Revisiting Brain Tuberous Sclerosis Complex in Rat and Human: Shared Molecular and Cellular Pathology Leads to Distinct Neurophysiological and Behavioral Phenotypes
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
33398801
PubMed Central
PMC8423952
DOI
10.1007/s13311-020-01000-7
PII: S1878-7479(23)01133-9
Knihovny.cz E-zdroje
- Klíčová slova
- TSC1, TSC2, autism spectrum disorders, hamartoma, mTOR signaling, neoplasia, refractory epilepsy,
- MeSH
- druhová specificita MeSH
- duševní poruchy genetika patologie psychologie MeSH
- fenotyp * MeSH
- hamartin genetika MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- mozek patologie MeSH
- TOR serin-threoninkinasy genetika MeSH
- tuberin genetika MeSH
- tuberózní skleróza genetika patologie psychologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- hamartin MeSH
- MTOR protein, human MeSH Prohlížeč
- TOR serin-threoninkinasy MeSH
- tuberin MeSH
Tuberous sclerosis complex (TSC) is a dominant autosomal genetic disorder caused by loss-of-function mutations in TSC1 and TSC2, which lead to constitutive activation of the mammalian target of rapamycin C1 (mTORC1) with its decoupling from regulatory inputs. Because mTORC1 integrates an array of molecular signals controlling protein synthesis and energy metabolism, its unrestrained activation inflates cell growth and division, resulting in the development of benign tumors in the brain and other organs. In humans, brain malformations typically manifest through a range of neuropsychiatric symptoms, among which mental retardation, intellectual disabilities with signs of autism, and refractory seizures, which are the most prominent. TSC in the rat brain presents the first-rate approximation of cellular and molecular pathology of the human brain, showing many instructive characteristics. Nevertheless, the developmental profile and distribution of lesions in the rat brain, with neurophysiological and behavioral manifestation, deviate considerably from humans, raising numerous research and translational questions. In this study, we revisit brain TSC in human and Eker rats to relate their histopathological, electrophysiological, and neurobehavioral characteristics. We discuss shared and distinct aspects of the pathology and consider factors contributing to phenotypic discrepancies. Given the shared genetic cause and molecular pathology, phenotypic deviations suggest an incomplete understanding of the disease. Narrowing the knowledge gap in the future should not only improve the characterization of the TSC rat model but also explain considerable variability in the clinical manifestation of the disease in humans.
Zobrazit více v PubMed
Ryskalin L, et al. mTOR-Dependent Cell Proliferation in the Brain. Biomed Res Int. 2017;2017:7082696. doi: 10.1155/2017/7082696. PubMed DOI PMC
Crino, P.B., mTOR signaling in epilepsy: insights from malformations of cortical development. Cold Spring Harb Perspect Med, 2015. 5(4):a022442. 10.1101/cshperspect.a022442. PubMed PMC
Saxton RA, Sabatini DM. mTOR Signaling in Growth, Metabolism, and Disease. Cell. 2017;169(2):361–371. doi: 10.1016/j.cell.2017.03.035. PubMed DOI
