsis. Eur. J. Pharmacol. 2023;942:175520. doi: 10.1016/j.ejphar.2023.175520. PubMed DOI

Wu G.-C., Li J., Leng R.-X., Li X.-P., Li X.-M., Wang D.-G., Pan H.-F., Ye D.-Q. Identification of long non-coding RNAs GAS5, linc0597 and lnc-DC in plasma as novel biomarkers for systemic lupus erythematosus. Oncotarget. 2017;8:23650–23663. doi: 10.18632/oncotarget.15569. PubMed DOI PMC

Lu J., Liu L., Chen J., Zhi J., Li J., Li L., Jiang Z. LncRNA HOTAIR in exercise-induced neuro-protective function in Alzheimer’s disease. Folia Neuropathol. 2022;60:414–420. doi: 10.5114/fn.2022.118961. PubMed DOI

Zhang Y., Zhang K., Luo Z., Liu L., Wu L., Liu J. Circulating long non-coding HOX transcript antisense intergenic ribonucleic acid in plasma as a potential biomarker for diagnosis of breast cancer. Thorac. Cancer. 2016;7:627–632. doi: 10.1111/1759-7714.12373. PubMed DOI PMC

Zhang L., Song X., Wang X., Xie Y., Wang Z., Xu Y., You X., Liang Z., Cao H. Circulating DNA of HOTAIR in serum is a novel biomarker for breast cancer. Breast Cancer Res. Treat. 2015;152:199–208. doi: 10.1007/s10549-015-3431-2. PubMed DOI

Zhao W., Song M., Zhang J., Kuerban M., Wang H. Combined identification of long non-coding RNA CCAT1 and HOTAIR in serum as an effective screening for colorectal carcinoma. Int. J. Clin. Exp. Pathol. 2015;8:14131–14140. PubMed PMC

Jiang Y., Mo H., Luo J., Zhao S., Liang S., Zhang M., Yuan J. HOTAIR Is a Potential Novel Biomarker in Patients with Congenital Heart Diseases. BioMed Res. Int. 2018;2018:1–7. doi: 10.1155/2018/2850657. PubMed DOI PMC

Avazpour N., Hajjari M., Yazdankhah S., Sahni A., Foroughmand A.M. Circulating HOTAIR LncRNA Is Potentially Up-regulated in Coronary Artery Disease. Genom. Inform. 2018;16:e25. doi: 10.5808/GI.2018.16.4.e25. PubMed DOI PMC

Wang H., Xia Y., Zhang Y. Diagnostic significance of serum lncRNA HOTAIR and its predictive value for the development of chronic complications in patients with type 2 diabetes mellitus. Diabetol. Metab. Syndr. 2021;13:97. doi: 10.1186/s13098-021-00719-3. PubMed DOI PMC

Wang W., He X., Zheng Z., Ma X., Hu X., Wu D., Wang M. Serum HOTAIR as a novel diagnostic biomarker for esophageal squamous cell carcinoma. Mol. Cancer. 2017;16:75. doi: 10.1186/s12943-017-0643-6. PubMed DOI PMC

Elsayed E.T., Salem P.E., Darwish A.M., Fayed H.M. Plasma long non-coding RNA HOTAIR as a potential biomarker for gastric cancer. Int. J. Biol. Markers. 2018;33:528–533. doi: 10.1177/1724600818760244. PubMed DOI

Chen P., Liu Z., Xiao H., Yang X., Li T., Huang W., Zhou H. Effect of tumor exosome-derived Lnc RNA HOTAIR on the growth and metastasis of gastric cancer. Clin. Transl. Oncol. 2023;25:3447–3459. doi: 10.1007/s12094-023-03208-3. PubMed DOI

Su R., Wu X., Ke F. Long Non-Coding RNA HOTAIR Expression and Clinical Significance in Patients with Gestational Diabetes. Int. J. Gen. Med. 2021;14:9945–9950. doi: 10.2147/IJGM.S341106. PubMed DOI PMC

Wang X., Yu X., Xu H., Wei K., Wang S., Wang Y., Han J. Serum-derived extracellular vesicles facilitate temozolomide resistance in glioblastoma through a HOTAIR-dependent mechanism. Cell Death Dis. 2022;13:4. doi: 10.1038/s41419-022-04699-8. PubMed DOI PMC

Lou Z.-H., Xu K.-Y., Qiao L., Su X.-Q., Ou-Yang Y., Miao L.-B., Liu F., Wang Y., Fu A., Ren X.-H., et al. Diagnostic Potential of the Serum lncRNAs HOTAIR, BRM and ICR for Hepatocellular Carcinoma. Front. Biosci.-Landmark. 2022;27:264. doi: 10.31083/j.fbl2709264. PubMed DOI

Wang J., Zhou Y., Lu J., Sun Y., Xiao H., Liu M., Tian L. Combined detection of serum exosomal miR-21 and HOTAIR as diagnostic and prognostic biomarkers for laryngeal squamous cell carcinoma. Med. Oncol. 2014;31:9. doi: 10.1007/s12032-014-0148-8. PubMed DOI

Shehata A.M.F., Eldin S.M.K., Osman N.F., Helwa M.A. Deregulated Expression of Long Non-coding RNA HOX Transcript Antisense RNA (HOTAIR) in Egyptian Patients with Multiple Myeloma. Indian J. Hematol. Blood Transfus. 2020;36:271–276. doi: 10.1007/s12288-019-01211-9. PubMed DOI PMC

