Silk Fibroin Surface Engineering Using Phase Separation Approaches for Enhanced Cell Adhesion and Proliferation

. 2025 Mar 05 ; 17 (9) : 13702-13712. [epub] 20250219

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39967507

Due to excellent mechanical properties and biocompatibility, materials based on silk fibroin are increasingly included in advanced biomedical research and applications. However, their poor supporting properties for cell adhesion and proliferation represent limiting factors of the utilization. To eliminate this deficiency, we developed a series of phase-separation approaches allowing for tunable texturing of planar and 3D printed fibroin surfaces from nano to macro levels. The formation of surface structures presented is based on a combination of good and poor solvents, whereas no potentially problematic templates or additives, diminishing biocompatibility of the resulting material, are required. A critical factor in obtaining and scaling of the textures is control over the degree of transformation of fibroin secondary structures between prevalently amorphous Silk I and semicrystalline Silk II forms before and during surface treatment. Employing a set of optimized procedures, selectively or hierarchically structured fibroin surfaces can be prepared at the nano, micro, and macro level, which are characterized by long-term stability in physiological environments, allowing enhanced adhesion and proliferation of human keratinocytes as well as skin fibroblast cultivations.

Zobrazit více v PubMed

Van Vlierberghe S.; Dubruel P.; Schacht E. Biopolymer-Based Hydrogels as Scaffolds for Tissue Engineering Applications: A Review. Biomacromolecules 2011, 12 (5), 1387–1408. 10.1021/bm200083n. PubMed DOI

Pollini M.; Paladini F. Bioinspired Materials for Wound Healing Application: The Potential of Silk Fibroin. Materials 2020, 13 (15), 3361.10.3390/ma13153361. PubMed DOI PMC

Pina S.; Ribeiro V. P.; Marques C. F.; Maia F. R.; Silva T. H.; Reis R. L.; Oliveira J. M. Scaffolding Strategies for Tissue Engineering and Regenerative Medicine Applications. Materials 2019, 12 (11), 1824.10.3390/ma12111824. PubMed DOI PMC

Zhou Z.; Zhang S.; Cao Y.; Marelli B.; Xia X.; Tao T. H. Engineering the Future of Silk Materials through Advanced Manufacturing. Adv. Mater. 2018, 30 (33), 1–26. 10.1002/adma.201706983. PubMed DOI

Holland C.; Numata K.; Rnjak-Kovacina J.; Seib F. P. The Biomedical Use of Silk: Past, Present, Future. Adv. Healthc. Mater. 2019, 8 (1), e1800465.10.1002/adhm.201800465. PubMed DOI

Sahoo J. K.; Hasturk O.; Falcucci T.; Kaplan D. L. Silk Chemistry and Biomedical Material Designs. Nat. Rev. Chem. 2023, 7 (5), 302–318. 10.1038/s41570-023-00486-x. PubMed DOI

Bucciarelli A.; Motta A. Use of Bombyx Mori Silk Fibroin in Tissue Engineering: From Cocoons to Medical Devices, Challenges, and Future Perspectives. Biomater. Adv. 2022, 139, 212982.10.1016/j.bioadv.2022.212982. PubMed DOI

Rockwood D. N.; Preda R. C.; Yücel T.; Wang X.; Lovett M. L.; Kaplan D. L. Materials Fabrication from Bombyx Mori Silk Fibroin. Nat. Protoc. 2011, 6 (10), 1612–1631. 10.1038/nprot.2011.379. PubMed DOI PMC

Naomi R.; Ratanavaraporn J.; Fauzi M. B. Comprehensive Review of Hybrid Collagen and Silk Fibroin for Cutaneous Wound Healing. Materials 2020, 13 (14), 3097.10.3390/ma13143097. PubMed DOI PMC

Matthew S. A. L.; Seib F. P. Silk Bioconjugates: From Chemistry and Concept to Application. ACS Biomater. Sci. Eng. 2024, 10, 12.10.1021/acsbiomaterials.2c01116. PubMed DOI PMC

Dvir T.; Timko B. P.; Kohane D. S.; Langer R. Nanotechnological Strategies for Engineering Complex Tissues. Nat. Nanotechnol. 2011, 6 (1), 13–22. 10.1038/nnano.2010.246. PubMed DOI PMC

Xu M.; Pradhan S.; Agostinacchio F.; Pal R. K.; Greco G.; Mazzolai B.; Pugno N. M.; Motta A.; Yadavalli V. K. Easy, Scalable, Robust, Micropatterned Silk Fibroin Cell Substrates. Adv. Mater. Interfaces 2019, 6 (8), 1801822.10.1002/admi.201801822. DOI