Dentel B, Escamilla CO, Tsai PT. Therapeutic Targeting of mTORC2 in mTORopathies. Neuron. 2019;104(6):1032–1033. doi: 10.1016/j.neuron.2019.11.026. PubMed DOI
Richardson EP., Jr Pathology of tuberous sclerosis. Neuropathologic aspects. Ann N Y Acad Sci. 1991;615:128–139. doi: 10.1111/j.1749-6632.1991.tb37755.x. PubMed DOI
Vinters HV, et al. Cortical dysplasia, genetic abnormalities and neurocutaneous syndromes. Dev Neurosci. 1999;21(3-5):248–259. doi: 10.1159/000017404. PubMed DOI
Eker R. Familial renal adenomas in Wistar rats; a preliminary report. Acta Pathol Microbiol Scand. 1954;34(6):554–562. doi: 10.1111/j.1699-0463.1954.tb00301.x. PubMed DOI
Eker R, et al. Hereditary renal adenomas and adenocarcinomas in rats. Diagn Histopathol. 1981;4(1):99–110. PubMed
Yeung RS, Katsetos CD, Klein-Szanto A. Subependymal astrocytic hamartomas in the Eker rat model of tuberous sclerosis. Am J Pathol. 1997;151(5):1477–1486. PubMed PMC
Kutna V, et al. Tuberous Sclerosis (tsc2+/-) Model Eker Rats Reveals Extensive Neuronal Loss with Microglial Invasion and Vascular Remodeling Related to Brain Neoplasia. Neurotherapeutics. 2020;17(1):329–339. doi: 10.1007/s13311-019-00812-6. PubMed DOI PMC
Waltereit R, et al. Enhanced episodic-like memory and kindling epilepsy in a rat model of tuberous sclerosis. J Neurochem. 2006;96(2):407–413. doi: 10.1111/j.1471-4159.2005.03538.x. PubMed DOI
Rennebeck G, et al. Loss of function of the tuberous sclerosis 2 tumor suppressor gene results in embryonic lethality characterized by disrupted neuroepithelial growth and development. Proc Natl Acad Sci U S A. 1998;95(26):15629–15634. doi: 10.1073/pnas.95.26.15629. PubMed DOI PMC
Knudson AG., Jr Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A. 1971;68(4):820–823. doi: 10.1073/pnas.68.4.820. PubMed DOI PMC
Tomlinson IP, Roylance R, Houlston RS. Two hits revisited again. J Med Genet. 2001;38(2):81–85. doi: 10.1136/jmg.38.2.81. PubMed DOI PMC
Afshar Saber W, Sahin M. Recent advances in human stem cell-based modeling of Tuberous Sclerosis Complex. Mol Autism. 2020;11(1):16. doi: 10.1186/s13229-020-0320-2. PubMed DOI PMC
Blair JD, Bateup HS. New frontiers in modeling tuberous sclerosis with human stem cell-derived neurons and brain organoids. Dev Dyn. 2020;249(1):46–55. doi: 10.1002/dvdy.60. PubMed DOI PMC
Robertson, F.L., et al., Experimental models and tools to tackle glioblastoma. Dis Model Mech, 2019. 12(9):dmm040386. 10.1242/dmm.040386. PubMed PMC
Parsa AT, et al. Limitations of the C6/Wistar rat intracerebral glioma model: implications for evaluating immunotherapy. Neurosurgery. 2000;47(4):993–999. doi: 10.1097/00006123-200010000-00050. PubMed DOI
Workman P, et al. Guidelines for the welfare and use of animals in cancer research. Br J Cancer. 2010;102(11):1555–1577. doi: 10.1038/sj.bjc.6605642. PubMed DOI PMC
Simons, B.W. and C. Brayton, Challenges and Limitations of Mouse Xenograft Models of Cancer. Patient Derived Tumor Xenograft Models, ed. R. Uthamanthil and P. Tinkey. 2016, Johns Hopkins University School of Medicine, Baltimore, MD, United States: Academic Press.
