Rapid increase in the risk of heat-related mortality

. 2023 Aug 24 ; 14 (1) : 4894. [epub] 20230824

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37620329
Odkazy

PubMed 37620329
PubMed Central PMC10449849
DOI 10.1038/s41467-023-40599-x
PII: 10.1038/s41467-023-40599-x
Knihovny.cz E-zdroje

Heat-related mortality has been identified as one of the key climate extremes posing a risk to human health. Current research focuses largely on how heat mortality increases with mean global temperature rise, but it is unclear how much climate change will increase the frequency and severity of extreme summer seasons with high impact on human health. In this probabilistic analysis, we combined empirical heat-mortality relationships for 748 locations from 47 countries with climate model large ensemble data to identify probable past and future highly impactful summer seasons. Across most locations, heat mortality counts of a 1-in-100 year season in the climate of 2000 would be expected once every ten to twenty years in the climate of 2020. These return periods are projected to further shorten under warming levels of 1.5 °C and 2 °C, where heat-mortality extremes of the past climate will eventually become commonplace if no adaptation occurs. Our findings highlight the urgent need for strong mitigation and adaptation to reduce impacts on human lives.

Center for Climate Change Adaptation National Institute for Environmental Studies Tsukuba Japan

Center for Environmental and Respiratory Health Research University of Oulu Oulu Finland

Centre for Statistical Methodology London School of Hygiene and Tropical Medicine London UK

Centre on Climate Change and Planetary Health London School of Hygiene and Tropical Medicine London UK

CIBER of Epidemiology and Public Health Madrid Spain

Climate Air Quality Research Unit School of Public Health and Preventive Medicine Monash University Melbourne Australia

Department of Epidemiology Instituto Nacional de Saúde Dr Ricardo Jorge Lisbon Portugal

Department of Pathology Faculty of Medicine University of São Paulo São Paulo Brazil

Department of Physical Chemical and Natural Systems Universidad Pablo de Olavide Sevilla Spain

Department of Public Health Environments and Society London School of Hygiene and Tropical Medicine London UK

Environmental and Occupational Medicine National Taiwan University College of Medicine and NTU Hospital Taipei Taiwan

Environmental Health Science and Research Bureau Health Canada Ottawa ON Canada

Faculty of Environmental Sciences Czech University of Life Sciences Prague Czech Republic

Federal Office of Meteorology and Climatology MeteoSwiss Zurich Switzerland

Gangarosa Department of Environmental Health Rollins School of Public Health Emory University Atlanta GA USA

Graduate Institute of Environmental and Occupational Health Sciences NTU College of Public Health Taipei Taiwan

IBE Chair of Epidemiology LMU Munich Munich Germany

Institute for Atmospheric and Climate Science ETH Zurich Zurich Switzerland

Institute for Environmental Decisions ETH Zurich Zurich Switzerland

Institute of Atmospheric Physics Czech Academy of Sciences Prague Czech Republic

Institute of Social and Preventive Medicine University of Bern Bern Switzerland

National Institute of Environmental Health Science National Health Research Institutes Zhunan Taiwan

Oeschger Center for Climate Change Research University of Bern Bern Switzerland

School of Epidemiology and Public Health Faculty of Medicine University of Ottawa Ottawa ON Canada

Erratum v

PubMed

Zobrazit více v PubMed

Basu, R. & Samet, J. M. Relation between elevated ambient temperature and mortality: a review of the epidemiologic evidence. Epidemiol. Rev.24, 190–202 (2002). 10.1093/epirev/mxf007 PubMed DOI

Pal, J. S. & Eltahir, E. A. B. Future temperature in southwest Asia projected to exceed a threshold for human adaptability. Nat. Clim. Change6, 197–200 (2016).10.1038/nclimate2833 DOI

Sherwood, S. C. & Huber, M. An adaptability limit to climate change due to heat stress. Proc. Natl Acad. Sci. USA107, 9552–9555 (2010). 10.1073/pnas.0913352107 PubMed DOI PMC

Schär, C. The worst heat waves to come. Nat. Clim. Change6, 128–129 (2016).10.1038/nclimate2864 DOI

Fouillet, A. et al. Excess mortality related to the August 2003 heat wave in France. Int. Arch. Occup. Environ. Health80, 16–24 (2006). 10.1007/s00420-006-0089-4 PubMed DOI PMC

Robine, J.-M. et al. Death toll exceeded 70,000 in Europe during the summer of 2003. Comptes Rendus Biol.331, 171–178 (2008).10.1016/j.crvi.2007.12.001 PubMed DOI

Revich, B. A. Heat-wave, air quality and mortality in European Russia in summer 2010: preliminary assessment. Ekol. Cheloveka/Hum. Ecol. 3–9 (2011).