Sheng R.; Mu J.; Chernozem R. V.; Mukhortova Y. R.; Surmeneva M. A.; Pariy I. O.; Ludwig T.; Mathur S.; Xu C.; Surmenev R. A.; Liu H. H. Fabrication and Characterization of Piezoelectric Polymer Composites and Cytocompatibility with Mesenchymal Stem Cells. ACS Appl. Mater. Interfaces 2023, 15 (3), 3731–3743. 10.1021/acsami.2c15802. PubMed DOI

Lujerdean C.; Baci G.-M.; Cucu A.-A.; Dezmirean D. S. The Contribution of Silk Fibroin in Biomedical Engineering. Insects 2022, 13 (3), 286.10.3390/insects13030286. PubMed DOI PMC

Wang Y.; Kim B. J.; Peng B.; Li W.; Wang Y.; Li M.; Omenetto F. G. Controlling Silk Fibroin Conformation for Dynamic, Responsive, Multifunctional, Micropatterned Surfaces. Proc. Natl. Acad. Sci. U. S. A. 2019, 116 (43), 21361–21368. 10.1073/pnas.1911563116. PubMed DOI PMC

Amsden J. J.; Domachuk P.; Gopinath A.; White R. D.; Negro L. D.; Kaplan D. L.; Omenetto F. G. Rapid Nanoimprinting of Silk Fibroin Films for Biophotonic Applications. Adv. Mater. 2010, 22 (15), 1746–1749. 10.1002/adma.200903166. PubMed DOI

Dalby M. J.; Gadegaard N.; Oreffo R. O. C. Harnessing Nanotopography and Integrin-Matrix Interactions to Influence Stem Cell Fate. Nat. Mater. 2014, 13 (6), 558–569. 10.1038/nmat3980. PubMed DOI

Ross A. M.; Jiang Z.; Bastmeyer M.; Lahann J. Physical Aspects of Cell Culture Substrates: Topography, Roughness, and Elasticity. Small 2012, 8 (3), 336–355. 10.1002/smll.201100934. PubMed DOI

Leal-Egaña A.; Scheibel T. Interactions of Cells with Silk Surfaces. J. Mater. Chem. 2012, 22 (29), 14330.10.1039/c2jm31174g. DOI

HARRISON R. G. ON THE STEREOTROPISM OF EMBRYONIC CELLS. Science 1911, 34 (870), 279–281. 10.1126/science.34.870.279. PubMed DOI

Teixeira A. I.; Abrams G. A.; Bertics P. J.; Murphy C. J.; Nealey P. F. Epithelial Contact Guidance on Well-Defined Micro- and Nanostructured Substrates. J. Cell Sci. 2003, 116 (10), 1881–1892. 10.1242/jcs.00383. PubMed DOI PMC

Teixeira A. I.; McKie G. A.; Foley J. D.; Bertics P. J.; Nealey P. F.; Murphy C. J. The Effect of Environmental Factors on the Response of Human Corneal Epithelial Cells to Nanoscale Substrate Topography. Biomaterials 2006, 27 (21), 3945–3954. 10.1016/j.biomaterials.2006.01.044. PubMed DOI PMC

yadav P.; Beniwal G.; Saxena K. K. A Review on Pore and Porosity in Tissue Engineering. Mater. Today Proc. 2021, 44, 2623–2628. 10.1016/j.matpr.2020.12.661. DOI

Liang Y.; Liang Y.; Zhang H.; Guo B. Antibacterial Biomaterials for Skin Wound Dressing. Asian J. Pharm. Sci. 2022, 17 (3), 353–384. 10.1016/j.ajps.2022.01.001. PubMed DOI PMC

Francolini I.; Vuotto C.; Piozzi A.; Donelli G. Antifouling and Antimicrobial Biomaterials: An Overview. APMIS 2017, 125 (4), 392–417. 10.1111/apm.12675. PubMed DOI

Shanmugapriya K.; Kim H.; Saravana P. S.; Chun B.-S.; Kang H. W. Fabrication of Multifunctional Chitosan-Based Nanocomposite Film with Rapid Healing and Antibacterial Effect for Wound Management. Int. J. Biol. Macromol. 2018, 118, 1713–1725. 10.1016/j.ijbiomac.2018.07.018. PubMed DOI

Gholipourmalekabadi M.; Sapru S.; Samadikuchaksaraei A.; Reis R. L.; Kaplan D. L.; Kundu S. C. Silk Fibroin for Skin Injury Repair: Where Do Things Stand?. Adv. Drug Delivery Rev. 2020, 153, 28–53. 10.1016/j.addr.2019.09.003. PubMed DOI