Kim KM, et al. Failure of a patient-derived xenograft for brain tumor model prepared by implantation of tissue fragments. Cancer Cell Int. 2016;16:43. doi: 10.1186/s12935-016-0319-0. PubMed DOI PMC
Fryer AE, et al. Evidence that the gene for tuberous sclerosis is on chromosome 9. Lancet. 1987;1(8534):659–661. doi: 10.1016/S0140-6736(87)90416-8. PubMed DOI
van Slegtenhorst M, et al. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science. 1997;277(5327):805–808. doi: 10.1126/science.277.5327.805. PubMed DOI
Kandt RS, et al. Linkage of an important gene locus for tuberous sclerosis to a chromosome 16 marker for polycystic kidney disease. Nat Genet. 1992;2(1):37–41. doi: 10.1038/ng0992-37. PubMed DOI
Henske EP, et al. Tuberous sclerosis complex. Nat Rev Dis Primers. 2016;2:16035. doi: 10.1038/nrdp.2016.35. PubMed DOI
Lam HC, Siroky BJ, Henske EP. Renal disease in tuberous sclerosis complex: pathogenesis and therapy. Nat Rev Nephrol. 2018;14(11):704–716. doi: 10.1038/s41581-018-0059-6. PubMed DOI
Bongaarts A, et al. Subependymal giant cell astrocytomas in Tuberous Sclerosis Complex have consistent TSC1/TSC2 biallelic inactivation, and no BRAF mutations. Oncotarget. 2017;8(56):95516–95529. doi: 10.18632/oncotarget.20764. PubMed DOI PMC
Huang J, Manning BD. The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem J. 2008;412(2):179–190. doi: 10.1042/BJ20080281. PubMed DOI PMC
Rosset C, Netto CBO, Ashton-Prolla P. TSC1 and TSC2 gene mutations and their implications for treatment in Tuberous Sclerosis Complex: a review. Genet Mol Biol. 2017;40(1):69–79. doi: 10.1590/1678-4685-gmb-2015-0321. PubMed DOI PMC
Lamb RF, et al. The TSC1 tumour suppressor hamartin regulates cell adhesion through ERM proteins and the GTPase Rho. Nat Cell Biol. 2000;2(5):281–287. doi: 10.1038/35010550. PubMed DOI
Haddad LA, et al. The TSC1 tumor suppressor hamartin interacts with neurofilament-L and possibly functions as a novel integrator of the neuronal cytoskeleton. J Biol Chem. 2002;277(46):44180–44186. doi: 10.1074/jbc.M207211200. PubMed DOI
Schopel M, et al. The small GTPases Ras and Rheb studied by multidimensional NMR spectroscopy: structure and function. Biol Chem. 2017;398(5-6):577–588. doi: 10.1515/hsz-2016-0276. PubMed DOI
Fehon RG, McClatchey AI, Bretscher A. Organizing the cell cortex: the role of ERM proteins. Nat Rev Mol Cell Biol. 2010;11(4):276–287. doi: 10.1038/nrm2866. PubMed DOI PMC
Kleijer KT, et al. Neurobiology of autism gene products: towards pathogenesis and drug targets. Psychopharmacology. 2014;231(6):1037–1062. doi: 10.1007/s00213-013-3403-3. PubMed DOI
Kobayashi T, et al. Identification of a leader exon and a core promoter for the rat tuberous sclerosis 2 (Tsc2) gene and structural comparison with the human homolog. Mamm Genome. 1997;8(8):554–558. doi: 10.1007/s003359900502. PubMed DOI
Maheshwar MM, et al. The GAP-related domain of tuberin, the product of the TSC2 gene, is a target for missense mutations in tuberous sclerosis. Hum Mol Genet. 1997;6(11):1991–1996. doi: 10.1093/hmg/6.11.1991. PubMed DOI
Nussinov R, et al. The Mystery of Rap1 Suppression of Oncogenic Ras. Trends Cancer. 2020;6(5):369–379. doi: 10.1016/j.trecan.2020.02.002. PubMed DOI PMC