Li N., Wang Y., Liu X., Luo P., Jing W., Zhu M., Tu J. Identification of Circulating Long Noncoding RNA HOTAIR as a Novel Biomarker for Diagnosis and Monitoring of Non–Small Cell Lung Cancer. Technol. Cancer Res. Treat. 2017;16:1060–1066. doi: 10.1177/1533034617723754. PubMed DOI PMC

Jiang M., Liu J., Luo T., Chen Q., Lu M., Meng D. LncRNA PACER is down-regulated in osteoarthritis and regulates chondrocyte apoptosis and lncRNA HOTAIR expression. Biosci. Rep. 2019;39:6. doi: 10.1042/BSR20190404. PubMed DOI PMC

Li L., Wang J., Li Z., Qiu S., Cao J., Zhao Y., Huang Z., He J., Luo F., Yang K. Diagnostic Value of Serum lncRNA HOTAIR Combined with Galectin-3 in Benign and Papillary Thyroid Carcinoma. Cancer Manag. Res. 2021;13:6517–6525. doi: 10.2147/CMAR.S312784. PubMed DOI PMC

Tan J., Dan J., Liu Y. Clinical Efficacy of Methotrexate Combined with Iguratimod on Patients with Rheumatoid Arthritis and Its Influence on the Expression Levels of HOTAIR in Serum. BioMed Res. Int. 2021;2021:2486617. doi: 10.1155/2021/2486617. PubMed DOI PMC

Mahmoud R.H., Fouad N.A., Hefzy E.M., Shaker O.G., Ahmed T.I., Hussein H.A., Nasr M.H., Zaki O.M., Abdelghaffar N.K., Abdelaleem O.O. The potential role of serum expression profile of long non coding RNAs, Cox2 and HOTAIR as novel diagnostic biomarkers in systemic lupus erythematosus. PLoS ONE. 2022;17:e0268176. doi: 10.1371/journal.pone.0268176. PubMed DOI PMC

Chen H., Li X., Chen W., Wu T., Liu S. LncRNA HOTAIR Inhibits miR-19a-3p to Alleviate Foam Cell Formation and Inflammatory Response in Atherosclerosis. Int. J. Med. Sci. 2024;21:521–529. doi: 10.7150/ijms.90315. PubMed DOI PMC

Hameed N.A.A., Shaker O.G., Hasona N.A. LINC00641/miR-378a and Their Cross-Talk with TNF-α/IFN-γ as Potential Biomarkers in Ulcerative Colitis and Crohn’s Diseases. J. Interferon Cytokine Res. 2023;43:531–537. doi: 10.1089/jir.2023.0097. PubMed DOI

Lu H., Wang G., Zhao J., Jiang H. Knockdown of lncRNA MALAT1 ameliorates acute kidney injury by mediating the miR-204/APOL1 pathway. J. Clin. Lab. Anal. 2021;35:e23881. doi: 10.1002/jcla.23881. PubMed DOI PMC

Liu J., Niu Z., Zhang R., Peng Z., Wang L., Liu Z., Gao Y., Pei H., Pan L. MALAT1 shuttled by extracellular vesicles promotes M1 polarization of macrophages to induce acute pancreatitis via miR-181a-5p/HMGB1 axis. J. Cell. Mol. Med. 2021;25:9241–9254. doi: 10.1111/jcmm.16844. PubMed DOI PMC

Li R., Jin J., Liu E., Zhang J. A novel circulating biomarker lnc-MALAT1 for acute myocardial infarction: Its relationship with disease risk, features, cytokines, and major adverse cardiovascular events. J. Clin. Lab. Anal. 2022;36:e24771. doi: 10.1002/jcla.24771. PubMed DOI PMC

Miao Y., Fan R., Chen L., Qian H. Clinical Significance of Long Non-coding RNA MALAT1 Expression in Tissue and Serum of Breast Cancer. Ann. Clin. Lab. Sci. 2016;46:418–424. PubMed

Xia H., Chen Q., Chen Y., Ge X., Leng W., Tang Q., Ren M., Chen L., Yuan D., Zhang Y., et al. The lncRNA MALAT1 is a novel biomarker for gastric cancer metastasis. Oncotarget. 2016;7:56209–56218. doi: 10.18632/oncotarget.10941. PubMed DOI PMC

Zhang Y., Wu H., Wang F., Ye M., Zhu H., Bu S. Long non-coding RNA MALAT 1 expression in patients with gestational diabetes mellitus. Int. J. Gynecol. Obstet. 2018;140:164–169. doi: 10.1002/ijgo.12384. PubMed DOI

Luo L., Wang Y., Hu P., Wu J. Long Non-Coding RNA Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT1) Promotes Hypertension by Modulating the Hsa-miR-124-3p/Nuclear Receptor Subfamily 3, Group C, Member 2 (NR3C2) and Hsa-miR-135a-5p/NR3C2 Axis. Med. Sci. Monit. 2020;26:e920478-1–e920478-10. doi: 10.12659/MSM.920478. PubMed DOI PMC

Shaker O.G., Mahmoud R.H., Abdelaleem O.O., Ibrahem E.G., Mohamed A.A., Zaki O.M., Abdelghaffar N.K., Ahmed T.I., Hemeda N.F., Ahmed N.A., et al. LncRNAs, MALAT1 and lnc-DC as potential biomarkers for multiple sclerosis diagnosis. Biosci. Rep. 2019;39:1. doi: 10.1042/BSR20181335. PubMed DOI PMC

He B., Zeng J., Chao W., Chen X., Huang Y., Deng K., Huang Z., Li J., Dai M., Chen S., et al. Serum long non-coding RNAs MALAT1, AFAP1-AS1 and AL359062 as diagnostic and prognostic biomarkers for nasopharyngeal carcinoma. Oncotarget. 2017;8:41166–41177. doi: 10.18632/oncotarget.17083. PubMed DOI PMC

