Silk Fibroin Surface Engineering Using Phase Separation Approaches for Enhanced Cell Adhesion and Proliferation
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39967507
PubMed Central
PMC11891832
DOI
10.1021/acsami.5c00874
Knihovny.cz E-zdroje
- Klíčová slova
- 3D printing, cell interaction, phase separation, secondary structure, silk fibroin, surface texture,
- MeSH
- biokompatibilní materiály * chemie farmakologie MeSH
- buněčná adheze účinky léků MeSH
- fibroblasty cytologie MeSH
- fibroiny * chemie farmakologie MeSH
- keratinocyty cytologie účinky léků MeSH
- lidé MeSH
- povrchové vlastnosti MeSH
- proliferace buněk účinky léků MeSH
- separace fází MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biokompatibilní materiály * MeSH
- fibroiny * MeSH
Due to excellent mechanical properties and biocompatibility, materials based on silk fibroin are increasingly included in advanced biomedical research and applications. However, their poor supporting properties for cell adhesion and proliferation represent limiting factors of the utilization. To eliminate this deficiency, we developed a series of phase-separation approaches allowing for tunable texturing of planar and 3D printed fibroin surfaces from nano to macro levels. The formation of surface structures presented is based on a combination of good and poor solvents, whereas no potentially problematic templates or additives, diminishing biocompatibility of the resulting material, are required. A critical factor in obtaining and scaling of the textures is control over the degree of transformation of fibroin secondary structures between prevalently amorphous Silk I and semicrystalline Silk II forms before and during surface treatment. Employing a set of optimized procedures, selectively or hierarchically structured fibroin surfaces can be prepared at the nano, micro, and macro level, which are characterized by long-term stability in physiological environments, allowing enhanced adhesion and proliferation of human keratinocytes as well as skin fibroblast cultivations.
Zobrazit více v PubMed
Van Vlierberghe S.; Dubruel P.; Schacht E. Biopolymer-Based Hydrogels as Scaffolds for Tissue Engineering Applications: A Review. Biomacromolecules 2011, 12 (5), 1387–1408. 10.1021/bm200083n. PubMed DOI
Pollini M.; Paladini F. Bioinspired Materials for Wound Healing Application: The Potential of Silk Fibroin. Materials 2020, 13 (15), 3361.10.3390/ma13153361. PubMed DOI PMC
Pina S.; Ribeiro V. P.; Marques C. F.; Maia F. R.; Silva T. H.; Reis R. L.; Oliveira J. M. Scaffolding Strategies for Tissue Engineering and Regenerative Medicine Applications. Materials 2019, 12 (11), 1824.10.3390/ma12111824. PubMed DOI PMC
Zhou Z.; Zhang S.; Cao Y.; Marelli B.; Xia X.; Tao T. H. Engineering the Future of Silk Materials through Advanced Manufacturing. Adv. Mater. 2018, 30 (33), 1–26. 10.1002/adma.201706983. PubMed DOI