Jaskiewicz, A., B. Pajak, and A. Orzechowski, The Many Faces of Rap1 GTPase. Int J Mol Sci, 2018. 19(10):2848. 10.3390/ijms19102848. PubMed PMC
Rubinfeld B, et al. Molecular cloning of a GTPase activating protein specific for the Krev-1 protein p21rap1. Cell. 1991;65(6):1033–1042. doi: 10.1016/0092-8674(91)90555-D. PubMed DOI
Yeung RS. Lessons from the Eker rat model: from cage to bedside. Curr Mol Med. 2004;4(8):799–806. doi: 10.2174/1566524043359791. PubMed DOI
Soucek T, et al. Role of the tuberous sclerosis gene-2 product in cell cycle control. Loss of the tuberous sclerosis gene-2 induces quiescent cells to enter S phase. J Biol Chem. 1997;272(46):29301–29308. doi: 10.1074/jbc.272.46.29301. PubMed DOI
Jin M, An Q, Wang L. Importance of tuberin in carcinogenesis. Oncol Lett. 2017;14(3):2598–2602. doi: 10.3892/ol.2017.6490. PubMed DOI PMC
Rosner M, Hengstschlager M. Cytoplasmic/nuclear localization of tuberin in different cell lines. Amino Acids. 2007;33(4):575–579. doi: 10.1007/s00726-007-0541-0. PubMed DOI
Wienecke R, et al. Co-localization of the TSC2 product tuberin with its target Rap1 in the Golgi apparatus. Oncogene. 1996;13(5):913–923. PubMed
Demetriades C, Doumpas N, Teleman AA. Regulation of TORC1 in response to amino acid starvation via lysosomal recruitment of TSC2. Cell. 2014;156(4):786–799. doi: 10.1016/j.cell.2014.01.024. PubMed DOI PMC
Demetriades C, Plescher M, Teleman AA. Lysosomal recruitment of TSC2 is a universal response to cellular stress. Nat Commun. 2016;7:10662. doi: 10.1038/ncomms10662. PubMed DOI PMC
Johnson MW, et al. Hamartin and tuberin expression in human tissues. Mod Pathol. 2001;14(3):202–210. doi: 10.1038/modpathol.3880286. PubMed DOI
Li Y, et al. Regionally specific TSC1 and TSC2 gene expression in tuberous sclerosis complex. Sci Rep. 2018;8(1):13373. doi: 10.1038/s41598-018-31075-4. PubMed DOI PMC
Dan HC, et al. Phosphatidylinositol 3-kinase/Akt pathway regulates tuberous sclerosis tumor suppressor complex by phosphorylation of tuberin. J Biol Chem. 2016;291(43):22848. doi: 10.1074/jbc.A116.205838. PubMed DOI PMC
Inoki K, et al. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol. 2002;4(9):648–657. doi: 10.1038/ncb839. PubMed DOI
Potter CJ, Pedraza LG, Xu T. Akt regulates growth by directly phosphorylating Tsc2. Nat Cell Biol. 2002;4(9):658–665. doi: 10.1038/ncb840. PubMed DOI
Tee AR, et al. Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proc Natl Acad Sci U S A. 2002;99(21):13571–13576. doi: 10.1073/pnas.202476899. PubMed DOI PMC
Ma L, et al. Identification of S664 TSC2 phosphorylation as a marker for extracellular signal-regulated kinase mediated mTOR activation in tuberous sclerosis and human cancer. Cancer Res. 2007;67(15):7106–7112. doi: 10.1158/0008-5472.CAN-06-4798. PubMed DOI
Nie D, et al. Tsc2-Rheb signaling regulates EphA-mediated axon guidance. Nat Neurosci. 2010;13(2):163–172. doi: 10.1038/nn.2477. PubMed DOI PMC
Han S, et al. Pam (Protein associated with Myc) functions as an E3 ubiquitin ligase and regulates TSC/mTOR signaling. Cell Signal. 2008;20(6):1084–1091. doi: 10.1016/j.cellsig.2008.01.020. PubMed DOI PMC
Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003;115(5):577–590. doi: 10.1016/S0092-8674(03)00929-2. PubMed DOI
Hahn-Windgassen A, et al. Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity. J Biol Chem. 2005;280(37):32081–32089. doi: 10.1074/jbc.M502876200. PubMed DOI
Lee DF, et al. IKK beta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell. 2007;130(3):440–455. doi: 10.1016/j.cell.2007.05.058. PubMed DOI
Kwiatkowski DJ. Rhebbing up mTOR: new insights on TSC1 and TSC2, and the pathogenesis of tuberous sclerosis. Cancer Biol Ther. 2003;2(5):471–476. doi: 10.4161/cbt.2.5.446. PubMed DOI
Meikle L, et al. A mouse model of tuberous sclerosis: neuronal loss of Tsc1 causes dysplastic and ectopic neurons, reduced myelination, seizure activity, and limited survival. J Neurosci. 2007;27(21):5546–5558. doi: 10.1523/JNEUROSCI.5540-06.2007. PubMed DOI PMC
Goncharova EA, et al. Tuberin regulates p70 S6 kinase activation and ribosomal protein S6 phosphorylation. A role for the TSC2 tumor suppressor gene in pulmonary lymphangioleiomyomatosis (LAM) J Biol Chem. 2002;277(34):30958–30967. doi: 10.1074/jbc.M202678200. PubMed DOI
Cheadle JP, et al. Molecular genetic advances in tuberous sclerosis. Hum Genet. 2000;107(2):97–114. doi: 10.1007/s004390000348. PubMed DOI
Napolioni V, Curatolo P. Genetics and molecular biology of tuberous sclerosis complex. Curr Genomics. 2008;9(7):475–487. doi: 10.2174/138920208786241243. PubMed DOI PMC
Osborne JP, Fryer A, Webb D. Epidemiology of tuberous sclerosis. Ann N Y Acad Sci. 1991;615:125–127. doi: 10.1111/j.1749-6632.1991.tb37754.x. PubMed DOI
Samueli S, et al. Tuberous Sclerosis Complex: new criteria for diagnostic work-up and management. Wien Klin Wochenschr. 2015;127(15-16):619–630. doi: 10.1007/s00508-015-0758-y. PubMed DOI
Prather P, de Vries PJ. Behavioral and cognitive aspects of tuberous sclerosis complex. J Child Neurol. 2004;19(9):666–674. doi: 10.1177/08830738040190090601. PubMed DOI
de Vries PJ, et al. A clinical update on tuberous sclerosis complex-associated neuropsychiatric disorders (TAND) Am J Med Genet C: Semin Med Genet. 2018;178(3):309–320. doi: 10.1002/ajmg.c.31637. PubMed DOI PMC
Gipson TT, et al. Potential for treatment of severe autism in tuberous sclerosis complex. World J Clin Pediatr. 2013;2(3):16–25. doi: 10.5409/wjcp.v2.i3.16. PubMed DOI PMC
Hunt A, Dennis J. Psychiatric disorder among children with tuberous sclerosis. Dev Med Child Neurol. 1987;29:190–198. doi: 10.1111/j.1469-8749.1987.tb02135.x. PubMed DOI
Holmes GL, Stafstrom CE, Tuberous Sclerosis G. Study, Tuberous sclerosis complex and epilepsy: recent developments and future challenges. Epilepsia. 2007;48(4):617–630. doi: 10.1111/j.1528-1167.2007.01035.x. PubMed DOI
Nabbout R, et al. Epilepsy in tuberous sclerosis complex: Findings from the TOSCA Study. Epilepsia Open. 2019;4(1):73–84. doi: 10.1002/epi4.12286. PubMed DOI PMC
Braffman BH, et al. MR imaging of tuberous sclerosis: pathogenesis of this phakomatosis, use of gadopentetate dimeglumine, and literature review. Radiology. 1992;183(1):227–238. doi: 10.1148/radiology.183.1.1549677. PubMed DOI