Fernandes M., Marques H., Teixeira A.L., Medeiros R. CeRNA Network of lncRNA/miRNA as Circulating Prognostic Biomarkers in Non-Hodgkin Lymphomas: Bioinformatic Analysis and Assessment of Their Prognostic Value in an NHL Cohort. Int. J. Mol. Sci. 2022;23:201. doi: 10.3390/ijms23010201. PubMed DOI PMC

Zhang R., Xia Y., Wang Z., Zheng J., Chen Y., Li X., Wang Y., Ming H. Serum long non coding RNA MALAT-1 protected by exosomes is up-regulated and promotes cell proliferation and migration in non-small cell lung cancer. Biochem. Biophys. Res. Commun. 2017;490:406–414. doi: 10.1016/j.bbrc.2017.06.055. PubMed DOI

Huo Y., Li Q., Wang X., Jiao X., Zheng J., Li Z., Pan X. MALAT1 predicts poor survival in osteosarcoma patients and promotes cell metastasis through associating with EZH2. Oncotarget. 2017;8:46993–47006. doi: 10.18632/oncotarget.16551. PubMed DOI PMC

Wang H., Fu Z., Dai C., Cao J., Liu X., Xu J., Lv M., Gu Y., Zhang J., Hua X., et al. LncRNAs expression profiling in normal ovary, benign ovarian cyst and malignant epithelial ovarian cancer. Sci. Rep. 2016;6:38983. doi: 10.1038/srep38983. PubMed DOI PMC

Yang H. LncRNA MALAT1 potentiates inflammation disorder in Parkinson’s disease. Int. J. Immunogenet. 2021;48:419–428. doi: 10.1111/iji.12549. PubMed DOI

Zhao G., Pan Z., Wang P. The Value of Combined Detection of Serum PSA, MALAT1 and TMPRSS2-ETV1 in Evaluating the Progress and Prognosis of Prostate Cancer. Arch. Españoles De Urol. 2023;76:555–562. doi: 10.56434/j.arch.esp.urol.20237608.69. PubMed DOI

Chatterjee S., Bhattcharjee D., Misra S., Saha A., Bhattacharyya N.P., Ghosh A. Increase in MEG3, MALAT1, NEAT1 significantly predicts the clinical parameters in patients with rheumatoid arthritis. Pers. Med. 2020;17:445–457. doi: 10.2217/pme-2020-0009. PubMed DOI

Chen J., He Y., Zhou L., Deng Y., Si L. Long non coding RNA MALAT1 serves as an independent predictive biomarker for the diagnosis, severity and prognosis of patients with sepsis. Mol. Med. Rep. 2020;21:1365–1373. doi: 10.3892/mmr.2020.10923. PubMed DOI

Yan L.-P., Liu Z.-B., Wu M., Ge Y.-P., Zhang Q. Effect of lncRNA MALAT1 expression on survival status of elderly patients with severe pneumonia. Eur. Rev. Med. Pharmacol. Sci. 2020;24:3959–3964. PubMed

Ye D., Deng Y., Shen Z. The Role and Mechanism of MALAT1 Long Non-Coding RNA in the Diagnosis and Treatment of Head and Neck Squamous Cell Carcinoma. OncoTargets Ther. 2021;14:4127–4136. doi: 10.2147/OTT.S317234. PubMed DOI PMC

Zhu M., Xie J. LncRNA MALAT1 Promotes Ulcerative Colitis by Upregulating lncRNA ANRIL. Dig. Dis. Sci. 2020;65:3191–3196. doi: 10.1007/s10620-020-06093-w. PubMed DOI

Tello-Flores V.A., Valladares-Salgado A., Ramírez-Vargas M.A., Cruz M., Del-Moral-Hernández O., Cahua-Pablo J., Ramírez M., Hernández-Sotelo D., Armenta-Solis A., Flores-Alfaro E. Altered levels of MALAT1 and H19 derived from serum or serum exosomes associated with type-2 diabetes. Non-Coding RNA Res. 2020;5:71–76. doi: 10.1016/j.ncrna.2020.03.001. PubMed DOI PMC

Gao Y.-X., Gao H.-X., Xu X.-Y., Ding F.-K. Effects of lncRNA MALAT1 and lncRNA NKILA on proliferation, invasion and apoptosis of retinoblastoma. Eur. Rev. Med. Pharmacol. Sci. 2020;24:8296–8307. doi: 10.26355/eurrev_202008_22626. PubMed DOI

Min W., Dai D., Wang J., Zhang D., Zhang Y., Han G., Zhang L., Chen C., Li X., Li Y., et al. Long Noncoding RNA miR210HG as a Potential Biomarker for the Diagnosis of Glioma. PLoS ONE. 2016;11:e0160451. doi: 10.1371/journal.pone.0160451. PubMed DOI PMC

Chen J., Zheng Y., Li L. LncRNA RPSAP52 regulates miR-423-5p/GSTM1 axis to suppress hypoxia-induced renal proximal tubular epithelial cell apoptosis. Arch. Physiol. Biochem. 2022;128:1066–1070. doi: 10.1080/13813455.2020.1750657. PubMed DOI

Niu T., An Y., Lv T., Liu D. Long non coding RNA RPSAP52 upregulates Timp3 by serving as the endogenous sponge of microRNA 365 in diabetic retinopathy. Exp. Ther. Med. 2020;20:1. doi: 10.3892/etm.2020.9376. PubMed DOI PMC