Sultan M. T.; Lee O. J.; Kim S. H.; Ju H. W.; Park C. H.. Silk Fibroin in Wound Healing Process. In Novel Biomaterials for Regenerative Medicine; Springer Singapore: 2018; pp 115–126. 10.1007/978-981-13-0947-2_7. PubMed DOI

Gil E. S.; Park S.-H.; Marchant J.; Omenetto F.; Kaplan D. L. Response of Human Corneal Fibroblasts on Silk Film Surface Patterns. Macromol. Biosci. 2010, 10 (6), 664–673. 10.1002/mabi.200900452. PubMed DOI PMC

Gupta M. K.; Khokhar S. K.; Phillips D. M.; Sowards L. A.; Drummy L. F.; Kadakia M. P.; Naik R. R. Patterned Silk Films Cast from Ionic Liquid Solubilized Fibroin as Scaffolds for Cell Growth. Langmuir 2007, 23 (3), 1315–1319. 10.1021/la062047p. PubMed DOI

Tsioris K.; Tao H.; Liu M.; Hopwood J. A.; Kaplan D. L.; Averitt R. D.; Omenetto F. G. Rapid Transfer-Based Micropatterning and Dry Etching of Silk Microstructures. Adv. Mater. 2011, 23 (17), 2015–2019. 10.1002/adma.201004771. PubMed DOI PMC

Tien L. W.; Gil E. S.; Park S. H.; Mandal B. B.; Kaplan D. L. Patterned Silk Film Scaffolds for Aligned Lamellar Bone Tissue Engineering. Macromol. Biosci. 2012, 12 (12), 1671–1679. 10.1002/mabi.201200193. PubMed DOI PMC

Lawrence B. D.; Pan Z.; Liu A.; Kaplan D. L.; Rosenblatt M. I. Human Corneal Limbal Epithelial Cell Response to Varying Silk Film Geometric Topography in Vitro. Acta Biomater. 2012, 8 (10), 3732–3743. 10.1016/j.actbio.2012.06.009. PubMed DOI PMC

Tullii G.; Donini S.; Bossio C.; Lodola F.; Pasini M.; Parisini E.; Galeotti F.; Antognazza M. R. Micro- And Nanopatterned Silk Substrates for Antifouling Applications. ACS Appl. Mater. Interfaces 2020, 12 (5), 5437–5446. 10.1021/acsami.9b18187. PubMed DOI

Kong Y.; Zhang L.; Han Q.; Chen S.; Liu Y.; Mu H.; Liu Y.; Li G.; Chen X.; Yang Y. Effect of Anisotropic Silk Fibroin Topographies on Dorsal Root Ganglion. J. Mater. Res. 2020, 35 (13), 1738–1748. 10.1557/jmr.2020.131. DOI

Bunz U. H. F. Breath Figures as a Dynamic Templating Method for Polymers and Nanomaterials. Adv. Mater. 2006, 18 (8), 973–989. 10.1002/adma.200501131. DOI

Muñoz-Bonilla A.; Fernández-García M.; Rodríguez-Hernández J. Towards Hierarchically Ordered Functional Porous Polymeric Surfaces Prepared by the Breath Figures Approach. Prog. Polym. Sci. 2014, 39 (3), 510–554. 10.1016/j.progpolymsci.2013.08.006. DOI

Galeotti F.; Andicsova A.; Yunus S.; Botta C. Precise Surface Patterning of Silk Fibroin Films by Breath Figures. Soft Matter 2012, 8 (17), 4815–4821. 10.1039/c2sm25089f. DOI

Jin H. J.; Park J.; Valluzzi R.; Cebe P.; Kaplan D. L. Biomaterial Films of Bombyx Mori Silk Fibroin with Poly(Ethylene Oxide). Biomacromolecules 2004, 5 (3), 711–717. 10.1021/bm0343287. PubMed DOI

Lawrence B. D.; Omenetto F.; Chui K.; Kaplan D. L. Processing Methods to Control Silk Fibroin Film Biomaterial Features. J. Mater. Sci. 2008, 43 (21), 6967–6985. 10.1007/s10853-008-2961-y. DOI

Du L.; Li W.; Jiang Z.; Wang L.; Kong D.; Xu B.; Zhu M. Hierarchical Macro/Micro-Porous Silk Fibroin Scaffolds for Tissue Engineering. Mater. Lett. 2019, 236, 1–4. 10.1016/j.matlet.2018.10.040. DOI