Ridler K, et al. Standardized whole brain mapping of tubers and subependymal nodules in tuberous sclerosis complex. J Child Neurol. 2004;19(9):658–665. doi: 10.1177/08830738040190090501. PubMed DOI
Peters JM, et al. Diffusion tensor imaging and related techniques in tuberous sclerosis complex: review and future directions. Future Neurol. 2013;8(5):583–597. doi: 10.2217/fnl.13.37. PubMed DOI PMC
Yamanouchi H, et al. Giant cells in cortical tubers in tuberous sclerosis showing synaptophysin-immunoreactive halos. Brain and Development. 1997;19(1):21–24. doi: 10.1016/S0387-7604(96)00079-4. PubMed DOI
Mizuguchi M, Takashima S. Neuropathology of tuberous sclerosis. Brain and Development. 2001;23(7):508–515. doi: 10.1016/S0387-7604(01)00304-7. PubMed DOI
Grajkowska W, et al. Brain lesions in tuberous sclerosis complex. Review. Folia Neuropathol. 2010;48(3):139–149. PubMed
Fohlen M, et al. Refractory epilepsy in preschool children with tuberous sclerosis complex: Early surgical treatment and outcome. Seizure. 2018;60:71–79. doi: 10.1016/j.seizure.2018.06.005. PubMed DOI
Kalantari BN, Salamon N. Neuroimaging of tuberous sclerosis: spectrum of pathologic findings and frontiers in imaging. AJR Am J Roentgenol. 2008;190(5):W304–W309. doi: 10.2214/AJR.07.2928. PubMed DOI
Yamanouchi H, et al. Evidence of abnormal differentiation in giant cells of tuberous sclerosis. Pediatr Neurol. 1997;17(1):49–53. doi: 10.1016/S0887-8994(97)00036-2. PubMed DOI
Henske EP, et al. Loss of tuberin in both subependymal giant cell astrocytomas and angiomyolipomas supports a two-hit model for the pathogenesis of tuberous sclerosis tumors. Am J Pathol. 1997;151(6):1639–1647. PubMed PMC
DiMario FJ., Jr Brain abnormalities in tuberous sclerosis complex. J Child Neurol. 2004;19(9):650–657. doi: 10.1177/08830738040190090401. PubMed DOI
Goh S, Butler W, Thiele EA. Subependymal giant cell tumors in tuberous sclerosis complex. Neurology. 2004;63(8):1457–1461. doi: 10.1212/01.WNL.0000142039.14522.1A. PubMed DOI
Adriaensen ME, et al. Prevalence of subependymal giant cell tumors in patients with tuberous sclerosis and a review of the literature. Eur J Neurol. 2009;16(696):691–6. doi: 10.1111/j.1468-1331.2009.02567.x. PubMed DOI
Cuccia V, et al. Subependymal giant cell astrocytoma in children with tuberous sclerosis. Childs Nerv Syst. 2003;19(4):232–243. doi: 10.1007/s00381-002-0700-2. PubMed DOI
Buccoliero AM, et al. Subependymal giant cell astrocytoma (SEGA): Is it an astrocytoma? Morphological, immunohistochemical and ultrastructural study. Neuropathology. 2009;29(1):25–30. doi: 10.1111/j.1440-1789.2008.00934.x. PubMed DOI
Hirose T, et al. Tuber and subependymal giant cell astrocytoma associated with tuberous sclerosis: an immunohistochemical, ultrastructural, and immunoelectron and microscopic study. Acta Neuropathol. 1995;90(4):387–399. doi: 10.1007/BF00315012. PubMed DOI
Di Rocco C, Iannelli A, Marchese E. On the treatment of subependymal giant cell astrocytomas and associated hydrocephalus in tuberous sclerosis. Pediatr Neurosurg. 1995;23(3):115–121. doi: 10.1159/000120947. PubMed DOI
Crino PB, Nathanson KL, Henske EP. The tuberous sclerosis complex. N Engl J Med. 2006;355(13):1345–1356. doi: 10.1056/NEJMra055323. PubMed DOI