Xie J., Wang X., Liu S., Chen C., Jiang F., Mao K., Zeng F. LncRNA SAMMSON overexpression distinguished glioblastoma patients from patients with diffuse neurosarcoidosis. NeuroReport. 2019;30:817–821. doi: 10.1097/WNR.0000000000001278. PubMed DOI

Zheng X., Tian X., Zhang Q., Shi P., Li S. Long non-coding RNA SAMMSON as a novel potential diagnostic and prognostic biomarker for oral squamous cell carcinoma. J. Dent. Sci. 2020;15:329–335. doi: 10.1016/j.jds.2019.11.008. PubMed DOI PMC

Shao L., Sun W., Wang Z., Dong W., Qin Y. Long noncoding RNA SAMMSON promotes papillary thyroid carcinoma progression through p300/Sp1 axis and serves as a novel diagnostic and prognostic biomarker. IUBMB Life. 2020;72:237–246. doi: 10.1002/iub.2158. PubMed DOI

Wang R., Yang Y., Wang L., Shi Q., Ma H., He S., Feng L., Fang J. SOX2-OT Binds with ILF3 to Promote Head and Neck Cancer Progression by Modulating Crosstalk between STAT3 and TGF-β Signaling. Cancers. 2023;15:5766. doi: 10.3390/cancers15245766. PubMed DOI PMC

Teng Y., Kang H., Chu Y. Identification of an Exosomal Long Noncoding RNA SOX2-OT in Plasma as a Promising Biomarker for Lung Squamous Cell Carcinoma. Genet. Test. Mol. Biomark. 2019;23:235–240. doi: 10.1089/gtmb.2018.0103. PubMed DOI

Lai Y., Dong L., Jin H., Li H., Sun M., Li J. Exosome long non-coding RNA SOX2-OT contributes to ovarian cancer malignant progression by miR-181b-5p/SCD1 signaling. Aging. 2021;13:23726–23738. doi: 10.18632/aging.203645. PubMed DOI PMC

Jiang Y., Hei B., Hao W., Lin S., Wang Y., Liu X., Meng X., Guan Z. Clinical value of lncRNA SOX2-OT in pulmonary arterial hypertension and its role in pulmonary artery smooth muscle cell proliferation, migration, apoptosis, and inflammatory. Heart Lung. 2022;55:16–23. doi: 10.1016/j.hrtlng.2022.04.002. PubMed DOI

Zhang Y.-G., Zhou M.-W., Bai L., Han R.-Y., Lv K., Wang Z. Extracellular vesicles promote esophageal cancer progression by delivering IncZEB1-AS1 between cells. Eur. Rev. Med. Pharmacol. Sci. 2018;22:2667–2670. PubMed

Kato T., Kawakami K., Mizutani K., Ando T., Sakai Y., Sakurai K., Toyota S., Ehara H., Ito H., Ito M. H19 in Serum Extracellular Vesicles Reflects Resistance to AR Axis-targeted Therapy among CRPC Patients. Cancer Genom.-Proteom. 2023;20:456–468. doi: 10.21873/cgp.20397. PubMed DOI PMC

Rey F., Maghraby E., Messa L., Esposito L., Barzaghini B., Pandini C., Bordoni M., Gagliardi S., Diamanti L., Raimondi M.T., et al. Identification of a novel pathway in sporadic Amyotrophic Lateral Sclerosis mediated by the long non-coding RNA ZEB1-AS1. Neurobiol. Dis. 2023;178:106030. doi: 10.1016/j.nbd.2023.106030. PubMed DOI

Gu L., Sun H., Yan Z. LncRNA ZEB1 AS1 is downregulated in diabetic lung and regulates lung cell apoptosis. Exp. Ther. Med. 2020;20:225. doi: 10.3892/etm.2020.9355. PubMed DOI PMC

Ebrahimi A.A., Ashoori H., Vahidian F., Mosleh I.S., Kamian S. Long non-coding RNA panel as a molecular biomarker in glioma. J. Egypt. Natl. Cancer Inst. 2021;33:1. doi: 10.1186/s43046-021-00090-4. PubMed DOI

Liu C., Yang Z., Deng Z., Zhou Y., Gong Q., Zhao R., Chen T. Upregulated lncRNA ADAMTS9-AS2 suppresses progression of lung cancer through inhibition of miR-223-3p and promotion of TGFBR3. IUBMB Life. 2018;70:536–546. doi: 10.1002/iub.1752. PubMed DOI

Ghafouri-Fard S., Askari A., Hussen B.M., Baniahmad A., Taheri M., Mokhtari M. A review on the role of ADAMTS9-AS2 in different disorders. Pathol.-Res. Pract. 2023;243:154346. doi: 10.1016/j.prp.2023.154346. PubMed DOI

Jin D., Song Y., Chen Y., Zhang P. Identification of Three lncRNAs as Potential Predictive Biomarkers of Lung Adenocarcinoma. BioMed Res. Int. 2020;2020:7573689. doi: 10.1155/2020/7573689. PubMed DOI PMC

Liu D., Wu K., Yang Y., Zhu D., Zhang C., Zhao S. Long noncoding RNA ADAMTS9-AS2 suppresses the progression of esophageal cancer by mediating CDH3 promoter methylation. Mol. Carcinog. 2020;59:32–44. doi: 10.1002/mc.23126. PubMed DOI

Gao X., Chen X., Chen S., Yang J., Liu Q., Cheng Y. Screening of tumor grade-related mRNAs and lncRNAs for Esophagus Squamous Cell Carcinoma. J. Clin. Lab. Anal. 2021;35:e23797. doi: 10.1002/jcla.23797. PubMed DOI PMC