Holland C.; Numata K.; Rnjak-Kovacina J.; Seib F. P. The Biomedical Use of Silk: Past, Present, Future. Adv. Healthc. Mater. 2019, 8 (1), e1800465.10.1002/adhm.201800465. PubMed DOI
Sahoo J. K.; Hasturk O.; Falcucci T.; Kaplan D. L. Silk Chemistry and Biomedical Material Designs. Nat. Rev. Chem. 2023, 7 (5), 302–318. 10.1038/s41570-023-00486-x. PubMed DOI
Bucciarelli A.; Motta A. Use of Bombyx Mori Silk Fibroin in Tissue Engineering: From Cocoons to Medical Devices, Challenges, and Future Perspectives. Biomater. Adv. 2022, 139, 212982.10.1016/j.bioadv.2022.212982. PubMed DOI
Rockwood D. N.; Preda R. C.; Yücel T.; Wang X.; Lovett M. L.; Kaplan D. L. Materials Fabrication from Bombyx Mori Silk Fibroin. Nat. Protoc. 2011, 6 (10), 1612–1631. 10.1038/nprot.2011.379. PubMed DOI PMC
Naomi R.; Ratanavaraporn J.; Fauzi M. B. Comprehensive Review of Hybrid Collagen and Silk Fibroin for Cutaneous Wound Healing. Materials 2020, 13 (14), 3097.10.3390/ma13143097. PubMed DOI PMC
Matthew S. A. L.; Seib F. P. Silk Bioconjugates: From Chemistry and Concept to Application. ACS Biomater. Sci. Eng. 2024, 10, 12.10.1021/acsbiomaterials.2c01116. PubMed DOI PMC
Dvir T.; Timko B. P.; Kohane D. S.; Langer R. Nanotechnological Strategies for Engineering Complex Tissues. Nat. Nanotechnol. 2011, 6 (1), 13–22. 10.1038/nnano.2010.246. PubMed DOI PMC
Xu M.; Pradhan S.; Agostinacchio F.; Pal R. K.; Greco G.; Mazzolai B.; Pugno N. M.; Motta A.; Yadavalli V. K. Easy, Scalable, Robust, Micropatterned Silk Fibroin Cell Substrates. Adv. Mater. Interfaces 2019, 6 (8), 1801822.10.1002/admi.201801822. DOI
Sheng R.; Mu J.; Chernozem R. V.; Mukhortova Y. R.; Surmeneva M. A.; Pariy I. O.; Ludwig T.; Mathur S.; Xu C.; Surmenev R. A.; Liu H. H. Fabrication and Characterization of Piezoelectric Polymer Composites and Cytocompatibility with Mesenchymal Stem Cells. ACS Appl. Mater. Interfaces 2023, 15 (3), 3731–3743. 10.1021/acsami.2c15802. PubMed DOI
Lujerdean C.; Baci G.-M.; Cucu A.-A.; Dezmirean D. S. The Contribution of Silk Fibroin in Biomedical Engineering. Insects 2022, 13 (3), 286.10.3390/insects13030286. PubMed DOI PMC
Wang Y.; Kim B. J.; Peng B.; Li W.; Wang Y.; Li M.; Omenetto F. G. Controlling Silk Fibroin Conformation for Dynamic, Responsive, Multifunctional, Micropatterned Surfaces. Proc. Natl. Acad. Sci. U. S. A. 2019, 116 (43), 21361–21368. 10.1073/pnas.1911563116. PubMed DOI PMC
Amsden J. J.; Domachuk P.; Gopinath A.; White R. D.; Negro L. D.; Kaplan D. L.; Omenetto F. G. Rapid Nanoimprinting of Silk Fibroin Films for Biophotonic Applications. Adv. Mater. 2010, 22 (15), 1746–1749. 10.1002/adma.200903166. PubMed DOI
Dalby M. J.; Gadegaard N.; Oreffo R. O. C. Harnessing Nanotopography and Integrin-Matrix Interactions to Influence Stem Cell Fate. Nat. Mater. 2014, 13 (6), 558–569. 10.1038/nmat3980. PubMed DOI