Li X.; You R.; Luo Z.; Chen G.; Li M. Silk Fibroin Scaffolds with a Micro-/Nano-Fibrous Architecture for Dermal Regeneration. J. Mater. Chem. B 2016, 4 (17), 2903–2912. 10.1039/C6TB00213G. PubMed DOI

Liu J.; Huang R.; Li G.; Kaplan D. L.; Zheng Z.; Wang X. Generation of Nano-Pores in Silk Fibroin Films Using Silk Nanoparticles for Full-Thickness Wound Healing. Biomacromolecules 2021, 22 (2), 546–556. 10.1021/acs.biomac.0c01411. PubMed DOI

Ko E.; Lee J. S.; Kim H.; Yang S. Y.; Yang D.; Yang K.; Lee J.; Shin J.; Yang H. S.; Ryu W.; Cho S.-W. Electrospun Silk Fibroin Nanofibrous Scaffolds with Two-Stage Hydroxyapatite Functionalization for Enhancing the Osteogenic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells. ACS Appl. Mater. Interfaces 2018, 10 (9), 7614–7625. 10.1021/acsami.7b03328. PubMed DOI

Wrzecionko E.; Minařík A.; Smolka P.; Minařík M.; Humpolíček P.; Rejmontová P.; Mráček A.; Minaříková M.; Gřundělová L. Variations of Polymer Porous Surface Structures via the Time-Sequenced Dosing of Mixed Solvents. ACS Appl. Mater. Interfaces 2017, 9 (7), 6472–6481. 10.1021/acsami.6b15774. PubMed DOI

Haigh J. N.; Dargaville T. R.; Dalton P. D. Additive Manufacturing with Polypropylene Microfibers. Mater. Sci. Eng., C 2017, 77, 883–887. 10.1016/j.msec.2017.03.286. PubMed DOI

Humenik M.; Scheibel T. Nanomaterial Building Blocks Based on Spider Silk-Oligonucleotide Conjugates. ACS Nano 2014, 8 (2), 1342–1349. 10.1021/nn404916f. PubMed DOI

Smolka P.; Kadlečková M.; Kocourková K.; Bartoňová M.; Mikulka F.; Knechtová E.; Mráček A.; Musilová L.; Humenik M.; Minařík A. Controlled Structuring of Hyaluronan Films by Phase Separation and Inversion. Langmuir 2023, 39 (37), 13140–13148. 10.1021/acs.langmuir.3c01547. PubMed DOI PMC

Sakurai S.; Furukawa C.; Okutsu A.; Miyoshi A.; Nomura S. Control of Mesh Pattern of Surface Corrugation via Rate of Solvent Evaporation in Solution Casting of Polymer Film in the Presence of Convection. Polymer. 2002, 43 (11), 3359–3364. 10.1016/S0032-3861(02)00156-8. DOI

Minařík A.; Smolka P.; Lapčík L. Preliminary Investigation of Factors Determining Self-Organised Structures Preparation in Polymer Layers. Int. J. Heat Mass Transfer 2011, 54 (17–18), 4135–4142. 10.1016/j.ijheatmasstransfer.2011.03.025. DOI

Minařík A.; Rafajová M.; Rajnohová E.; Smolka P.; Mráček A. Self-Organised Patterns in Polymeric Films Solidified from Diluted Solutions - The Effect of the Substrate Surface Properties. Int. J. Heat Mass Transfer 2014, 78, 615–623. 10.1016/j.ijheatmasstransfer.2014.07.032. DOI

Chen X.; Knight D. P.; Shao Z. β-Turn Formation during the Conformation Transition in Silk Fibroin. Soft Matter 2009, 5 (14), 2777.10.1039/b900908f. DOI

Chen X.; Shao Z.; Knight D. P.; Vollrath F. Conformation Transition Kinetics of Bombyx Mori Silk Protein. Proteins Struct. Funct. Bioinforma. 2007, 68 (1), 223–231. 10.1002/prot.21414. PubMed DOI

Servoli E.; Maniglio D.; Motta A.; Predazzer R.; Migliaresi C. Surface Properties of Silk Fibroin Films and Their Interaction with Fibroblasts. Macromol. Biosci. 2005, 5 (12), 1175–1183. 10.1002/mabi.200500137. PubMed DOI

Lawrence B. D.; Wharram S.; Kluge J. A.; Leisk G. G.; Omenetto F. G.; Rosenblatt M. I.; Kaplan D. L. Effect of Hydration on Silk Film Material Properties. Macromol. Biosci. 2010, 10 (4), 393–403. 10.1002/mabi.200900294. PubMed DOI PMC