Holdt L.M., Stahringer A., Sass K., Pichler G., Kulak N.A., Wilfert W., Kohlmaier A., Herbst A., Northoff B.H., Nicolaou A., et al. Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat. Commun. 2016;7:12429. doi: 10.1038/ncomms12429. PubMed DOI PMC

Sanchez A., Lhuillier J., Grosjean G., Ayadi L., Maenner S. The Long Non-Coding RNA ANRIL in Cancers. Cancers. 2023;15:4160. doi: 10.3390/cancers15164160. PubMed DOI PMC

Lou N., Liu G., Pan Y. Long noncoding RNA ANRIL as a novel biomarker in human cancer. Future Oncol. 2020;16:2981–2995. doi: 10.2217/fon-2020-0470. PubMed DOI

Gupta S.C., Awasthee N., Rai V., Chava S., Gunda V., Challagundla K.B. Long non-coding RNAs and nuclear factor-κB crosstalk in cancer and other human diseases. Biochim. Et Biophys. Acta (BBA)-Rev. Cancer. 2020;1873:188316. doi: 10.1016/j.bbcan.2019.188316. PubMed DOI PMC

Wufuer A., Luohemanjiang X., Du L., Lei J., Shabier M., Han D.F., Ma J. ANRIL overexpression globally induces expression and alternative splicing of genes involved in inflammation in HUVECs. Mol. Med. Rep. 2022;27:27. doi: 10.3892/mmr.2022.12915. PubMed DOI PMC

Yu X., Zheng H., Tse G., Zhang L., Wu W.K.K. CASC 2: An emerging tumour-suppressing long noncoding RNA in human cancers and melanoma. Cell Prolif. 2018;51:e12506. doi: 10.1111/cpr.12506. PubMed DOI PMC

Zeng J., Chen J.-Y., Meng J., Chen Z. Inflammation and DNA methylation coregulate the CtBP-PCAF-c-MYC transcriptional complex to activate the expression of a long non-coding RNA CASC2 in acute pancreatitis. Int. J. Biol. Sci. 2020;16:2116–2130. doi: 10.7150/ijbs.43557. PubMed DOI PMC

Jiang C., Shen F., Du J., Fang X., Li X., Su J., Wang X., Huang X., Liu Z. Upregulation of CASC2 sensitized glioma to temozolomide cytotoxicity through autophagy inhibition by sponging miR-193a-5p and regulating mTOR expression. Biomed. Pharmacother. 2018;97:844–850. doi: 10.1016/j.biopha.2017.10.146. PubMed DOI

Wang R., Li Y., Zhu G., Tian B., Zeng W., Yang Y., Li Z. Long noncoding RNA CASC2 predicts the prognosis of glioma patients and functions as a suppressor for gliomas by suppressing Wnt/β-catenin signaling pathway. Neuropsychiatr. Dis. Treat. 2017;13:1805–1813. doi: 10.2147/NDT.S137171. PubMed DOI PMC

Liao Y., Shen L., Zhao H., Liu Q., Fu J., Guo Y., Peng R., Cheng L. LncRNA CASC2 Interacts With miR-181a to Modulate Glioma Growth and Resistance to TMZ Through PTEN Pathway. J. Cell. Biochem. 2017;118:1889–1899. doi: 10.1002/jcb.25910. PubMed DOI

Zhang J., Yin M., Peng G., Zhao Y. CRNDE: An important oncogenic long non-coding RNA in human cancers. Cell Prolif. 2018;51:e12440. doi: 10.1111/cpr.12440. PubMed DOI PMC

Yu Y., Wang L., Li Z., Zheng Y., Shi Z., Wang G. Long noncoding RNA CRNDE functions as a diagnostic and prognostic biomarker in osteosarcoma, as well as promotes its progression via inhibition of miR-335-3p. J. Biochem. Mol. Toxicol. 2021;35:e22734. doi: 10.1002/jbt.22734. PubMed DOI

Lu Y., Sha H., Sun X., Zhang Y., Wu Y., Zhang J., Zhang H., Wu J., Feng J. CRNDE: An oncogenic long non-coding RNA in cancers. Cancer Cell Int. 2020;20:162. doi: 10.1186/s12935-020-01246-3. PubMed DOI PMC

Xie H., Ma B., Gao Q., Zhan H., Liu Y., Chen Z., Ye S., Li J., Yao L., Huang W. Long non-coding RNA CRNDE in cancer prognosis: Review and meta-analysis. Clin. Chim. Acta. 2018;485:262–271. doi: 10.1016/j.cca.2018.07.003. PubMed DOI

Zottel A., Šamec N., Paska A.V., Jovčevska I. Coding of Glioblastoma Progression and Therapy Resistance through Long Noncoding RNAs. Cancers. 2020;12:1842. doi: 10.3390/cancers12071842. PubMed DOI PMC

Kiang K.M.-Y., Zhang X.-Q., Zhang G.P., Li N., Cheng S.Y., Poon M.-W., Pu J.K.-S., Lui W.-M., Leung G.K.-K. CRNDE Expression Positively Correlates with EGFR Activation and Modulates Glioma Cell Growth. Target. Oncol. 2017;12:353–363. doi: 10.1007/s11523-017-0488-3. PubMed DOI

Liang Q., Guan G., Li X., Wei C., Wu J., Cheng P., Wu A., Cheng W. Profiling pro-neural to mesenchymal transition identifies a lncRNA signature in glioma. J. Transl. Med. 2020;18:378. doi: 10.1186/s12967-020-02552-0. PubMed DOI PMC