Ross A. M.; Jiang Z.; Bastmeyer M.; Lahann J. Physical Aspects of Cell Culture Substrates: Topography, Roughness, and Elasticity. Small 2012, 8 (3), 336–355. 10.1002/smll.201100934. PubMed DOI
Leal-Egaña A.; Scheibel T. Interactions of Cells with Silk Surfaces. J. Mater. Chem. 2012, 22 (29), 14330.10.1039/c2jm31174g. DOI
HARRISON R. G. ON THE STEREOTROPISM OF EMBRYONIC CELLS. Science 1911, 34 (870), 279–281. 10.1126/science.34.870.279. PubMed DOI
Teixeira A. I.; Abrams G. A.; Bertics P. J.; Murphy C. J.; Nealey P. F. Epithelial Contact Guidance on Well-Defined Micro- and Nanostructured Substrates. J. Cell Sci. 2003, 116 (10), 1881–1892. 10.1242/jcs.00383. PubMed DOI PMC
Teixeira A. I.; McKie G. A.; Foley J. D.; Bertics P. J.; Nealey P. F.; Murphy C. J. The Effect of Environmental Factors on the Response of Human Corneal Epithelial Cells to Nanoscale Substrate Topography. Biomaterials 2006, 27 (21), 3945–3954. 10.1016/j.biomaterials.2006.01.044. PubMed DOI PMC
yadav P.; Beniwal G.; Saxena K. K. A Review on Pore and Porosity in Tissue Engineering. Mater. Today Proc. 2021, 44, 2623–2628. 10.1016/j.matpr.2020.12.661. DOI
Liang Y.; Liang Y.; Zhang H.; Guo B. Antibacterial Biomaterials for Skin Wound Dressing. Asian J. Pharm. Sci. 2022, 17 (3), 353–384. 10.1016/j.ajps.2022.01.001. PubMed DOI PMC
Francolini I.; Vuotto C.; Piozzi A.; Donelli G. Antifouling and Antimicrobial Biomaterials: An Overview. APMIS 2017, 125 (4), 392–417. 10.1111/apm.12675. PubMed DOI
Shanmugapriya K.; Kim H.; Saravana P. S.; Chun B.-S.; Kang H. W. Fabrication of Multifunctional Chitosan-Based Nanocomposite Film with Rapid Healing and Antibacterial Effect for Wound Management. Int. J. Biol. Macromol. 2018, 118, 1713–1725. 10.1016/j.ijbiomac.2018.07.018. PubMed DOI
Gholipourmalekabadi M.; Sapru S.; Samadikuchaksaraei A.; Reis R. L.; Kaplan D. L.; Kundu S. C. Silk Fibroin for Skin Injury Repair: Where Do Things Stand?. Adv. Drug Delivery Rev. 2020, 153, 28–53. 10.1016/j.addr.2019.09.003. PubMed DOI
Sultan M. T.; Lee O. J.; Kim S. H.; Ju H. W.; Park C. H.. Silk Fibroin in Wound Healing Process. In Novel Biomaterials for Regenerative Medicine; Springer Singapore: 2018; pp 115–126. 10.1007/978-981-13-0947-2_7. PubMed DOI
Gil E. S.; Park S.-H.; Marchant J.; Omenetto F.; Kaplan D. L. Response of Human Corneal Fibroblasts on Silk Film Surface Patterns. Macromol. Biosci. 2010, 10 (6), 664–673. 10.1002/mabi.200900452. PubMed DOI PMC
Gupta M. K.; Khokhar S. K.; Phillips D. M.; Sowards L. A.; Drummy L. F.; Kadakia M. P.; Naik R. R. Patterned Silk Films Cast from Ionic Liquid Solubilized Fibroin as Scaffolds for Cell Growth. Langmuir 2007, 23 (3), 1315–1319. 10.1021/la062047p. PubMed DOI
Tsioris K.; Tao H.; Liu M.; Hopwood J. A.; Kaplan D. L.; Averitt R. D.; Omenetto F. G. Rapid Transfer-Based Micropatterning and Dry Etching of Silk Microstructures. Adv. Mater. 2011, 23 (17), 2015–2019. 10.1002/adma.201004771. PubMed DOI PMC