Vicedo-Cabrera, A. M. et al. The burden of heat-related mortality attributable ssto recent human-induced climate change. Nat. Clim. Change11, 492–500 (2021).10.1038/s41558-021-01058-x PubMed DOI PMC

Meehl, G. A. & Tebaldi, C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science305, 994–997 (2004). 10.1126/science.1098704 PubMed DOI

Sillmann, J. & Roeckner, E. Indices for extreme events in projections of anthropogenic climate change. Clim. Change86, 83–104 (2008).10.1007/s10584-007-9308-6 DOI

Mora, C. et al. Global risk of deadly heat. Nat. Clim. Change7, 501–506 (2017).10.1038/nclimate3322 DOI

Gasparrini, A. et al. Projections of temperature-related excess mortality under climate change scenarios. Lancet Planet. Health1, e360–e367 (2017). 10.1016/S2542-5196(17)30156-0 PubMed DOI PMC

Vicedo-Cabrera, A. M. et al. Temperature-related mortality impacts under and beyond Paris Agreement climate change scenarios. Clim. Change150, 391–402 (2018). 10.1007/s10584-018-2274-3 PubMed DOI PMC

Carleton, T. A. et al. Valuing the Global Mortality Consequences of Climate Change Accounting for Adaptation Costs and Benefits. Tech. Rep. w27599, (National Bureau of Economic Research, 2020).

Schär, C. et al. The role of increasing temperature variability in European summer heatwaves. Nature427, 332–336 (2004). 10.1038/nature02300 PubMed DOI

Fischer, E. M., Sippel, S. & Knutti, R. Increasing probability of record-shattering climate extremes. Nat. Clim. Change11, 689–695 (2021).10.1038/s41558-021-01092-9 DOI

Arnell, N. W. & Gosling, S. N. The impacts of climate change on river flood risk at the global scale. Clim. Change134, 387–401 (2016).10.1007/s10584-014-1084-5 DOI

Meiler, S. et al. Intercomparison of regional loss estimates from global synthetic tropical cyclone models. Nat. Commun.13, 6156 (2022). 10.1038/s41467-022-33918-1 PubMed DOI PMC

Bresch, D. N. & Aznar-Siguan, G. CLIMADA v1.4.1: Towards a globally consistent adaptation options appraisal tool. Geosci. Model. Dev. Discuss. 1–20. 10.5194/gmd-2020-151 (2020).

Gasparrini, A. et al. Mortality risk attributable to high and low ambient temperature: a multicountry observational study. Lancet386, 369–375 (2015). 10.1016/S0140-6736(14)62114-0 PubMed DOI PMC

Deser, C. et al. Insights from Earth system model initial-condition large ensembles and future prospects. Nat. Clim. Change10, 277–286 (2020).10.1038/s41558-020-0731-2 DOI

Aznar-Siguan, G. & Bresch, D. N. CLIMADA v1: a global weather and climate risk assessment platform. Geosci. Model. Dev.12, 3085–3097 (2019).10.5194/gmd-12-3085-2019 DOI

Weber, E. U. Experience-based and description-based perceptions of long-term risk: why global warming does not Scare us (Yet). Clim. Change77, 103–120 (2006).10.1007/s10584-006-9060-3 DOI

Blennow, K., Persson, J., Tomé, M. & Hanewinkel, M. Climate change: believing and seeing implies adapting. PLoS ONE7, e50182 (2012). 10.1371/journal.pone.0050182 PubMed DOI PMC

Lee, T. & Hughes, S. Perceptions of urban climate hazards and their effects on adaptation agendas. Mitig. Adapt. Strateg. Glob. Change22, 761–776 (2017).10.1007/s11027-015-9697-1 DOI

Reckien, D. et al. How are cities planning to respond to climate change? Assessment of local climate plans from 885 cities in the EU-28. J. Clean. Prod.191, 207–219 (2018).10.1016/j.jclepro.2018.03.220 DOI

Mitchell, D. et al. Attributing human mortality during extreme heat waves to anthropogenic climate change. Environ. Res. Lett.11, 074006 (2016).10.1088/1748-9326/11/7/074006 DOI

Santos, P. C. D. et al. Health effects of a heat wave In February 2014 in the city of Sao Paulo, Brazil. ISEE Conf. Abstr. 10.1289/isee.2015.2015-624 (2015).

IPCC. Summary for policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. 3–32 10.1017/9781009157896.001 (2021).