Xue C., Chen C., Gu X., Li L. Progress and assessment of lncRNA DGCR5 in malignant phenotype and immune infiltration of human cancers. Am. J. Cancer Res. 2021;11:1–13. PubMed PMC

Johnson R. Long non-coding RNAs in Huntington’s disease neurodegeneration. Neurobiol. Dis. 2012;46:245–254. doi: 10.1016/j.nbd.2011.12.006. PubMed DOI

Huang H., Yang X., Chen J., Fu J., Chen C., Wen J., Mo Q. LncRNA DGCR5 inhibits the proliferation of colorectal cancer cells by downregulating miR 21. Oncol. Lett. 2019;18:3331–3336. doi: 10.3892/ol.2019.10671. PubMed DOI PMC

Liu Y., Chang Y., Lu S., Xiang Y. Downregulation of long noncoding RNA DGCR5 contributes to the proliferation, migration, and invasion of cervical cancer by activating Wnt signaling pathway. J. Cell. Physiol. 2019;234:11662–11669. doi: 10.1002/jcp.27825. PubMed DOI

Fang C., He W., Xu T., Dai J., Xu L., Sun F. Upregulation of lncRNA DGCR5 correlates with better prognosis and inhibits bladder cancer progression via transcriptionally facilitating P21 expression. J. Cell. Physiol. 2019;234:6254–6262. doi: 10.1002/jcp.27356. PubMed DOI

Wang X., Shi M., Xiang T., Bu Y. Long noncoding RNA DGCR5 represses hepatocellular carcinoma progression by inactivating Wnt signaling pathway. J. Cell. Biochem. 2019;120:275–282. doi: 10.1002/jcb.27342. PubMed DOI

Wang Y., Liu J., Shi M., Chen F. LncRNA DGCR5 represses the development of hepatocellular carcinoma by targeting the miR-346/KLF14 axis. J. Cell. Physiol. 2019;234:572–580. doi: 10.1002/jcp.26779. PubMed DOI

Dong H., Wang R., Jin X., Zeng J., Pan J. LncRNA DGCR5 promotes lung adenocarcinoma (LUAD) progression via inhibiting hsa-mir-22-3p. J. Cell. Physiol. 2018;233:4126–4136. doi: 10.1002/jcp.26215. PubMed DOI

Wang R., Dong H., Zeng J., Pan J., Jin X. LncRNA DGCR5 contributes to CSC-like properties via modulating miR-330-5p/CD44 in NSCLC. J. Cell. Physiol. 2018;233:7447–7456. doi: 10.1002/jcp.26590. PubMed DOI

Liu S., Chu B., Cai C., Wu X., Yao W., Wu Z., Yang Z., Li F., Liu Y., Dong P., et al. DGCR5 Promotes Gallbladder Cancer by Sponging MiR-3619-5p via MEK/ERK1/2 and JNK/p38 MAPK Pathways. J. Cancer. 2020;11:5466–5477. doi: 10.7150/jca.46351. PubMed DOI PMC

Wu X., Hou P., Qiu Y., Wang Q., Lu X. Large-Scale Analysis Reveals the Specific Clinical and Immune Features of DGCR5 in Glioma/p. OncoTargets Ther. 2020;13:7531–7543. doi: 10.2147/OTT.S257050. PubMed DOI PMC

Zhang B., Cheng Y., Li R., Lian M., Guo S., Liang C. Development of a novel angiogenesis-related lncRNA signature to predict the prognosis and immunotherapy of glioblastoma multiforme. Transl. Cancer Res. 2023;12:13–30. doi: 10.21037/tcr-22-1592. PubMed DOI PMC

Yang X., Xie Z., Lei X., Gan R. Long non coding RNA GAS5 in human cancer (Review) Oncol. Lett. 2020;20:2587–2594. doi: 10.3892/ol.2020.11809. PubMed DOI PMC

Yu Y., Hann S.S. Novel Tumor Suppressor lncRNA Growth Arrest-Specific 5 (GAS5) In Human Cancer. OncoTargets Ther. 2019;12:8421–8436. doi: 10.2147/OTT.S221305. PubMed DOI PMC

Huang H., Du J., Jin B., Pang L., Duan N., Huang C., Hou J., Yu W., Hao H., Li H. Combination of Urine Exosomal mRNAs and lncRNAs as Novel Diagnostic Biomarkers for Bladder Cancer. Front. Oncol. 2021;11:667212. doi: 10.3389/fonc.2021.667212. PubMed DOI PMC

Wu S., Ren K., Zhao J., Li J., Jia B., Wu X., Dou Y., Fei X., Huan Y., He X., et al. LncRNA GAS5 represses stemness and malignancy of gliomas via elevating the SPACA6-miR-125a/let-7e Axis. Front. Oncol. 2022;12:803652. doi: 10.3389/fonc.2022.803652. PubMed DOI PMC

Chen X., Luo Q., Xiao Y., Zhu J., Zhang Y., Ding J., Li J. LINC00467: An oncogenic long noncoding RNA. Cancer Cell Int. 2022;22:303. doi: 10.1186/s12935-022-02733-5. PubMed DOI PMC

Zhu Y., Li J., Bo H., He D., Xiao M., Xiang L., Gong L., Hu Y., Zhang Y., Cheng Y., et al. LINC00467 is up-regulated by TDG-mediated acetylation in non-small cell lung cancer and promotes tumor progression. Oncogene. 2020;39:6071–6084. doi: 10.1038/s41388-020-01421-w. PubMed DOI

