Rapid climate action is needed: comparing heat vs. COVID-19-related mortality
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
101064940
HORIZON EUROPE Marie Sklodowska-Curie Actions
TMSGI3_211626
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
PubMed
39762298
PubMed Central
PMC11704295
DOI
10.1038/s41598-024-82788-8
PII: 10.1038/s41598-024-82788-8
Knihovny.cz E-zdroje
- MeSH
- COVID-19 * mortalita epidemiologie MeSH
- klimatické změny * MeSH
- lidé MeSH
- SARS-CoV-2 * izolace a purifikace MeSH
- velkoměsta MeSH
- veřejné zdravotnictví MeSH
- vysoká teplota * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- velkoměsta MeSH
The impacts of climate change on human health are often underestimated or perceived to be in a distant future. Here, we present the projected impacts of climate change in the context of COVID-19, a recent human health catastrophe. We compared projected heat mortality with COVID-19 deaths in 38 cities worldwide and found that in half of these cities, heat-related deaths could exceed annual COVID-19 deaths in less than ten years (at + 3.0 °C increase in global warming relative to preindustrial). In seven of these cities, heat mortality could exceed COVID-19 deaths in less than five years. Our results underscore the crucial need for climate action and for the integration of climate change into public health discourse and policy.
Biological Sciences Division Pacific Northwest National Laboratory Richland WA USA
Climate and Environmental Physics Physics Institute University of Bern Bern Switzerland
Climate Research Foundation Madrid Spain
Department of Epidemiology Instituto Nacional de Saúde Dr Ricardo Jorge Lisbon Portugal
Department of Global Health Policy Graduate School of Medicine The University of Tokyo Tokyo Japan
Environmental Health Science and Research Bureau Health Canada Ottawa Canada
Faculty of Environmental Sciences Czech University of Life Sciences Prague Czech Republic
Faculty of Medicine School of Epidemiology and Public Health University of Ottawa Ottawa Canada
Institut Pierre Simon Laplace CNRS Paris France
Institute of Atmospheric Physics Czech Academy of Sciences Prague Czech Republic
Institute of Social and Preventive Medicine University of Bern Bern Switzerland
Oeschger Centre for Climate Change Research University of Bern Bern Switzerland
School of Public Health and Social Work Queensland University of Technology Brisbane Australia
Zobrazit více v PubMed
Batibeniz, F., Hauser, M. & Seneviratne, S. I. Countries most exposed to individual and concurrent extremes and near-permanent extreme conditions at different global warming levels. Earth Syst. Dyn.14, 485–505 (2023).
Seneviratne, S. I. et al. Weather and climate extreme events in a changing climate. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Masson-Delmotte, V. et al.) 1513–1766 (Cambridge University Press, 2021). 10.1017/9781009157896.013.
Vicedo-Cabrera, A. M. et al. Temperature-related mortality impacts under and beyond Paris Agreement climate change scenarios. Clim. Change150, 391–402 (2018). PubMed PMC
Vicedo-Cabrera, A. M. et al. The burden of heat-related mortality attributable to recent human-induced climate change. Nat. Clim. Change11, 492–500 (2021). PubMed PMC
Gasparrini, A. et al. Projections of temperature-related excess mortality under climate change scenarios. Lancet Planet. Health1, e360–e367 (2017). PubMed PMC
Lüthi, S. et al. Rapid increase in the risk of heat-related mortality. Nat. Commun.14, 4894 (2023). PubMed PMC
Dong, E. et al. The Johns Hopkins University Center for Systems Science and Engineering COVID-19 dashboard: Data collection process, challenges faced, and lessons learned. Lancet Infect. Dis.22, e370. 10.1016/S1473-3099(22)00434-0 (2022). PubMed PMC
Dong, E., Du, H. & Gardner, L. An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect. Dis.20, 533–534 (2020). PubMed PMC
World Development Indicators: (1) United Nations Population Division. World Population Prospects: 2022 Revision. (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.
Batibeniz, F. et al. Doubling of U.S. population exposure to climate extremes by 2050. Earth’s Future8, e2019EF001421 (2020).
Perkins-Kirkpatrick, S. et al. Extreme terrestrial heat in 2023. Nat. Rev. Earth Environ.5, 244–246 (2024).
Erin Douglas and Alejandra Martinez. “I don’t wish this on anyone”: Two families mourn their losses after a record year for Texas heat deaths (2024); https://www.texastribune.org/2024/01/12/texas-heat-deaths-2023-record-climate-change/.
