Hierarchically Structured Polystyrene-Based Surfaces Amplifying Fluorescence Signals: Cytocompatibility with Human Induced Pluripotent Stem Cell
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-18235S
Czech Science Foundation
19-16861S
Czech Science Foundation
PubMed
34769373
PubMed Central
PMC8584612
DOI
10.3390/ijms222111943
PII: ijms222111943
Knihovny.cz E-zdroje
- Klíčová slova
- biomimetic, cardiomyogenesis, fluorescence signal, human-induced pluripotent stem cells, surfaces,
- MeSH
- biokompatibilní materiály chemie MeSH
- buněčná diferenciace * MeSH
- fluorescence * MeSH
- indukované pluripotentní kmenové buňky cytologie MeSH
- kardiomyocyty cytologie MeSH
- lidé MeSH
- polystyreny chemie MeSH
- proliferace buněk MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biokompatibilní materiály MeSH
- polystyreny MeSH
An innovative multi-step phase separation process was used to prepare tissue culture for the polystyrene-based, hierarchically structured substrates, which mimicked in vivo microenvironment and architecture. Macro- (pore area from 3000 to 18,000 µm2; roughness (Ra) 7.2 ± 0.1 µm) and meso- (pore area from 50 to 300 µm2; Ra 1.1 ± 0.1 µm) structured substrates covered with micro-pores (area around 3 µm2) were prepared and characterised. Both types of substrate were suitable for human-induced pluripotent stem cell (hiPSC) cultivation and were found to be beneficial for the induction of cardiomyogenesis in hiPSC. This was confirmed both by the number of promoted proliferated cells and the expressions of specific markers (Nkx2.5, MYH6, MYL2, and MYL7). Moreover, the substrates amplified the fluorescence signal when Ca2+ flow was monitored. This property, together with cytocompatibility, make this material especially suitable for in vitro studies of cell/material interactions within tissue-mimicking environments.
Centre of Polymer Systems Tomas Bata University in Zlin 760 01 Zlin Czech Republic
Faculty of Science Masaryk University 625 00 Brno Czech Republic
Faculty of Technology Tomas Bata University in Zlin 760 01 Zlin Czech Republic
Zobrazit více v PubMed
Pera M.F., Reubinoff B., Trounson A. Human embryonic stem cells. Pt 1J. Cell Sci. 2000;113:5–10. doi: 10.1242/jcs.113.1.5. PubMed DOI
Lo B., Parham L. Ethical issues in stem cell research. Endocr. Rev. 2009;30:204–213. doi: 10.1210/er.2008-0031. PubMed DOI PMC
Wilson H.K., Canfield S.G., Shusta E.V., Palecek S.P. Concise review: Tissue-specific microvascular endothelial cells derived from human pluripotent stem cells. Stem Cells. 2014;32:3037–3045. doi: 10.1002/stem.1797. PubMed DOI PMC
Wang F., Kong J., Cui Y.Y., Liu P., Wen J.Y. Is Human-induced Pluripotent Stem Cell the Best Optimal? Chin. Med. J. 2018;131:852–856. doi: 10.4103/0366-6999.228231. PubMed DOI PMC
Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–676. doi: 10.1016/j.cell.2006.07.024. PubMed DOI
Takahashi K., Tanabe K., Ohnuki M., Narita M., Ichisaka T., Tomoda K., Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–872. doi: 10.1016/j.cell.2007.11.019. PubMed DOI
Ye L., Swingen C., Zhang J. Induced pluripotent stem cells and their potential for basic and clinical sciences. Curr. Cardiol. Rev. 2013;9:63–72. doi: 10.2174/157340313805076278. PubMed DOI PMC
Zhang J., Wilson G.F., Soerens A.G., Koonce C.H., Yu J., Palecek S.P., Thomson J.A., Kamp T.J. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ. Res. 2009;104:30–41. doi: 10.1161/CIRCRESAHA.108.192237. PubMed DOI PMC
Zwi L., Caspi O., Arbel G., Huber I., Gepstein A., Park I.H., Gepstein L. Cardiomyocyte differentiation of human induced pluripotent stem cells. Circulation. 2009;120:1513–1523. doi: 10.1161/CIRCULATIONAHA.109.868885. PubMed DOI
Csöbönyeiová M., Polák Š., Danišovič L. Perspectives of induced pluripotent stem cells for cardiovascular system regeneration. Exp. Biol. Med. 2015;240:549–556. doi: 10.1177/1535370214565976. PubMed DOI PMC
Nelson T.J., Martinez-Fernandez A., Yamada S., Perez-Terzic C., Ikeda Y., Terzic A. Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation. 2009;120:408–416. doi: 10.1161/CIRCULATIONAHA.109.865154. PubMed DOI PMC
Carson D., Hnilova M., Yang X., Nemeth C.L., Tsui J.H., Smith A.S., Jiao A., Regnier M., Murry C.E., Tamerler C., et al. Nanotopography-Induced Structural Anisotropy and Sarcomere Development in Human Cardiomyocytes Derived from Induced Pluripotent Stem Cells. ACS Appl. Mater. Interfaces. 2016;8:21923–21932. doi: 10.1021/acsami.5b11671. PubMed DOI PMC
Xu C., Wang L., Yu Y., Yin F., Zhang X., Jiang L., Qin J. Bioinspired onion epithelium-like structure promotes the maturation of cardiomyocytes derived from human pluripotent stem cells. Biomater. Sci. 2017;5:1810–1819. doi: 10.1039/C7BM00132K. PubMed DOI
Muncie J.M., Weaver V.M. The Physical and Biochemical Properties of the Extracellular Matrix Regulate Cell Fate. Curr. Top. Dev. Biol. 2018;130:1–37. doi: 10.1016/bs.ctdb.2018.02.002. PubMed DOI PMC
Lien C.L., McAnally J., Richardson J.A., Olson E.N. Cardiac-specific activity of an Nkx2-5 enhancer requires an evolutionarily conserved Smad binding site. Dev. Biol. 2002;244:257–266. doi: 10.1006/dbio.2002.0603. PubMed DOI
Gelb B.D., Chin S.E. In: Chapter 34-Genetics of Congenital Heart Disease. Muscle Hill J.A., Olson E.N., editors. Academic Press; Boston/Waltham, MA, USA: 2012. pp. 473–480.
Cullup T., Lamont P.J., Cirak S., Damian M.S., Wallefeld W., Gooding R., Tan S.V., Sheehan J., Muntoni F., Abbs S., et al. Mutations in MYH7 cause Multi-minicore Disease (MmD) with variable cardiac involvement. Neuromuscul. Disord. 2012;22:1096–1104. doi: 10.1016/j.nmd.2012.06.007. PubMed DOI
McNally E., Dellefave L. Sarcomere mutations in cardiogenesis and ventricular noncompaction. Trends Cardiovasc. Med. 2009;19:17–21. doi: 10.1016/j.tcm.2009.03.003. PubMed DOI
England J., Loughna S. Heavy and light roles: Myosin in the morphogenesis of the heart. Cell Mol. Life Sci. 2013;70:1221–1239. doi: 10.1007/s00018-012-1131-1. PubMed DOI PMC
Elliott D.A., Braam S.R., Koutsis K., Ng E.S., Jenny R., Lagerqvist E.L., Biben C., Hatzistavrou T., Hirst C.E., Yu Q.C., et al. NKX2-5(eGFP/w) hESCs for isolation of human cardiac progenitors and cardiomyocytes. Nat. Methods. 2011;8:1037–1040. doi: 10.1038/nmeth.1740. PubMed DOI
Moses K.A., DeMayo F., Braun R.M., Reecy J.L., Schwartz R.J. Embryonic expression of an Nkx2-5/Cre gene using ROSA26 reporter mice. Genesis. 2001;31:176–180. doi: 10.1002/gene.10022. PubMed DOI
Louch W.E., Koivumäki J.T., Tavi P. Calcium signalling in developing cardiomyocytes: Implications for model systems and disease. J. Physiol. 2015;593:1047–1063. doi: 10.1113/jphysiol.2014.274712. PubMed DOI PMC
Minařík M., Wrzecionko E., Minařík A., Grulich O., Smolka P., Musilová L., Junkar I., Primc G., Ptošková B., Mozetič M., et al. Preparation of Hierarchically Structured Polystyrene Surfaces with Superhydrophobic Properties by Plasma-Assisted Fluorination. Coatings. 2019;9:201. doi: 10.3390/coatings9030201. DOI
Wrzecionko E., Minařík A., Smolka P., Minařík M., Humpolíček P., Rejmontová P., Mráček A., Minaříková M., Gřundělová L. Variations of Polymer Porous Surface Structures via the Time-Sequenced Dosing of Mixed Solvents. ACS Appl. Mater. Interfaces. 2017;9:6472–6481. doi: 10.1021/acsami.6b15774. PubMed DOI
Jasenská D., Kašpárková V., Radaszkiewicz K.A., Capáková Z., Pacherník J., Trchová M., Minařík A., Vajďák J., Bárta T., Stejskal J., et al. Conducting composite films based on chitosan or sodium hyaluronate. Properties and cytocompatibility with human induced pluripotent stem cells. Carbohydr. Polym. 2021;253:117244. doi: 10.1016/j.carbpol.2020.117244. PubMed DOI
Konopka R., Fau H.M., Kubala L., Fau K.L., Pacherník J. New luminescence-based approach to measurement of luciferase gene expression reporter activity and adenosine triphosphate-based determination of cell viability. Folia Biol. 2010;56:66–71. PubMed
Radaszkiewicz K.A., Sýkorová D., Karas P., Kudová J., Kohút L., Binó L., Večeřa J., Víteček J., Kubala L., Pacherník J. Simple non-invasive analysis of embryonic stem cell-derived cardiomyocytes beating in vitro. Rev. Sci. Instrum. 2016;87:024301. doi: 10.1063/1.4941776. PubMed DOI
Radaszkiewicz T., Nosková M., Gömöryová K., Vondálová Blanářová O., Radaszkiewicz K.A., Picková M., Víchová R., Gybel’ T., Kaiser K., Demková L., et al. RNF43 inhibits WNT5A driven signaling and suppresses melanoma invasion. bioRxiv. 2021 doi: 10.1101/2021.02.08.430210. PubMed DOI PMC