Scovronick, N. et al. The association between ambient temperature and mortality in South Africa: A time-series analysis. Environ. Res.161, 229–235 (2018). 10.1016/j.envres.2017.11.001 PubMed DOI PMC

Lo, Y. T. E. et al. Increasing mitigation ambition to meet the Paris Agreement’s temperature goal avoids substantial heat-related mortality in U.S. cities. Sci. Adv.5, eaau4373 (2019). 10.1126/sciadv.aau4373 PubMed DOI PMC

Stott, P. A., Stone, D. A. & Allen, M. R. Human contribution to the European heatwave of 2003. Nature432, 610–614 (2004). 10.1038/nature03089 PubMed DOI

Christidis, N., Jones, G. S. & Stott, P. A. Dramatically increasing chance of extremely hot summers since the 2003 European heatwave. Nat. Clim. Change5, 46–50 (2015).10.1038/nclimate2468 DOI

Suarez-Gutierrez, L., Li, C., Müller, W. A. & Marotzke, J. Internal variability in European summer temperatures at 1.5 °C and 2 °C of global warming. Environ. Res. Lett.13, 064026 (2018).10.1088/1748-9326/aaba58 DOI

Fischer, E. M. & Knutti, R. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat. Clim. Change5, 560–564 (2015).10.1038/nclimate2617 DOI

Casanueva, A. et al. Overview of existing heat-health warning systems in Europe. Int. J. Environ. Res. Public Heal16, 2657 (2019).10.3390/ijerph16152657 PubMed DOI PMC

Benmarhnia, T., Deguen, S., Kaufman, J. S. & Smargiassi, A. Review article: vulnerability to heat-related mortality. Epidemiology26, 781–793 (2015). 10.1097/EDE.0000000000000375 PubMed DOI

Uejio, C. K. et al. Intra-urban societal vulnerability to extreme heat: the role of heat exposure and the built environment, socioeconomics, and neighborhood stability. Health Place17, 498–507 (2011). 10.1016/j.healthplace.2010.12.005 PubMed DOI

Hoffman, J. S., Shandas, V. & Pendleton, N. The effects of historical housing policies on resident exposure to intra- urban heat: a study of 108 US Urban Areas. Climate8, 12 (2020).10.3390/cli8010012 DOI

Sellers, S. Gender and Climate Change: A Closer Look at Existing Evidence. (Washington, DC, Global Gender and Climate Alliance, 2016).

Gough, K. V. et al. Vulnerability to extreme weather events in cities: implications for infrastructure and livelihoods. J. Br. Acad. 7, 155–181 (2019).

Oke, T. R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc.108, 1–24 (1982).

Gasparrini, A. et al. Temporal variation in heat–mortality associations: a multicountry study. Environ. Health Perspect.123, 1200–1207 (2015). 10.1289/ehp.1409070 PubMed DOI PMC

Vicedo-Cabrera, A. M. et al. A multi-country analysis on potential adaptive mechanisms to cold and heat in a changing climate. Environ. Int.111, 239–246 (2018). 10.1016/j.envint.2017.11.006 PubMed DOI

Urban, A., Fonseca-Rodríguez, O., Di Napoli, C. & Plavcová, E. Temporal changes of heat-attributable mortality in Prague, Czech Republic, over 1982–2019. Urban Clim.44, 101197 (2022).10.1016/j.uclim.2022.101197 DOI

Kay, J. E. et al. The Community Earth System Model (CESM) large ensemble project: a community resource for studying climate change in the presence of internal climate variability. Bull. Am. Meteorol. Soc.96, 1333–1349 (2015).10.1175/BAMS-D-13-00255.1 DOI

Kirchmeier-Young, M. C., Zwiers, F. W. & Gillett, N. P. Attribution of extreme events in arctic sea ice extent. J. Clim.30, 553–571 (2017).10.1175/JCLI-D-16-0412.1 DOI

Rodgers, K. B., Lin, J. & Frölicher, T. L. Emergence of multiple ocean ecosystem drivers in a large ensemble suite with an Earth system model. Biogeosciences12, 3301–3320 (2015).10.5194/bg-12-3301-2015 DOI

Jeffrey, S. et al. Australia’s CMIP5 submission usingthe CSIRO-Mk3.6 model. Aust. Meteorol. Oceanogr. J.63, 1–13 (2013).10.22499/2.6301.001 DOI

Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature463, 747–756 (2010). 10.1038/nature08823 PubMed DOI

Bevacqua, E., Zappa, G., Lehner, F. & Zscheischler, J. Precipitation trends determine future occurrences of compound hot–dry events. Nat. Clim. Change, 1–6. 10.1038/s41558-022-01309-5 (2022).