Raeisdasteh Hokmabad V.; Davaran S.; Ramazani A.; Salehi R. Design and Fabrication of Porous Biodegradable Scaffolds: A Strategy for Tissue Engineering. J. Biomater. Sci. Polym. Ed. 2017, 28 (16), 1797–1825. 10.1080/09205063.2017.1354674. PubMed DOI

Werner S.; Krieg T.; Smola H. Keratinocyte-Fibroblast Interactions in Wound Healing. J. Invest. Dermatol. 2007, 127 (5), 998–1008. 10.1038/sj.jid.5700786. PubMed DOI

Piipponen M.; Li D.; Landén N. X. The Immune Functions of Keratinocytes in Skin Wound Healing. Int. J. Mol. Sci. 2020, 21 (22), 8790.10.3390/ijms21228790. PubMed DOI PMC

Wojtowicz A. M.; Oliveira S.; Carlson M. W.; Zawadzka A.; Rousseau C. F.; Baksh D. The Importance of Both Fibroblasts and Keratinocytes in a Bilayered Living Cellular Construct Used in Wound Healing. Wound Repair Regen. 2014, 22 (2), 246–255. 10.1111/wrr.12154. PubMed DOI PMC

Jothi Prakash C. G.; Prasanth R. Approaches to Design a Surface with Tunable Wettability: A Review on Surface Properties. J. Mater. Sci. 2021, 56 (1), 108–135. 10.1007/s10853-020-05116-1. DOI

Lee J. H.; Kwak H. W.; Park M. H.; Hwang J.; Kim J. W.; Jang H. W.; Jin H.-J.; Lee W. H. Understanding Hydroscopic Properties of Silk Fibroin and Its Use as a Gate-Dielectric in Organic Field-Effect Transistors. Org. Electron. 2018, 59, 213–219. 10.1016/j.orgel.2018.05.012. DOI

Šako M.; Staniscia F.; Schneck E.; Netz R. R.; Kanduč M. Conditions for the Stable Adsorption of Lipid Monolayers to Solid Surfaces. PNAS Nexus 2023, 2 (6), pgad190.10.1093/pnasnexus/pgad190. PubMed DOI PMC

Buken C.; Sahana J.; Corydon T. J.; Melnik D.; Bauer J.; Wehland M.; Krüger M.; Balk S.; Abuagela N.; Infanger M.; Grimm D. Morphological and Molecular Changes in Juvenile Normal Human Fibroblasts Exposed to Simulated Microgravity. Sci. Rep. 2019, 9 (1), 11882.10.1038/s41598-019-48378-9. PubMed DOI PMC

Ravikanth M.; Soujanya P.; Manjunath K.; Saraswathi T.; Ramachandran C. Heterogenecity of Fibroblasts. J. Oral Maxillofac. Pathol. 2011, 15 (2), 247.10.4103/0973-029X.84516. PubMed DOI PMC

Koeck K. S.; Trossmann V. T.; Scheibel T. 3D-Printed and Recombinant Spider Silk Particle Reinforced Collagen Composite Scaffolds for Soft Tissue Engineering. Adv. Funct. Mater. 2024, 10.1002/adfm.202407760. DOI

Negut I.; Dorcioman G.; Grumezescu V. Scaffolds for Wound Healing Applications. Polymers. 2020, 12 (9), 2010.10.3390/polym12092010. PubMed DOI PMC

Dias J. R.; Granja P. L.; Bártolo P. J. Advances in Electrospun Skin Substitutes. Prog. Mater. Sci. 2016, 84, 314–334. 10.1016/j.pmatsci.2016.09.006. DOI

Liu J.; Tang H.; Jiang C.; Wu S.; Ye L.; Zhao D.; Zhou Z. Micro-Nano Porous Structure for Efficient Daytime Radiative Sky Cooling. Adv. Funct. Mater. 2022, 32 (44), 2206962.10.1002/adfm.202206962. DOI

Mandal J.; Fu Y.; Overvig A. C.; Jia M.; Sun K.; Shi N. N.; Zhou H.; Xiao X.; Yu N.; Yang Y. Hierarchically Porous Polymer Coatings for Highly Efficient Passive Daytime Radiative Cooling. Science 2018, 362 (6412), 315–319. 10.1126/science.aat9513. PubMed DOI

Park C.; Park C.; Nie X.; Lee J.; Kim Y. S.; Yoo Y. Fully Organic and Flexible Biodegradable Emitter for Global Energy-Free Cooling Applications. ACS Sustain. Chem. Eng. 2022, 10 (21), 7091–7099. 10.1021/acssuschemeng.2c01182. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...