human-induced pluripotent stem cells Dotaz Zobrazit nápovědu
Hereditary retinal dystrophies, specifically retinitis pigmentosa (RP) are clinically and genetically heterogeneous diseases affecting primarily retinal cells and retinal pigment epithelial cells with blindness as a final outcome. Understanding the pathogenicity behind these diseases has been largely precluded by the unavailability of affected tissue from patients, large genetic heterogeneity and animal models that do not faithfully represent some human diseases. A landmark discovery of human induced pluripotent stem cells (hiPSCs) permitted the derivation of patient-specific cells. These cells have unlimited self-renewing capacity and the ability to differentiate into RP-affected cell types, allowing the studies of disease mechanism, drug discovery, and cell replacement therapies, both as individual cell types and organoid cultures. Together with precise genome editing, the patient specific hiPSC technology offers novel strategies for targeting the pathogenic mutations and design therapies toward retinal dystrophies. This study summarizes current hiPSC-based RP models and highlights key achievements and challenges of these cellular models, as well as questions that still remain unanswered. Stem Cells 2018;36:474-481.
- MeSH
- autologní štěp MeSH
- buněčná diferenciace * MeSH
- editace genu * MeSH
- genom lidský * MeSH
- indukované pluripotentní kmenové buňky metabolismus patologie MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- retinopathia pigmentosa * genetika metabolismus patologie terapie MeSH
- transplantace kmenových buněk * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
The genomic destabilization associated with the adaptation of human embryonic stem cells (hESCs) to culture conditions or the reprogramming of induced pluripotent stem cells (iPSCs) increases the risk of tumorigenesis upon the clinical use of these cells and decreases their value as a model for cell biology studies. Base excision repair (BER), a major genomic integrity maintenance mechanism, has been shown to fail during hESC adaptation. Here, we show that the increase in the mutation frequency (MF) caused by the inhibition of BER was similar to that caused by the hESC adaptation process. The increase in MF reflected the failure of DNA maintenance mechanisms and the subsequent increase in MF rather than being due solely to the accumulation of mutants over a prolonged period, as was previously suggested. The increase in the ionizing-radiation-induced MF in adapted hESCs exceeded the induced MF in nonadapted hESCs and differentiated cells. Unlike hESCs, the overall DNA maintenance in iPSCs, which was reflected by the MF, was similar to that in differentiated cells regardless of the time spent in culture and despite the upregulation of several genes responsible for genome maintenance during the reprogramming process. Taken together, our results suggest that the changes in BER activity during the long-term cultivation of hESCs increase the mutagenic burden, whereas neither reprogramming nor long-term propagation in culture changes the MF in iPSCs.
- MeSH
- buněčná diferenciace účinky záření MeSH
- buněčné linie MeSH
- genetické lokusy * MeSH
- hypoxanthinfosforibosyltransferasa genetika metabolismus MeSH
- indukované pluripotentní kmenové buňky cytologie metabolismus MeSH
- lidé MeSH
- mutační rychlost * MeSH
- záření gama MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Induced pluripotent stem (iPS) cells are derived from differentiated cells by different reprogramming techniques, by introducing specific transcription factors responsible for pluripotency. Induced pluripotent stem cells can serve as an excellent source for differentiated neural stem/progenitor cells (NSCs/NPs). Several methods and protocols are utilized to create a robust number of NSCs/NPs without jeopardizing the safety issues required for in vivo applications. A variety of disease-specific iPS cells have been used to study nervous system diseases. In this chapter, we will focus on some of the derivation and differentiation approaches and the application of iPS-NPs in the treatment of spinal cord injury and stroke.
- MeSH
- buněčná diferenciace * MeSH
- cévní mozková příhoda patologie terapie MeSH
- indukované pluripotentní kmenové buňky cytologie MeSH
- lidé MeSH
- modely neurologické * MeSH
- nervové kmenové buňky cytologie MeSH
- poranění míchy patologie terapie MeSH
- přeprogramování buněk MeSH
- transkripční faktory metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
New approaches in regenerative medicine and vasculogenesis have generated a demand for sufficient numbers of human endothelial cells (ECs). ECs and their progenitors reside on the interior surface of blood and lymphatic vessels or circulate in peripheral blood; however, their numbers are limited, and they are difficult to expand after isolation. Recent advances in human induced pluripotent stem cell (hiPSC) research have opened possible avenues to generate unlimited numbers of ECs from easily accessible cell sources, such as the peripheral blood. In this study, we reprogrammed peripheral blood mononuclear cells, human umbilical vein endothelial cells (HUVECs), and human saphenous vein endothelial cells (HSVECs) into hiPSCs and differentiated them into ECs. The phenotype profiles, functionality, and genome stability of all hiPSC-derived ECs were assessed and compared with HUVECs and HSVECs. hiPSC-derived ECs resembled their natural EC counterparts, as shown by the expression of the endothelial surface markers CD31 and CD144 and the results of the functional analysis. Higher expression of endothelial progenitor markers CD34 and kinase insert domain receptor (KDR) was measured in hiPSC-derived ECs. An analysis of phosphorylated histone H2AX (γH2AX) foci revealed that an increased number of DNA double-strand breaks upon reprogramming into pluripotent cells. However, differentiation into ECs restored a normal number of γH2AX foci. Our hiPSCs retained a normal karyotype, with the exception of the HSVEC-derived hiPSC line, which displayed mosaicism due to a gain of chromosome 1. Peripheral blood from adult donors is a suitable source for the unlimited production of patient-specific ECs through the hiPSC interstage. hiPSC-derived ECs are fully functional and comparable to natural ECs. The protocol is eligible for clinical applications in regenerative medicine, if the genomic stability of the pluripotent cell stage is closely monitored.
- MeSH
- biologické markery metabolismus MeSH
- buněčná diferenciace fyziologie MeSH
- endoteliální buňky pupečníkové žíly (lidské) cytologie metabolismus MeSH
- endoteliální buňky cytologie metabolismus MeSH
- fibroblasty cytologie metabolismus MeSH
- fyziologická neovaskularizace fyziologie MeSH
- indukované pluripotentní kmenové buňky cytologie metabolismus MeSH
- kultivované buňky MeSH
- leukocyty mononukleární cytologie metabolismus MeSH
- lidé MeSH
- regenerativní lékařství metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Preclinical studies have demonstrated the promising potential of human induced pluripotent stem cells (hiPSCs) for clinical application. To fulfil this goal, efficient and safe methods to generate them must be established. Various reprogramming techniques were presented during seven years of hiPSCs research. Genome non-integrating and completely xeno-free protocols from the first biopsy to stable hiPSC clones are highly preferable in terms of future clinical application. In this short communication, we summarize the reprogramming experiments performed in our laboratories. We successfully generated hiPSCs using STEMCCA lentivirus, Sendai virus or episomal vectors. Human neonatal fibroblasts and CD34(+) blood progenitors were used as cell sources and were maintained either on mouse embryonic feeder cells or in feeder-free conditions. The reprogramming efficiency was comparable for all three methods and both cell types, while the best results were obtained in feeder-free conditions.
- MeSH
- antigeny CD34 metabolismus MeSH
- biologické markery metabolismus MeSH
- buněčné kultury metody MeSH
- buněčné linie MeSH
- genom lidský genetika MeSH
- imunohistochemie MeSH
- indukované pluripotentní kmenové buňky cytologie metabolismus MeSH
- lidé MeSH
- myši MeSH
- pluripotentní kmenové buňky cytologie metabolismus MeSH
- přeprogramování buněk genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Ectopic expression of defined sets of genetic factors can reprogramme somatic cells to induced pluripotent stem cells (iPSCs) that closely resemble embryonic stem cells. However, the low reprogramming efficiency is a significant handicap for mechanistic studies and potential clinical application. In this study, we used human bone marrow-derived mesenchymal stem cells (hBMMSCs) as target cells for reprogramming and investigated efficient iPSC generation from hBMMSCs using the compounds of p53 siRNA, valproic acid (VPA) and vitamin C (Vc) with four transcription factors OCT4, SOX2, KLF4, and c-MYC (compound induction system). The synergetic mechanism of the compounds was studied. Our results showed that the compound induction system could efficiently reprogramme hBMMSCs to iPSCs. hBMMSC-derived iPSC populations expressed pluripotent markers and had multi-potential to differentiate into three germ layer-derived cells. p53 siRNA, VPA and Vc had a synergetic effect on cell reprogramming and the combinatorial use of these substances greatly improved the efficiency of iPSC generation by suppressing the expression of p53, decreasing cell apoptosis, up-regulating the expression of the pluripotent gene OCT4 and modifying the cell cycle. Therefore, our study highlights a straightforward method for improving the speed and efficiency of iPSC generation and provides versatile tools for investigating early developmental processes such as haemopoiesis and relevant diseases. In addition, this study provides a paradigm for the combinatorial use of genetic factors and molecules to improve the efficiency of iPSC generation.
- MeSH
- biologické markery metabolismus MeSH
- buněčné kultury metody MeSH
- buněčný cyklus účinky léků genetika MeSH
- buňky kostní dřeně cytologie účinky léků metabolismus MeSH
- down regulace genetika účinky záření MeSH
- indukované pluripotentní kmenové buňky cytologie účinky léků metabolismus MeSH
- kyselina askorbová farmakologie MeSH
- kyselina valproová farmakologie MeSH
- lidé MeSH
- malá interferující RNA metabolismus MeSH
- mezenchymální kmenové buňky cytologie účinky léků metabolismus MeSH
- multipotentní kmenové buňky cytologie metabolismus MeSH
- myši inbrední ICR MeSH
- myši MeSH
- nádorový supresorový protein p53 metabolismus MeSH
- oktamerní transkripční faktor 3 genetika metabolismus MeSH
- přeprogramování buněk účinky léků genetika MeSH
- upregulace účinky léků genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
MicroRNA (miRNAs) are short noncoding RNA molecules involved in many cellular processes and shown to play a key role in somatic cell induced reprogramming. We performed an array based screening to identify candidates that are differentially expressed between dermal skin fibroblasts (DFs) and induced pluripotent stem cells (iPSCs). We focused our investigations on miR-145 and showed that this candidate is highly expressed in DFs relative to iPSCs and significantly downregulated during reprogramming process. Inhibition of miR-145 in DFs led to the induction of "cellular plasticity" demonstrated by: (a) alteration of cell morphology associated with downregulation of mesenchymal and upregulation of epithelial markers; (b) upregulation of pluripotency-associated genes including SOX2, KLF4, C-MYC; (c) downregulation of miRNA let-7b known to inhibit reprogramming; and (iv) increased efficiency of reprogramming to iPSCs in the presence of reprogramming factors. Together, our results indicate a direct functional link between miR-145 and molecular pathways underlying reprogramming of somatic cells to iPSCs.
- MeSH
- fibroblasty cytologie metabolismus MeSH
- indukované pluripotentní kmenové buňky cytologie MeSH
- lidé MeSH
- mikro RNA genetika metabolismus MeSH
- molekulární sekvence - údaje MeSH
- přeprogramování buněk * genetika MeSH
- regulace genové exprese MeSH
- reprodukovatelnost výsledků MeSH
- sekvence nukleotidů MeSH
- škára cytologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Human pluripotent stem cells have the potential to change the way in which human diseases are cured. Clinical-grade human embryonic stem cells and human induced pluripotent stem cells have to be created according to current good manufacturing practices and regulations. Quality and safety must be of the highest importance when humans' lives are at stake. With the rising number of clinical trials, there is a need for a consensus on hPSCs characterization. Here, we summarize mandatory and 'for information only' characterization methods with release criteria for the establishment of clinical-grade hPSC lines.