Yang J., Liu Y., Mai X., Lu S., Jin L., Tai X. STAT1-induced upregulation of LINC00467 promotes the proliferation migration of lung adenocarcinoma cells by epigenetically silencing DKK1 to activate Wnt/β-catenin signaling pathway. Biochem. Biophys. Res. Commun. 2019;514:118–126. doi: 10.1016/j.bbrc.2019.04.107. PubMed DOI

Ding H., Luo Y., Hu K., Liu P., Xiong M. PLinc00467 promotes lung adenocarcinoma proliferation via sponging miR-20b-5p to activate CCND1 expression/p. OncoTargets Ther. 2019;12:6733–6743. doi: 10.2147/OTT.S207748. PubMed DOI PMC

Deng L.-H., Zhao H., Bai L.-P., Xie J., Liu K., Yan F. Linc00467 promotion of gastric cancer development by directly regulating miR-7-5p expression and downstream epidermal growth factor receptor. Bioengineered. 2021;12:9484–9495. doi: 10.1080/21655979.2021.1996014. PubMed DOI PMC

Changizian M., Nourisanami F., Hajpoor V., Parvaresh M., Bahri Z., Motovali-Bashi M. LINC00467: A key oncogenic long non-coding RNA. Clin. Chim. Acta. 2022;536:112–125. doi: 10.1016/j.cca.2022.09.013. PubMed DOI

Wang W., Bo H., Liang Y., Li G. LINC00467 Is Upregulated by DNA Copy Number Amplification and Hypomethylation and Shows ceRNA Potential in Lung Adenocarcinoma. Front. Endocrinol. 2022;12:802463. doi: 10.3389/fendo.2021.802463. PubMed DOI PMC

Xu L., Liu C., Ye Z., Wu C., Ding Y., Huang J. Overexpressed LINC00467 promotes the viability and proliferation yet inhibits apoptosis of gastric cancer cells via raising ITGB3 level. Tissue and Cell. 2021;73:101644. doi: 10.1016/j.tice.2021.101644. PubMed DOI

Zheng Y., Nie P., Xu S. Long noncoding RNA linc00467 plays an oncogenic role in hepatocellular carcinoma by regulating the miR-18a-5p/NEDD9 axis. J. Cell. Biochem. 2020;121:3135–3144. doi: 10.1002/jcb.29581. PubMed DOI

Ge Q., Jia D., Cen D., Qi Y., Shi C., Li J., Sang L., Yang L.-J., He J., Lin A., et al. Micropeptide ASAP encoded by LINC00467 promotes colorectal cancer progression by directly modulating ATP synthase activity. J. Clin. Investig. 2021;131:22. doi: 10.1172/JCI152911. PubMed DOI PMC

Jiang H., Deng W., Zhu K., Zeng Z., Hu B., Zhou Z., Xie A., Zhang C., Fu B., Zhou X., et al. LINC00467 Promotes Prostate Cancer Progression via M2 Macrophage Polarization and the miR-494-3p/STAT3 Axis. Front. Oncol. 2021;11:661431. doi: 10.3389/fonc.2021.661431. PubMed DOI PMC

Liang R., Tang Y. LINC00467 knockdown repressed cell proliferation but stimulated cell apoptosis in glioblastoma via miR-339-3p/IP6K2 axis. Cancer Biomark. 2020;28:169–180. doi: 10.3233/CBM-190939. PubMed DOI

Han X., Zhang S. Role of Long Non-Coding RNA LINC00641 in Cancer. Front. Oncol. 2022;11:829137. doi: 10.3389/fonc.2021.829137. PubMed DOI PMC

Tabatabaiefar M.A., Sajjadi R.S., Modarressi M.H. JPX and LINC00641 ncRNAs expression in prostate tissue: A case-control study. Res. Pharm. Sci. 2021;16:5. doi: 10.4103/1735-5362.323916. PubMed DOI PMC

Li Z., Hong S., Liu Z. LncRNA LINC00641 predicts prognosis and inhibits bladder cancer progression through miR-197-3p/KLF10/PTEN/PI3K/AKT cascade. Biochem. Biophys. Res. Commun. 2018;503:1825–1829. doi: 10.1016/j.bbrc.2018.07.120. PubMed DOI

Mao Q., Lv M., Li L., Sun Y., Liu S., Shen Y., Liu Z., Luo S. Long intergenic noncoding RNA 00641 inhibits breast cancer cell proliferation, migration, and invasion by sponging miR-194-5p. J. Cell. Physiol. 2020;235:2668–2675. doi: 10.1002/jcp.29170. PubMed DOI

Tang X., Zuo C., Fang P., Liu G., Qiu Y., Huang Y., Tang R. Targeting Glioblastoma Stem Cells: A Review on Biomarkers, Signal Pathways and Targeted Therapy. Front. Oncol. 2021;11:701291. doi: 10.3389/fonc.2021.701291. PubMed DOI PMC

Hu Y., Su Y., Lei X., Zhao H., Wang L., Xu T., Guo J., Yang W., Zhang X. LINC00641/miR-582-5p mediate oxaliplatin resistance by activating autophagy in gastric adenocarcinoma. Sci. Rep. 2020;10:14981. doi: 10.1038/s41598-020-70913-2. PubMed DOI PMC

Wang X., Wang H., Long H., Li D., Zheng X. LINC00641 regulates autophagy and intervertebral disc degeneration by acting as a competitive endogenous RNA of miR-153-3p under nutrition deprivation stress. J. Cell. Physiol. 2019;234:7115–7127. doi: 10.1002/jcp.27466. PubMed DOI