Kim JY, et al. Subependymal Giant Cell Astrocytoma Presenting with Tumoral Bleeding: A Case Report. Brain Tumor Res Treat. 2017;5(1):37–41. doi: 10.14791/btrt.2017.5.1.37. PubMed DOI PMC
Ess KC, et al. Developmental origin of subependymal giant cell astrocytoma in tuberous sclerosis complex. Neurology. 2005;64(8):1446–1449. doi: 10.1212/01.WNL.0000158653.81008.49. PubMed DOI
Ess KC, et al. Expression profiling in tuberous sclerosis complex (TSC) knockout mouse astrocytes to characterize human TSC brain pathology. Glia. 2004;46(1):28–40. doi: 10.1002/glia.10324. PubMed DOI
Feng L, Hatten ME, Heintz N. Brain lipid-binding protein (BLBP): a novel signaling system in the developing mammalian CNS. Neuron. 1994;12(4):895–908. doi: 10.1016/0896-6273(94)90341-7. PubMed DOI
Jozwiak S, et al. Tuberin and hamartin expression is reduced in the majority of subependymal giant cell astrocytomas in tuberous sclerosis complex consistent with a two-hit model of pathogenesis. J Child Neurol. 2004;19(2):102–106. doi: 10.1177/08830738040190020401. PubMed DOI
Mizuguchi M, et al. Novel cerebral lesions in the Eker rat model of tuberous sclerosis: cortical tuber and anaplastic ganglioglioma. J Neuropathol Exp Neurol. 2000;59(3):188–196. doi: 10.1093/jnen/59.3.188. PubMed DOI
Takahashi DK, et al. Abnormal cortical cells and astrocytomas in the Eker rat model of tuberous sclerosis complex. Epilepsia. 2004;45(12):1525–1530. doi: 10.1111/j.0013-9580.2004.23004.x. PubMed DOI
Wenzel HJ, et al. Morphology of cerebral lesions in the Eker rat model of tuberous sclerosis. Acta Neuropathol. 2004;108(2):97–108. doi: 10.1007/s00401-004-0865-8. PubMed DOI
Wippold FJ., 2nd A. Perry, and J. Lennerz, Neuropathology for the neuroradiologist: Rosenthal fibers. AJNR Am J Neuroradiol. 2006;27(5):958–961. PubMed PMC
Curatolo P, et al. Neuropsychiatric aspects of tuberous sclerosis. Ann N Y Acad Sci. 1991;615:8–16. doi: 10.1111/j.1749-6632.1991.tb37743.x. PubMed DOI
Almobarak S, et al. Tuberous Sclerosis Complex: Clinical Spectrum and Epilepsy: A Retrospective Chart Review Study. Transl Neurosci. 2018;9:154–160. doi: 10.1515/tnsci-2018-0023. PubMed DOI PMC
Tschuluun N, Wenzel HJ, Schwartzkroin PA. Irradiation exacerbates cortical cytopathology in the Eker rat model of tuberous sclerosis complex, but does not induce hyperexcitability. Epilepsy Res. 2007;73(1):53–64. doi: 10.1016/j.eplepsyres.2006.08.003. PubMed DOI PMC
Cooper AJ. The role of glutamine synthetase and glutamate dehydrogenase in cerebral ammonia homeostasis. Neurochem Res. 2012;37(11):2439–2355. doi: 10.1007/s11064-012-0803-4. PubMed DOI PMC
Ito D, et al. Enhanced expression of Iba1, ionized calcium-binding adapter molecule 1, after transient focal cerebral ischemia in rat brain. Stroke. 2001;32(5):1208–1215. doi: 10.1161/01.STR.32.5.1208. PubMed DOI
Kirschstein T. Synaptic plasticity and learning in animal models of tuberous sclerosis complex. Neural Plast. 2012;2012:279834. doi: 10.1155/2012/279834. PubMed DOI PMC
Lee BH, Smith T, Paciorkowski AR. Autism spectrum disorder and epilepsy: Disorders with a shared biology. Epilepsy Behav. 2015;47:191–201. doi: 10.1016/j.yebeh.2015.03.017. PubMed DOI PMC