Morice, C. P. et al. An updated assessment of near-surface temperature change from 1850: The HadCRUT5 data set. J. Geophys. Res. Atmosph.126, e2019JD032361 (2021).10.1029/2019JD032361 DOI

Rajczak, J., Kotlarski, S., Salzmann, N. & Schär, C. Robust climate scenarios for sites with sparse observations: a two-step bias correction approach. Int. J. Climatol.36, 1226–1243 (2016).10.1002/joc.4417 DOI

Vicedo-Cabrera, A. M., Sera, F. & Gasparrini, A. Hands-on tutorial on a modeling framework for projections of climate change impacts on health. Epidemiology30, 321–329 (2019). 10.1097/EDE.0000000000000982 PubMed DOI PMC

Gasparrini, A. Modeling exposure–lag–response associations with distributed lag non-linear models. Stat. Med.33, 881–899 (2014). 10.1002/sim.5963 PubMed DOI PMC

Gasparrini, A. & Leone, M. Attributable risk from distributed lag models. BMC Med. Res. Methodol.14, 55 (2014). 10.1186/1471-2288-14-55 PubMed DOI PMC

de Schrijver, E. et al. A comparative analysis of the temperature-mortality risks using different weather datasets across heterogeneous regions. GeoHealth5, e2020GH000363 (2021). 10.1029/2020GH000363 PubMed DOI PMC

Armstrong, B. et al. The role of humidity in associations of high temperature with mortality: a multicountry, multicity study. Environ. Heal. Perspect.127, 097007 (2019).10.1289/EHP5430 PubMed DOI PMC

Guo, Y. et al. Heat wave and mortality: a multicountry, multicommunity study. Environ. Health Perspect.125, 087006 (2017). 10.1289/EHP1026 PubMed DOI PMC

Xu, Z., Cheng, J., Hu, W. & Tong, S. Heatwave and health events: A systematic evaluation of different temperature indicators, heatwave intensities and durations. Sci. Total. Environ.630, 679–689 (2018). 10.1016/j.scitotenv.2018.02.268 PubMed DOI

Madaniyazi, L. et al. Seasonal variation in mortality and the role of temperature: a multi-country multi-city study. Int. J. Epidemiol.51, 122–133 (2022). 10.1093/ije/dyab143 PubMed DOI

Wu, Y. et al. Global, regional, and national burden of mortality associated with short-term temperature variability from 2000–19: a three-stage modelling study. Lancet Planet. Health6, e410–e421 (2022). 10.1016/S2542-5196(22)00073-0 PubMed DOI PMC

Huber, V., Ortiz, C. P., Puyol, D. G., Lange, S. & Sera, F. Evidence of rapid adaptation integrated into projections of temperature-related excess mortality. Environ. Res. Lett.17, 044075 (2022).10.1088/1748-9326/ac5dee DOI

Gasparrini, A., Armstrong, B. & Kenward, M. G. Distributed lag non-linear models. Stat. Med.29, 2224–2234 (2010). 10.1002/sim.3940 PubMed DOI PMC

Sera, F., Armstrong, B., Blangiardo, M. & Gasparrini, A. An extended mixed-effects frame- work for meta-analysis. Stat. Med.38, 5429–5444 (2019). 10.1002/sim.8362 PubMed DOI

Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 15, 259–263 (2006).10.1127/0941-2948/2006/0130 DOI

Gasparrini, A. Distributed lag linear and non-linear models in R: the package dlnm. J. Stat. Softw.43, 1–20 (2011). 10.18637/jss.v043.i08 PubMed DOI PMC

Eberenz, S., Lüthi, S. & Bresch, D. N. Regional tropical cyclone impact functions for globally consistent risk assessments. Nat. Hazards Earth Syst. Sci. Discuss. 1–29 (2020).

Sauer, I. J. et al. Climate signals in river flood damages emerge under sound regional disaggregation. Nat. Commun.12, 2128 (2021). 10.1038/s41467-021-22153-9 PubMed DOI PMC

Welker, C., Röösli, T. & Bresch, D. N. Comparing an insurer’s perspective on building damages with modelled damages from pan-European winter windstorm event sets: a case study from Zurich, Switzerland. Nat. Hazards Earth Syst. Sci.21, 279–299 (2021).10.5194/nhess-21-279-2021 DOI

Lüthi, S., Aznar-Siguan, G., Fairless, C. & Bresch, D. N. Globally consistent assessment of economic impacts of wildfires in CLIMADA v2.2. Geosci. Model. Dev.14, 7175–7187 (2021).10.5194/gmd-14-7175-2021 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...