The impacts of climate change on human health are often underestimated or perceived to be in a distant future. Here, we present the projected impacts of climate change in the context of COVID-19, a recent human health catastrophe. We compared projected heat mortality with COVID-19 deaths in 38 cities worldwide and found that in half of these cities, heat-related deaths could exceed annual COVID-19 deaths in less than ten years (at + 3.0 °C increase in global warming relative to preindustrial). In seven of these cities, heat mortality could exceed COVID-19 deaths in less than five years. Our results underscore the crucial need for climate action and for the integration of climate change into public health discourse and policy.
- MeSH
- COVID-19 * mortality epidemiology MeSH
- Climate Change * MeSH
- Humans MeSH
- SARS-CoV-2 * isolation & purification MeSH
- Cities MeSH
- Public Health MeSH
- Hot Temperature * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Cities MeSH
OBJECTIVES: While COVID-19 continues to challenge the world, meteorological variables are thought to impact COVID-19 transmission. Previous studies showed evidence of negative associations between high temperature and absolute humidity on COVID-19 transmission. Our research aims to fill the knowledge gap on the modifying effect of vaccination rates and strains on the weather-COVID-19 association. METHODS: Our study included COVID-19 data from 439 cities in 22 countries spanning 3 February 2020 - 31 August 2022 and meteorological variables (temperature, relative humidity, absolute humidity, solar radiation, and precipitation). We used a two-stage time-series design to assess the association between meteorological factors and COVID-19 incidence. For the exposure modeling, we used distributed lag nonlinear models with a lag of up to 14 days. Finally, we pooled the estimates using a random effect meta-analytic model and tested vaccination rates and dominant strains as possible effect modifiers. RESULTS: Our results showed an association between temperature and absolute humidity on COVID-19 transmission. At 5 °C, the relative risk of COVID-19 incidence is 1.22-fold higher compared to a reference level at 17 °C. Correlated with temperature, we observed an inverse association for absolute humidity. We observed a tendency of increased risk on days without precipitation, but no association for relative humidity and solar radiation. No interaction between vaccination rates or strains on the weather-COVID-19 association was observed. CONCLUSIONS: This study strengthens previous evidence of a relationship of temperature and absolute humidity with COVID-19 incidence. Furthermore, no evidence was found that vaccinations and strains significantly modify the relationship between environmental factors and COVID-19 transmission.
- Publication type
- Journal Article MeSH
OBJECTIVE: To examine the associations between characteristics of daily rainfall (intensity, duration, and frequency) and all cause, cardiovascular, and respiratory mortality. DESIGN: Two stage time series analysis. SETTING: 645 locations across 34 countries or regions. POPULATION: Daily mortality data, comprising a total of 109 954 744 all cause, 31 164 161 cardiovascular, and 11 817 278 respiratory deaths from 1980 to 2020. MAIN OUTCOME MEASURE: Association between daily mortality and rainfall events with return periods (the expected average time between occurrences of an extreme event of a certain magnitude) of one year, two years, and five years, with a 14 day lag period. A continuous relative intensity index was used to generate intensity-response curves to estimate mortality risks at a global scale. RESULTS: During the study period, a total of 50 913 rainfall events with a one year return period, 8362 events with a two year return period, and 3301 events with a five year return period were identified. A day of extreme rainfall with a five year return period was significantly associated with increased daily all cause, cardiovascular, and respiratory mortality, with cumulative relative risks across 0-14 lag days of 1.08 (95% confidence interval 1.05 to 1.11), 1.05 (1.02 to 1.08), and 1.29 (1.19 to 1.39), respectively. Rainfall events with a two year return period were associated with respiratory mortality only, whereas no significant associations were found for events with a one year return period. Non-linear analysis revealed protective effects (relative risk <1) with moderate-heavy rainfall events, shifting to adverse effects (relative risk >1) with extreme intensities. Additionally, mortality risks from extreme rainfall events appeared to be modified by climate type, baseline variability in rainfall, and vegetation coverage, whereas the moderating effects of population density and income level were not significant. Locations with lower variability of baseline rainfall or scarce vegetation coverage showed higher risks. CONCLUSION: Daily rainfall intensity is associated with varying health effects, with extreme events linked to an increasing relative risk for all cause, cardiovascular, and respiratory mortality. The observed associations varied with local climate and urban infrastructure.
Background: Data on renal replacement therapy (RRT) for end-stage renal disease were collected by the European Renal Association (ERA) Registry via national and regional renal registries in Europe and countries bordering the Mediterranean Sea. This article provides a summary of the 2019 ERA Registry Annual Report, including data from 34 countries and additional age comparisons. Methods: Individual patient data for 2019 were provided by 35 registries and aggregated data by 17 registries. Using these data, the incidence and prevalence of RRT, the kidney transplantation activity and the survival probabilities were calculated. Results: In 2019, a general population of 680.8 million people was covered by the ERA Registry. Overall, the incidence of RRT was 132 per million population (p.m.p.). Of these patients, 62% were men, 54% were ≥65 years of age and 21% had diabetes mellitus as primary renal disease (PRD), and 84% had haemodialysis (HD), 11% had peritoneal dialysis (PD) and 5% had pre-emptive kidney transplantation as an initial treatment modality. The overall prevalence of RRT on 31 December 2019 was 893 p.m.p., with 58% of patients on HD, 5% on PD and 37% living with a kidney transplant. The overall kidney transplant rate was 35 p.m.p. and 29% of the kidney grafts were from a living donor. The unadjusted 5-year survival probability was 42.3% for patients commencing dialysis, 86.6% for recipients of deceased donor grafts and 94.4% for recipients of living donor grafts in the period 2010-14. When comparing age categories, there were substantial differences in the distribution of PRD, treatment modality and kidney donor type, and in the survival probabilities.
- Publication type
- Journal Article MeSH