Switon K, et al. Tuberous sclerosis complex: From molecular biology to novel therapeutic approaches. IUBMB Life. 2016;68(12):955–962. doi: 10.1002/iub.1579. PubMed DOI
Switon K, et al. Molecular neurobiology of mTOR. Neuroscience. 2017;341:112–153. doi: 10.1016/j.neuroscience.2016.11.017. PubMed DOI
Goorden SM, et al. Cognitive deficits in Tsc1+/- mice in the absence of cerebral lesions and seizures. Ann Neurol. 2007;62(6):648–655. doi: 10.1002/ana.21317. PubMed DOI
Ovsepian SV, et al. Ambient Glutamate Promotes Paroxysmal Hyperactivity in Cortical Pyramidal Neurons at Amyloid Plaques via Presynaptic mGluR1 Receptors. Cereb Cortex. 2017;27(10):4733–4749. PubMed
Ovsepian SV, O'Leary VB. Neuronal activity and amyloid plaque pathology: an update. J Alzheimers Dis. 2016;49(1):13–19. doi: 10.3233/JAD-150544. PubMed DOI
Ovsepian SV, et al. Amyloid Plaques of Alzheimer's Disease as Hotspots of Glutamatergic Activity. Neuroscientist. 2019;25(4):288–297. doi: 10.1177/1073858418791128. PubMed DOI PMC
von der Brelie C, et al. Impaired synaptic plasticity in a rat model of tuberous sclerosis. Eur J Neurosci. 2006;23(3):686–692. doi: 10.1111/j.1460-9568.2006.04594.x. PubMed DOI
Chu-Shore, C., et al., The natural history of epilepsy in tuberous sclerosis complex. , ed. Epilepsia. 2010, John Wiley & Sons, Ltd; 2010;51(7):1236–1241. PubMed PMC
Vignoli, A., et al., Epilepsy in TSC: Certain etiology does not mean certain prognosis. Epilepsia. . 2013: John Wiley & Sons, Ltd. PubMed
Kobayashi T, et al. A germ-line Tsc1 mutation causes tumor development and embryonic lethality that are similar, but not identical to, those caused by Tsc2 mutation in mice. Proc Natl Acad Sci U S A. 2001;98(15):8762–8767. doi: 10.1073/pnas.151033798. PubMed DOI PMC
Uhlmann EJ, et al. Astrocyte-specific TSC1 conditional knockout mice exhibit abnormal neuronal organization and seizures. Ann Neurol. 2002;52(3):285–296. doi: 10.1002/ana.10283. PubMed DOI
Zeng LH, et al. Tsc2 gene inactivation causes a more severe epilepsy phenotype than Tsc1 inactivation in a mouse model of tuberous sclerosis complex. Hum Mol Genet. 2011;20(3):445–454. doi: 10.1093/hmg/ddq491. PubMed DOI PMC
Onda H, et al. Tsc2(+/-) mice develop tumors in multiple sites that express gelsolin and are influenced by genetic background. J Clin Invest. 1999;104(6):687–695. doi: 10.1172/JCI7319. PubMed DOI PMC
Way SW, et al. Loss of Tsc2 in radial glia models the brain pathology of tuberous sclerosis complex in the mouse. Hum Mol Genet. 2009;18(7):1252–1265. doi: 10.1093/hmg/ddp025. PubMed DOI PMC
Crowell, B., et al., Complex Neurological Phenotype in Mutant Mice Lacking Tsc2 in Excitatory Neurons of the Developing Forebrain(123). eNeuro, 2015. 2(6):ENEURO.0046-15.2015. 10.1523/ENEURO.0046-15.2015. PubMed PMC
Steele RJ, Morris RG. Delay-dependent impairment of a matching-to-place task with chronic and intrahippocampal infusion of the NMDA-antagonist D-AP5. Hippocampus. 1999;9(2):118–136. doi: 10.1002/(SICI)1098-1063(1999)9:2<118::AID-HIPO4>3.0.CO;2-8. PubMed DOI
Waltereit R, et al. Epilepsy and Tsc2 haploinsufficiency lead to autistic-like social deficit behaviors in rats. Behav Genet. 2011;41(3):364–372. doi: 10.1007/s10519-010-9399-0. PubMed DOI