Chen Q., Yan J., Xie W., Xie W., Li M., Ye Y. LncRNA LINC00641 Sponges miR-497-5p to Ameliorate Neural Injury Induced by Anesthesia via Up-Regulating BDNF. Front. Mol. Neurosci. 2020;13:95. doi: 10.3389/fnmol.2020.00095. PubMed DOI PMC

Zhang C., Liu H., Xu P., Tan Y., Xu Y., Wang L., Liu B., Chen Q., Tian D. Identification and validation of a five-lncRNA prognostic signature related to Glioma using bioinformatics analysis. BMC Cancer. 2021;21:251. doi: 10.1186/s12885-021-07972-9. PubMed DOI PMC

Yang J., Yu D., Liu X., Changyong E., Yu S. LINC00641/miR-4262/NRGN axis confines cell proliferation in glioma. Cancer Biol. Ther. 2020;21:758–766. doi: 10.1080/15384047.2020.1776581. PubMed DOI PMC

Liang R., Zhi Y., Zheng G., Zhang B., Zhu H., Wang M. Analysis of long non-coding RNAs in glioblastoma for prognosis prediction using weighted gene co-expression network analysis, Cox regression, and L1-LASSO penalization. OncoTargets Ther. 2019;12:157–168. doi: 10.2147/OTT.S171957. PubMed DOI PMC

Lu J., Zhu D., Zhang X., Wang J., Cao H., Li L. The crucial role of LncRNA MIR210HG involved in the regulation of human cancer and other disease. Clin. Transl. Oncol. 2023;25:137–150. doi: 10.1007/s12094-022-02943-3. PubMed DOI

Lei D., Fang C., Deng N., Yao B., Fan C. Long noncoding RNA expression profiling identifies MIR210HG as a novel molecule in severe preeclampsia. Life Sci. 2021;270:119121. doi: 10.1016/j.lfs.2021.119121. PubMed DOI

Li D., Qian X., Xu P., Wang X., Li Z., Qian J., Yao J. Identification of lncRNAs and Their Functional Network Associated with Chemoresistance in SW1990/GZ Pancreatic Cancer Cells by RNA Sequencing. DNA Cell Biol. 2018;37:839–849. doi: 10.1089/dna.2018.4312. PubMed DOI

Wang Y., Li W., Chen X., Li Y., Wen P., Xu F. MIR210HG predicts poor prognosis and functions as an oncogenic lncRNA in hepatocellular carcinoma. Biomed. Pharmacother. 2019;111:1297–1301. doi: 10.1016/j.biopha.2018.12.134. PubMed DOI

Yu T., Li G., Wang C., Gong G., Wang L., Li C., Chen Y., Wang X. MIR210HG regulates glycolysis, cell proliferation, and metastasis of pancreatic cancer cells through miR-125b-5p/HK2/PKM2 axis. RNA Biol. 2021;18:2513–2530. doi: 10.1080/15476286.2021.1930755. PubMed DOI PMC

Ata-Abadi N.S., Mowla S.J., Aboutalebi F., Dormiani K., Kiani-Esfahani A., Tavalaee M., Nasr-Esfahani M.H. Hypoxia-related long noncoding RNAs are associated with varicocele-related male infertility. PLoS ONE. 2020;15:e0232357. doi: 10.1371/journal.pone.0232357. PubMed DOI PMC

Lu C.-H., Wei S.-T., Liu J.-J., Chang Y.-J., Lin Y.-F., Yu C.-S., Chang S.L.-Y. Recognition of a Novel Gene Signature for Human Glioblastoma. Int. J. Mol. Sci. 2022;23:4157. doi: 10.3390/ijms23084157. PubMed DOI PMC

Zuo X.-L., Cai J., Chen Z.-Q., Zhang Y., Liang L.-H., Wang J.-F., Wang J.-G., Wu J., Mao J.-D. The utility of long non-coding RNA ZEB1-AS1 as a prognostic biomarker in human solid tumors: A meta-analysis. Clin. Chim. Acta. 2018;485:14–20. doi: 10.1016/j.cca.2018.06.018. PubMed DOI

Wang X., Guo Y., Wang C., Wang Q., Yan G. Long Noncoding RNA ZEB1-AS1 Downregulates miR-23a, Promotes Tumor Progression, and Predicts the Survival of Oral Squamous Cell Carcinoma Patients. OncoTargets Ther. 2021;14:2699–2710. doi: 10.2147/OTT.S297209. PubMed DOI PMC

Wang J., Pan J., Li H., Long J., Fang F., Chen J., Zhu X., Xiang X., Zhang D. LncRNA ZEB1-AS1 Was Suppressed by p53 for Renal Fibrosis in Diabetic Nephropathy. Mol. Ther.-Nucleic Acids. 2018;12:741–750. doi: 10.1016/j.omtn.2018.07.012. PubMed DOI PMC

Zhong J., Cheng B., Yang L., Li G., Yuan Y., Luo G., Shu Z., Jiang H. LncRNA ZEB1-AS1 knockdown alleviates oxidative low-density lipoprotein-induced endothelial cell injury via the miR-590-5p/ HDAC9 axis. Cent. Eur. J. Immunol. 2021;46:325–335. doi: 10.5114/ceji.2021.108767. PubMed DOI PMC

Lv Q.-L., Hu L., Chen S.-H., Sun B., Fu M.-L., Qin C.-Z., Qu Q., Wang G.-H., He C.-J., Zhou H.-H. A Long Noncoding RNA ZEB1-AS1 Promotes Tumorigenesis and Predicts Poor Prognosis in Glioma. Int. J. Mol. Sci. 2016;17:1431. doi: 10.3390/ijms17091431. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace