Rapid increase in the risk of heat-related mortality
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37620329
PubMed Central
PMC10449849
DOI
10.1038/s41467-023-40599-x
PII: 10.1038/s41467-023-40599-x
Knihovny.cz E-zdroje
- MeSH
- aklimatizace MeSH
- biodiverzita * MeSH
- klimatické změny MeSH
- lidé MeSH
- teplota MeSH
- vysoká teplota * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Heat-related mortality has been identified as one of the key climate extremes posing a risk to human health. Current research focuses largely on how heat mortality increases with mean global temperature rise, but it is unclear how much climate change will increase the frequency and severity of extreme summer seasons with high impact on human health. In this probabilistic analysis, we combined empirical heat-mortality relationships for 748 locations from 47 countries with climate model large ensemble data to identify probable past and future highly impactful summer seasons. Across most locations, heat mortality counts of a 1-in-100 year season in the climate of 2000 would be expected once every ten to twenty years in the climate of 2020. These return periods are projected to further shorten under warming levels of 1.5 °C and 2 °C, where heat-mortality extremes of the past climate will eventually become commonplace if no adaptation occurs. Our findings highlight the urgent need for strong mitigation and adaptation to reduce impacts on human lives.
Center for Climate Change Adaptation National Institute for Environmental Studies Tsukuba Japan
Center for Environmental and Respiratory Health Research University of Oulu Oulu Finland
Centre for Statistical Methodology London School of Hygiene and Tropical Medicine London UK
CIBER of Epidemiology and Public Health Madrid Spain
Department of Epidemiology Instituto Nacional de Saúde Dr Ricardo Jorge Lisbon Portugal
Department of Pathology Faculty of Medicine University of São Paulo São Paulo Brazil
Department of Physical Chemical and Natural Systems Universidad Pablo de Olavide Sevilla Spain
Environmental Health Science and Research Bureau Health Canada Ottawa ON Canada
Faculty of Environmental Sciences Czech University of Life Sciences Prague Czech Republic
Federal Office of Meteorology and Climatology MeteoSwiss Zurich Switzerland
IBE Chair of Epidemiology LMU Munich Munich Germany
Institute for Atmospheric and Climate Science ETH Zurich Zurich Switzerland
Institute for Environmental Decisions ETH Zurich Zurich Switzerland
Institute of Atmospheric Physics Czech Academy of Sciences Prague Czech Republic
Institute of Social and Preventive Medicine University of Bern Bern Switzerland
National Institute of Environmental Health Science National Health Research Institutes Zhunan Taiwan
Oeschger Center for Climate Change Research University of Bern Bern Switzerland
School of Epidemiology and Public Health Faculty of Medicine University of Ottawa Ottawa ON Canada
Zobrazit více v PubMed
Basu, R. & Samet, J. M. Relation between elevated ambient temperature and mortality: a review of the epidemiologic evidence. Epidemiol. Rev.24, 190–202 (2002). 10.1093/epirev/mxf007 PubMed DOI
Pal, J. S. & Eltahir, E. A. B. Future temperature in southwest Asia projected to exceed a threshold for human adaptability. Nat. Clim. Change6, 197–200 (2016).10.1038/nclimate2833 DOI
Sherwood, S. C. & Huber, M. An adaptability limit to climate change due to heat stress. Proc. Natl Acad. Sci. USA107, 9552–9555 (2010). 10.1073/pnas.0913352107 PubMed DOI PMC
Schär, C. The worst heat waves to come. Nat. Clim. Change6, 128–129 (2016).10.1038/nclimate2864 DOI
Fouillet, A. et al. Excess mortality related to the August 2003 heat wave in France. Int. Arch. Occup. Environ. Health80, 16–24 (2006). 10.1007/s00420-006-0089-4 PubMed DOI PMC
Robine, J.-M. et al. Death toll exceeded 70,000 in Europe during the summer of 2003. Comptes Rendus Biol.331, 171–178 (2008).10.1016/j.crvi.2007.12.001 PubMed DOI
Revich, B. A. Heat-wave, air quality and mortality in European Russia in summer 2010: preliminary assessment. Ekol. Cheloveka/Hum. Ecol. 3–9 (2011).
Vicedo-Cabrera, A. M. et al. The burden of heat-related mortality attributable ssto recent human-induced climate change. Nat. Clim. Change11, 492–500 (2021).10.1038/s41558-021-01058-x PubMed DOI PMC
Meehl, G. A. & Tebaldi, C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science305, 994–997 (2004). 10.1126/science.1098704 PubMed DOI
Sillmann, J. & Roeckner, E. Indices for extreme events in projections of anthropogenic climate change. Clim. Change86, 83–104 (2008).10.1007/s10584-007-9308-6 DOI
Mora, C. et al. Global risk of deadly heat. Nat. Clim. Change7, 501–506 (2017).10.1038/nclimate3322 DOI
Gasparrini, A. et al. Projections of temperature-related excess mortality under climate change scenarios. Lancet Planet. Health1, e360–e367 (2017). 10.1016/S2542-5196(17)30156-0 PubMed DOI PMC
Vicedo-Cabrera, A. M. et al. Temperature-related mortality impacts under and beyond Paris Agreement climate change scenarios. Clim. Change150, 391–402 (2018). 10.1007/s10584-018-2274-3 PubMed DOI PMC
Carleton, T. A. et al. Valuing the Global Mortality Consequences of Climate Change Accounting for Adaptation Costs and Benefits. Tech. Rep. w27599, (National Bureau of Economic Research, 2020).
Schär, C. et al. The role of increasing temperature variability in European summer heatwaves. Nature427, 332–336 (2004). 10.1038/nature02300 PubMed DOI
Fischer, E. M., Sippel, S. & Knutti, R. Increasing probability of record-shattering climate extremes. Nat. Clim. Change11, 689–695 (2021).10.1038/s41558-021-01092-9 DOI
Arnell, N. W. & Gosling, S. N. The impacts of climate change on river flood risk at the global scale. Clim. Change134, 387–401 (2016).10.1007/s10584-014-1084-5 DOI
Meiler, S. et al. Intercomparison of regional loss estimates from global synthetic tropical cyclone models. Nat. Commun.13, 6156 (2022). 10.1038/s41467-022-33918-1 PubMed DOI PMC
Bresch, D. N. & Aznar-Siguan, G. CLIMADA v1.4.1: Towards a globally consistent adaptation options appraisal tool. Geosci. Model. Dev. Discuss. 1–20. 10.5194/gmd-2020-151 (2020).
Gasparrini, A. et al. Mortality risk attributable to high and low ambient temperature: a multicountry observational study. Lancet386, 369–375 (2015). 10.1016/S0140-6736(14)62114-0 PubMed DOI PMC
Deser, C. et al. Insights from Earth system model initial-condition large ensembles and future prospects. Nat. Clim. Change10, 277–286 (2020).10.1038/s41558-020-0731-2 DOI
Aznar-Siguan, G. & Bresch, D. N. CLIMADA v1: a global weather and climate risk assessment platform. Geosci. Model. Dev.12, 3085–3097 (2019).10.5194/gmd-12-3085-2019 DOI
Weber, E. U. Experience-based and description-based perceptions of long-term risk: why global warming does not Scare us (Yet). Clim. Change77, 103–120 (2006).10.1007/s10584-006-9060-3 DOI
Blennow, K., Persson, J., Tomé, M. & Hanewinkel, M. Climate change: believing and seeing implies adapting. PLoS ONE7, e50182 (2012). 10.1371/journal.pone.0050182 PubMed DOI PMC
Lee, T. & Hughes, S. Perceptions of urban climate hazards and their effects on adaptation agendas. Mitig. Adapt. Strateg. Glob. Change22, 761–776 (2017).10.1007/s11027-015-9697-1 DOI
Reckien, D. et al. How are cities planning to respond to climate change? Assessment of local climate plans from 885 cities in the EU-28. J. Clean. Prod.191, 207–219 (2018).10.1016/j.jclepro.2018.03.220 DOI
Mitchell, D. et al. Attributing human mortality during extreme heat waves to anthropogenic climate change. Environ. Res. Lett.11, 074006 (2016).10.1088/1748-9326/11/7/074006 DOI
Santos, P. C. D. et al. Health effects of a heat wave In February 2014 in the city of Sao Paulo, Brazil. ISEE Conf. Abstr. 10.1289/isee.2015.2015-624 (2015).
IPCC. Summary for policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. 3–32 10.1017/9781009157896.001 (2021).
Scovronick, N. et al. The association between ambient temperature and mortality in South Africa: A time-series analysis. Environ. Res.161, 229–235 (2018). 10.1016/j.envres.2017.11.001 PubMed DOI PMC
Lo, Y. T. E. et al. Increasing mitigation ambition to meet the Paris Agreement’s temperature goal avoids substantial heat-related mortality in U.S. cities. Sci. Adv.5, eaau4373 (2019). 10.1126/sciadv.aau4373 PubMed DOI PMC
Stott, P. A., Stone, D. A. & Allen, M. R. Human contribution to the European heatwave of 2003. Nature432, 610–614 (2004). 10.1038/nature03089 PubMed DOI
Christidis, N., Jones, G. S. & Stott, P. A. Dramatically increasing chance of extremely hot summers since the 2003 European heatwave. Nat. Clim. Change5, 46–50 (2015).10.1038/nclimate2468 DOI
Suarez-Gutierrez, L., Li, C., Müller, W. A. & Marotzke, J. Internal variability in European summer temperatures at 1.5 °C and 2 °C of global warming. Environ. Res. Lett.13, 064026 (2018).10.1088/1748-9326/aaba58 DOI
Fischer, E. M. & Knutti, R. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat. Clim. Change5, 560–564 (2015).10.1038/nclimate2617 DOI
Casanueva, A. et al. Overview of existing heat-health warning systems in Europe. Int. J. Environ. Res. Public Heal16, 2657 (2019).10.3390/ijerph16152657 PubMed DOI PMC
Benmarhnia, T., Deguen, S., Kaufman, J. S. & Smargiassi, A. Review article: vulnerability to heat-related mortality. Epidemiology26, 781–793 (2015). 10.1097/EDE.0000000000000375 PubMed DOI
Uejio, C. K. et al. Intra-urban societal vulnerability to extreme heat: the role of heat exposure and the built environment, socioeconomics, and neighborhood stability. Health Place17, 498–507 (2011). 10.1016/j.healthplace.2010.12.005 PubMed DOI
Hoffman, J. S., Shandas, V. & Pendleton, N. The effects of historical housing policies on resident exposure to intra- urban heat: a study of 108 US Urban Areas. Climate8, 12 (2020).10.3390/cli8010012 DOI
Sellers, S. Gender and Climate Change: A Closer Look at Existing Evidence. (Washington, DC, Global Gender and Climate Alliance, 2016).
Gough, K. V. et al. Vulnerability to extreme weather events in cities: implications for infrastructure and livelihoods. J. Br. Acad. 7, 155–181 (2019).
Oke, T. R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc.108, 1–24 (1982).
Gasparrini, A. et al. Temporal variation in heat–mortality associations: a multicountry study. Environ. Health Perspect.123, 1200–1207 (2015). 10.1289/ehp.1409070 PubMed DOI PMC
Vicedo-Cabrera, A. M. et al. A multi-country analysis on potential adaptive mechanisms to cold and heat in a changing climate. Environ. Int.111, 239–246 (2018). 10.1016/j.envint.2017.11.006 PubMed DOI
Urban, A., Fonseca-Rodríguez, O., Di Napoli, C. & Plavcová, E. Temporal changes of heat-attributable mortality in Prague, Czech Republic, over 1982–2019. Urban Clim.44, 101197 (2022).10.1016/j.uclim.2022.101197 DOI
Kay, J. E. et al. The Community Earth System Model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability. Bull. Am. Meteorol. Soc.96, 1333–1349 (2015).10.1175/BAMS-D-13-00255.1 DOI
Kirchmeier-Young, M. C., Zwiers, F. W. & Gillett, N. P. Attribution of extreme events in arctic sea ice extent. J. Clim.30, 553–571 (2017).10.1175/JCLI-D-16-0412.1 DOI
Rodgers, K. B., Lin, J. & Frölicher, T. L. Emergence of multiple ocean ecosystem drivers in a large ensemble suite with an Earth system model. Biogeosciences12, 3301–3320 (2015).10.5194/bg-12-3301-2015 DOI
Jeffrey, S. et al. Australia’s CMIP5 submission usingthe CSIRO-Mk3.6 model. Aust. Meteorol. Oceanogr. J.63, 1–13 (2013).10.22499/2.6301.001 DOI
Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature463, 747–756 (2010). 10.1038/nature08823 PubMed DOI
Bevacqua, E., Zappa, G., Lehner, F. & Zscheischler, J. Precipitation trends determine future occurrences of compound hot–dry events. Nat. Clim. Change, 1–6. 10.1038/s41558-022-01309-5 (2022).