Vicedo-Cabrera, A. M. et al. The footprint of human-induced climate change on heat-related deaths in the summer of 2022 in Switzerland. Environ. Res. Lett.18, 074037 (2023). PubMed PMC
Waidelich, P., Batibeniz, F., Rising, J., Kikstra, J. S. & Seneviratne, S. I. Climate damage projections beyond annual temperature. Nat. Clim. Change10.1038/s41558-024-01990-8 (2024). PubMed PMC
Ebi, K. L. et al. Hot weather and heat extremes: Health risks. The Lancet398, 698–708 (2021). PubMed
Gosling, S. N. et al. Adaptation to climate change: A comparative analysis of modeling methods for heat-related mortality. Environ. Health Perspect.125, 087008 (2017). PubMed PMC
Cuadros, D. F., Branscum, A. J., Mukandavire, Z., Miller, F. D. & MacKinnon, N. Dynamics of the COVID-19 epidemic in urban and rural areas in the United States. Ann. Epidemiol.59, 16–20 (2021). PubMed PMC
Lo, Y. T. E., Mitchell, D. M. & Gasparrini, A. Compound mortality impacts from extreme temperatures and the COVID-19 pandemic. Nat. Commun.15, 4289 (2024). PubMed PMC
Jones, B. & O’Neill, B. C. Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways. Environ. Res. Lett.11, 084003 (2016).
Jones, B. & O’Neill, B. C. Global one-eighth degree population base year and projection grids based on the shared socioeconomic pathways, Revision 01. (2020).
Seneviratne, S. I., Donat, M. G., Pitman, A. J., Knutti, R. & Wilby, R. L. Allowable CO2 emissions based on regional and impact-related climate targets. Nature529, 477–483 (2016). PubMed
Seneviratne, S. I. & Hauser, M. Regional climate sensitivity of climate extremes in CMIP6 versus CMIP5 multimodel ensembles. Earth’s Future8, e2019EF001474 (2020). PubMed PMC
Wartenburger, R. et al. Changes in regional climate extremes as a function of global mean temperature: An interactive plotting framework. Geosci. Model Dev.10, 3609–3634 (2017).
Rajczak, J., Kotlarski, S., Salzmann, N. & Schär, C. Robust climate scenarios for sites with sparse observations: A two-step bias correction approach. Int. J. Climatol.36, 1226–1243 (2016).
Vicedo-Cabrera, A. M., Sera, F. & Gasparrini, A. Hands-on tutorial on a modeling framework for projections of climate change impacts on health. Epidemiology30, 321–329 (2019). PubMed PMC
Gasparrini, A. Modeling exposure–lag–response associations with distributed lag non-linear models. Stat. Med.33, 881–899 (2014). PubMed PMC
Gasparrini, A. et al. Mortality risk attributable to high and low ambient temperature: A multicountry observational study. Lancet386, 369–375 (2015). PubMed PMC
Armstrong, B. et al. The role of humidity in associations of high temperature with mortality: A multicountry, multicity study. Environ. Health Perspect.127, 097007 (2019). PubMed PMC
Guo, Y. et al. Heat wave and mortality: A multicountry, multicommunity study. Environ. Health Perspect.125, 087006 (2017). PubMed PMC
Xu, Z., Cheng, J., Hu, W. & Tong, S. Heatwave and health events: A systematic evaluation of different temperature indicators, heatwave intensities and durations. Sci. Total Environ.630, 679–689 (2018). PubMed
Gasparrini, A. & Leone, M. Attributable risk from distributed lag models. BMC Med. Res. Methodol.14, 55 (2014). PubMed PMC
De Schrijver, E. et al. A comparative analysis of the temperature-mortality risks using different weather datasets across heterogeneous regions. GeoHealth5, e2020GH000363 (2021). PubMed PMC
Gasparrini, A., Armstrong, B. & Kenward, M. G. Distributed lag non-linear models. Stat. Med.29, 2224–2234 (2010). PubMed PMC
Sera, F., Armstrong, B., Blangiardo, M. & Gasparrini, A. An extended mixed-effects framework for meta-analysis. Stat. Med.38, 5429–5444 (2019). PubMed
Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World Map of the Köppen–Geiger climate classification updated. metz15, 259–263 (2006).
Gasparrini, A. Distributed lag linear and non-linear models in R : The package dlnm. J. Stat. Soft.43, 1 (2011). PubMed PMC
Marani, M., Katul, G. G., Pan, W. K. & Parolari, A. J. Intensity and frequency of extreme novel epidemics. Proc. Natl. Acad. Sci. U.S.A.118, e2105482118 (2021). PubMed PMC
Brunner, L., Hauser, M., Lorenz, R. & Beyerle, U. The ETH Zurich CMIP6 next generation archive: Technical documentation (2020). 10.5281/ZENODO.3734128.