Tien L. W.; Gil E. S.; Park S. H.; Mandal B. B.; Kaplan D. L. Patterned Silk Film Scaffolds for Aligned Lamellar Bone Tissue Engineering. Macromol. Biosci. 2012, 12 (12), 1671–1679. 10.1002/mabi.201200193. PubMed DOI PMC
Lawrence B. D.; Pan Z.; Liu A.; Kaplan D. L.; Rosenblatt M. I. Human Corneal Limbal Epithelial Cell Response to Varying Silk Film Geometric Topography in Vitro. Acta Biomater. 2012, 8 (10), 3732–3743. 10.1016/j.actbio.2012.06.009. PubMed DOI PMC
Tullii G.; Donini S.; Bossio C.; Lodola F.; Pasini M.; Parisini E.; Galeotti F.; Antognazza M. R. Micro- And Nanopatterned Silk Substrates for Antifouling Applications. ACS Appl. Mater. Interfaces 2020, 12 (5), 5437–5446. 10.1021/acsami.9b18187. PubMed DOI
Kong Y.; Zhang L.; Han Q.; Chen S.; Liu Y.; Mu H.; Liu Y.; Li G.; Chen X.; Yang Y. Effect of Anisotropic Silk Fibroin Topographies on Dorsal Root Ganglion. J. Mater. Res. 2020, 35 (13), 1738–1748. 10.1557/jmr.2020.131. DOI
Bunz U. H. F. Breath Figures as a Dynamic Templating Method for Polymers and Nanomaterials. Adv. Mater. 2006, 18 (8), 973–989. 10.1002/adma.200501131. DOI
Muñoz-Bonilla A.; Fernández-García M.; Rodríguez-Hernández J. Towards Hierarchically Ordered Functional Porous Polymeric Surfaces Prepared by the Breath Figures Approach. Prog. Polym. Sci. 2014, 39 (3), 510–554. 10.1016/j.progpolymsci.2013.08.006. DOI
Galeotti F.; Andicsova A.; Yunus S.; Botta C. Precise Surface Patterning of Silk Fibroin Films by Breath Figures. Soft Matter 2012, 8 (17), 4815–4821. 10.1039/c2sm25089f. DOI
Jin H. J.; Park J.; Valluzzi R.; Cebe P.; Kaplan D. L. Biomaterial Films of Bombyx Mori Silk Fibroin with Poly(Ethylene Oxide). Biomacromolecules 2004, 5 (3), 711–717. 10.1021/bm0343287. PubMed DOI
Lawrence B. D.; Omenetto F.; Chui K.; Kaplan D. L. Processing Methods to Control Silk Fibroin Film Biomaterial Features. J. Mater. Sci. 2008, 43 (21), 6967–6985. 10.1007/s10853-008-2961-y. DOI
Du L.; Li W.; Jiang Z.; Wang L.; Kong D.; Xu B.; Zhu M. Hierarchical Macro/Micro-Porous Silk Fibroin Scaffolds for Tissue Engineering. Mater. Lett. 2019, 236, 1–4. 10.1016/j.matlet.2018.10.040. DOI
Li X.; You R.; Luo Z.; Chen G.; Li M. Silk Fibroin Scaffolds with a Micro-/Nano-Fibrous Architecture for Dermal Regeneration. J. Mater. Chem. B 2016, 4 (17), 2903–2912. 10.1039/C6TB00213G. PubMed DOI
Liu J.; Huang R.; Li G.; Kaplan D. L.; Zheng Z.; Wang X. Generation of Nano-Pores in Silk Fibroin Films Using Silk Nanoparticles for Full-Thickness Wound Healing. Biomacromolecules 2021, 22 (2), 546–556. 10.1021/acs.biomac.0c01411. PubMed DOI
Ko E.; Lee J. S.; Kim H.; Yang S. Y.; Yang D.; Yang K.; Lee J.; Shin J.; Yang H. S.; Ryu W.; Cho S.-W. Electrospun Silk Fibroin Nanofibrous Scaffolds with Two-Stage Hydroxyapatite Functionalization for Enhancing the Osteogenic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells. ACS Appl. Mater. Interfaces 2018, 10 (9), 7614–7625. 10.1021/acsami.7b03328. PubMed DOI
Wrzecionko E.; Minařík A.; Smolka P.; Minařík M.; Humpolíček P.; Rejmontová P.; Mráček A.; Minaříková M.; Gřundělová L. Variations of Polymer Porous Surface Structures via the Time-Sequenced Dosing of Mixed Solvents. ACS Appl. Mater. Interfaces 2017, 9 (7), 6472–6481. 10.1021/acsami.6b15774. PubMed DOI
Haigh J. N.; Dargaville T. R.; Dalton P. D. Additive Manufacturing with Polypropylene Microfibers. Mater. Sci. Eng., C 2017, 77, 883–887. 10.1016/j.msec.2017.03.286. PubMed DOI
Humenik M.; Scheibel T. Nanomaterial Building Blocks Based on Spider Silk-Oligonucleotide Conjugates. ACS Nano 2014, 8 (2), 1342–1349. 10.1021/nn404916f. PubMed DOI
Smolka P.; Kadlečková M.; Kocourková K.; Bartoňová M.; Mikulka F.; Knechtová E.; Mráček A.; Musilová L.; Humenik M.; Minařík A. Controlled Structuring of Hyaluronan Films by Phase Separation and Inversion. Langmuir 2023, 39 (37), 13140–13148. 10.1021/acs.langmuir.3c01547. PubMed DOI PMC
Sakurai S.; Furukawa C.; Okutsu A.; Miyoshi A.; Nomura S. Control of Mesh Pattern of Surface Corrugation via Rate of Solvent Evaporation in Solution Casting of Polymer Film in the Presence of Convection. Polymer. 2002, 43 (11), 3359–3364. 10.1016/S0032-3861(02)00156-8. DOI
Minařík A.; Smolka P.; Lapčík L. Preliminary Investigation of Factors Determining Self-Organised Structures Preparation in Polymer Layers. Int. J. Heat Mass Transfer 2011, 54 (17–18), 4135–4142. 10.1016/j.ijheatmasstransfer.2011.03.025. DOI
Minařík A.; Rafajová M.; Rajnohová E.; Smolka P.; Mráček A. Self-Organised Patterns in Polymeric Films Solidified from Diluted Solutions - The Effect of the Substrate Surface Properties. Int. J. Heat Mass Transfer 2014, 78, 615–623. 10.1016/j.ijheatmasstransfer.2014.07.032. DOI
Chen X.; Knight D. P.; Shao Z. β-Turn Formation during the Conformation Transition in Silk Fibroin. Soft Matter 2009, 5 (14), 2777.10.1039/b900908f. DOI
Chen X.; Shao Z.; Knight D. P.; Vollrath F. Conformation Transition Kinetics of Bombyx Mori Silk Protein. Proteins Struct. Funct. Bioinforma. 2007, 68 (1), 223–231. 10.1002/prot.21414. PubMed DOI
Servoli E.; Maniglio D.; Motta A.; Predazzer R.; Migliaresi C. Surface Properties of Silk Fibroin Films and Their Interaction with Fibroblasts. Macromol. Biosci. 2005, 5 (12), 1175–1183. 10.1002/mabi.200500137. PubMed DOI
Lawrence B. D.; Wharram S.; Kluge J. A.; Leisk G. G.; Omenetto F. G.; Rosenblatt M. I.; Kaplan D. L. Effect of Hydration on Silk Film Material Properties. Macromol. Biosci. 2010, 10 (4), 393–403. 10.1002/mabi.200900294. PubMed DOI PMC
Raeisdasteh Hokmabad V.; Davaran S.; Ramazani A.; Salehi R. Design and Fabrication of Porous Biodegradable Scaffolds: A Strategy for Tissue Engineering. J. Biomater. Sci. Polym. Ed. 2017, 28 (16), 1797–1825. 10.1080/09205063.2017.1354674. PubMed DOI
Werner S.; Krieg T.; Smola H. Keratinocyte-Fibroblast Interactions in Wound Healing. J. Invest. Dermatol. 2007, 127 (5), 998–1008. 10.1038/sj.jid.5700786. PubMed DOI
Piipponen M.; Li D.; Landén N. X. The Immune Functions of Keratinocytes in Skin Wound Healing. Int. J. Mol. Sci. 2020, 21 (22), 8790.10.3390/ijms21228790. PubMed DOI PMC
Wojtowicz A. M.; Oliveira S.; Carlson M. W.; Zawadzka A.; Rousseau C. F.; Baksh D. The Importance of Both Fibroblasts and Keratinocytes in a Bilayered Living Cellular Construct Used in Wound Healing. Wound Repair Regen. 2014, 22 (2), 246–255. 10.1111/wrr.12154. PubMed DOI PMC
Jothi Prakash C. G.; Prasanth R. Approaches to Design a Surface with Tunable Wettability: A Review on Surface Properties. J. Mater. Sci. 2021, 56 (1), 108–135. 10.1007/s10853-020-05116-1. DOI
Lee J. H.; Kwak H. W.; Park M. H.; Hwang J.; Kim J. W.; Jang H. W.; Jin H.-J.; Lee W. H. Understanding Hydroscopic Properties of Silk Fibroin and Its Use as a Gate-Dielectric in Organic Field-Effect Transistors. Org. Electron. 2018, 59, 213–219. 10.1016/j.orgel.2018.05.012. DOI
Šako M.; Staniscia F.; Schneck E.; Netz R. R.; Kanduč M. Conditions for the Stable Adsorption of Lipid Monolayers to Solid Surfaces. PNAS Nexus 2023, 2 (6), pgad190.10.1093/pnasnexus/pgad190. PubMed DOI PMC
Buken C.; Sahana J.; Corydon T. J.; Melnik D.; Bauer J.; Wehland M.; Krüger M.; Balk S.; Abuagela N.; Infanger M.; Grimm D. Morphological and Molecular Changes in Juvenile Normal Human Fibroblasts Exposed to Simulated Microgravity. Sci. Rep. 2019, 9 (1), 11882.10.1038/s41598-019-48378-9. PubMed DOI PMC
Ravikanth M.; Soujanya P.; Manjunath K.; Saraswathi T.; Ramachandran C. Heterogenecity of Fibroblasts. J. Oral Maxillofac. Pathol. 2011, 15 (2), 247.10.4103/0973-029X.84516. PubMed DOI PMC
Koeck K. S.; Trossmann V. T.; Scheibel T. 3D-Printed and Recombinant Spider Silk Particle Reinforced Collagen Composite Scaffolds for Soft Tissue Engineering. Adv. Funct. Mater. 2024, 10.1002/adfm.202407760. DOI
Negut I.; Dorcioman G.; Grumezescu V. Scaffolds for Wound Healing Applications. Polymers. 2020, 12 (9), 2010.10.3390/polym12092010. PubMed DOI PMC
Dias J. R.; Granja P. L.; Bártolo P. J. Advances in Electrospun Skin Substitutes. Prog. Mater. Sci. 2016, 84, 314–334. 10.1016/j.pmatsci.2016.09.006. DOI
Liu J.; Tang H.; Jiang C.; Wu S.; Ye L.; Zhao D.; Zhou Z. Micro-Nano Porous Structure for Efficient Daytime Radiative Sky Cooling. Adv. Funct. Mater. 2022, 32 (44), 2206962.10.1002/adfm.202206962. DOI
Mandal J.; Fu Y.; Overvig A. C.; Jia M.; Sun K.; Shi N. N.; Zhou H.; Xiao X.; Yu N.; Yang Y. Hierarchically Porous Polymer Coatings for Highly Efficient Passive Daytime Radiative Cooling. Science 2018, 362 (6412), 315–319. 10.1126/science.aat9513. PubMed DOI
Park C.; Park C.; Nie X.; Lee J.; Kim Y. S.; Yoo Y. Fully Organic and Flexible Biodegradable Emitter for Global Energy-Free Cooling Applications. ACS Sustain. Chem. Eng. 2022, 10 (21), 7091–7099. 10.1021/acssuschemeng.2c01182. DOI