Morice, C. P. et al. An updated assessment of near-surface temperature change from 1850: The HadCRUT5 data set. J. Geophys. Res. Atmosph.126, e2019JD032361 (2021).10.1029/2019JD032361 DOI
Rajczak, J., Kotlarski, S., Salzmann, N. & Schär, C. Robust climate scenarios for sites with sparse observations: a two-step bias correction approach. Int. J. Climatol.36, 1226–1243 (2016).10.1002/joc.4417 DOI
Vicedo-Cabrera, A. M., Sera, F. & Gasparrini, A. Hands-on tutorial on a modeling framework for projections of climate change impacts on health. Epidemiology30, 321–329 (2019). 10.1097/EDE.0000000000000982 PubMed DOI PMC
Gasparrini, A. Modeling exposure–lag–response associations with distributed lag non-linear models. Stat. Med.33, 881–899 (2014). 10.1002/sim.5963 PubMed DOI PMC
Gasparrini, A. & Leone, M. Attributable risk from distributed lag models. BMC Med. Res. Methodol.14, 55 (2014). 10.1186/1471-2288-14-55 PubMed DOI PMC
de Schrijver, E. et al. A comparative analysis of the temperature-mortality risks using different weather datasets across heterogeneous regions. GeoHealth5, e2020GH000363 (2021). 10.1029/2020GH000363 PubMed DOI PMC
Armstrong, B. et al. The role of humidity in associations of high temperature with mortality: a multicountry, multicity study. Environ. Heal. Perspect.127, 097007 (2019).10.1289/EHP5430 PubMed DOI PMC
Guo, Y. et al. Heat wave and mortality: a multicountry, multicommunity study. Environ. Health Perspect.125, 087006 (2017). 10.1289/EHP1026 PubMed DOI PMC
Xu, Z., Cheng, J., Hu, W. & Tong, S. Heatwave and health events: A systematic evaluation of different temperature indicators, heatwave intensities and durations. Sci. Total. Environ.630, 679–689 (2018). 10.1016/j.scitotenv.2018.02.268 PubMed DOI
Madaniyazi, L. et al. Seasonal variation in mortality and the role of temperature: a multi-country multi-city study. Int. J. Epidemiol.51, 122–133 (2022). 10.1093/ije/dyab143 PubMed DOI
Wu, Y. et al. Global, regional, and national burden of mortality associated with short-term temperature variability from 2000–19: a three-stage modelling study. Lancet Planet. Health6, e410–e421 (2022). 10.1016/S2542-5196(22)00073-0 PubMed DOI PMC
Huber, V., Ortiz, C. P., Puyol, D. G., Lange, S. & Sera, F. Evidence of rapid adaptation integrated into projections of temperature-related excess mortality. Environ. Res. Lett.17, 044075 (2022).10.1088/1748-9326/ac5dee DOI
Gasparrini, A., Armstrong, B. & Kenward, M. G. Distributed lag non-linear models. Stat. Med.29, 2224–2234 (2010). 10.1002/sim.3940 PubMed DOI PMC
Sera, F., Armstrong, B., Blangiardo, M. & Gasparrini, A. An extended mixed-effects frame- work for meta-analysis. Stat. Med.38, 5429–5444 (2019). 10.1002/sim.8362 PubMed DOI
Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 15, 259–263 (2006).10.1127/0941-2948/2006/0130 DOI
Gasparrini, A. Distributed lag linear and non-linear models in R: the package dlnm. J. Stat. Softw.43, 1–20 (2011). 10.18637/jss.v043.i08 PubMed DOI PMC
Eberenz, S., Lüthi, S. & Bresch, D. N. Regional tropical cyclone impact functions for globally consistent risk assessments. Nat. Hazards Earth Syst. Sci. Discuss. 1–29 (2020).
Sauer, I. J. et al. Climate signals in river flood damages emerge under sound regional disaggregation. Nat. Commun.12, 2128 (2021). 10.1038/s41467-021-22153-9 PubMed DOI PMC
Welker, C., Röösli, T. & Bresch, D. N. Comparing an insurer’s perspective on building damages with modelled damages from pan-European winter windstorm event sets: a case study from Zurich, Switzerland. Nat. Hazards Earth Syst. Sci.21, 279–299 (2021).10.5194/nhess-21-279-2021 DOI
Lüthi, S., Aznar-Siguan, G., Fairless, C. & Bresch, D. N. Globally consistent assessment of economic impacts of wildfires in CLIMADA v2.2. Geosci. Model. Dev.14, 7175–7187 (2021).10.5194/gmd-14-7175-2021 DOI
Rapid climate action is needed: comparing heat vs. COVID-19-related mortality
Rainfall events and daily mortality across 645 global locations: two stage time series analysis