Neural differentiation of human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) can produce a valuable and robust source of human neural cell subtypes, holding great promise for the study of neurogenesis and development, and for treating neurological diseases. However, current hESCs and hiPSCs neural differentiation protocols require either animal factors or embryoid body formation, which decreases efficiency and yield, and strongly limits medical applications. Here we develop a simple, animal-free protocol for neural conversion of both hESCs and hiPSCs in adherent culture conditions. A simple medium formula including insulin induces the direct conversion of >98% of hESCs and hiPSCs into expandable, transplantable, and functional neural progenitors with neural rosette characteristics. Further differentiation of neural progenitors into dopaminergic and spinal motoneurons as well as astrocytes and oligodendrocytes indicates that these neural progenitors retain responsiveness to instructive cues revealing the robust applicability of the protocol in the treatment of different neurodegenerative diseases. The fact that this protocol includes animal-free medium and human extracellular matrix components avoiding embryoid bodies makes this protocol suitable for the use in clinic. Stem Cells Translational Medicine 2017;6:1217-1226.
- MeSH
- buněčná a tkáňová terapie MeSH
- buněčná diferenciace fyziologie MeSH
- embryonální kmenové buňky fyziologie MeSH
- indukované pluripotentní kmenové buňky cytologie MeSH
- kultivované buňky MeSH
- lidé MeSH
- pluripotentní kmenové buňky cytologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Mucopolysaccharidosis type II (MPSII) is a rare X-linked lysosomal storage disorder caused by mutations in the iduronate-2-sulfatase (IDS) gene (IDS, Xq28). MPSII is characterized by skeletal deformities, hearing loss, airway obstruction, hepatosplenomegaly, cardiac valvular disease, and progressive neurological impairment. At the cellular level, IDS deficiency leads to lysosomal storage of glycosaminoglycans (GAGs), dominated by accumulation of dermatan and heparan sulfates. Human induced pluripotent stem cells (iPSC) represent an alternative system that complements the available MPSII murine model. Herein we report on the reprogramming of peripheral white blood cells from male and female MPSII patients into iPSC using a non-integrating protocol based on the Sendai virus vector system. We differentiated the iPSC lines into IDS deficient and GAG accumulating β-Tubulin III+ neurons, GFAP+ astrocytes, and CNPase+ oligodendrocytes. The lysosomal system in these cells displayed structural abnormalities reminiscent of those previously found in patient tissues and murine IDS deficient neuronal stem cells. Furthermore, quantitative determination of GAGs revealed a moderate increase in GAG levels in IDS deficient neurons and glia. We also tested the effects of recombinant IDS and found that the exogenous enzyme was internalized from the culture media and partially decreased the intracellular GAG levels in iPSC-derived neural cells; however, it failed to completely prevent accumulation of GAGs. In summary, we demonstrate that this human iPSC based model expresses the cellular and biochemical features of MPSII, and thus represents a useful experimental tool for further pathogenesis studies as well as therapy development and testing.
- MeSH
- astrocyty enzymologie patologie MeSH
- buněčný rodokmen MeSH
- fenotyp MeSH
- glykosaminoglykany metabolismus MeSH
- iduronátsulfatasa genetika metabolismus MeSH
- indukované pluripotentní kmenové buňky enzymologie patologie MeSH
- kultivované buňky MeSH
- lidé MeSH
- lyzozomy enzymologie patologie MeSH
- mukopolysacharidóza II enzymologie genetika patologie MeSH
- nervové kmenové buňky enzymologie patologie MeSH
- neurogeneze * MeSH
- neuroglie enzymologie patologie MeSH
- neurony enzymologie patologie MeSH
- oligodendroglie enzymologie patologie MeSH
- prekurzorové buňky oligodendrocytů enzymologie patologie MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH