Inhibition of E. coli Growth by Nanodiamond and Graphene Oxide Enhanced by Luria-Bertani Medium
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
29494507
PubMed Central
PMC5869631
DOI
10.3390/nano8030140
PII: nano8030140
Knihovny.cz E-zdroje
- Klíčová slova
- Escherichia coli, antibacterial activity, graphene oxide, inhibition, nanodiamonds,
- Publikační typ
- časopisecké články MeSH
Nanodiamonds (NDs) and graphene oxide (GO) are modern carbon-based nanomaterials with promising features for the inhibition of microorganism growth ability. Here we compare the effects of nanodiamond and graphene oxide in both annealed (oxidized) and reduced (hydrogenated) forms in two types of cultivation media-Luria-Bertani (LB) and Mueller-Hinton (MH) broths. The comparison shows that the number of colony forming unit (CFU) of Escherichia coli is significantly lowered (45%) by all the nanomaterials in LB medium for at least 24 h against control. On the contrary, a significant long-term inhibition of E. coli growth (by 45%) in the MH medium is provided only by hydrogenated NDs terminated with C-HX groups. The use of salty agars did not enhance the inhibition effects of nanomaterials used, i.e. disruption of bacterial membrane or differences in ionic concentrations do not play any role in bactericidal effects of nanomaterials used. The specific role of the ND and GO on the enhancement of the oxidative stress of bacteria or possible wrapping bacteria by GO nanosheets, therefore isolating them from both the environment and nutrition was suggested. Analyses by infrared spectroscopy, photoelectron spectroscopy, scanning electron microscopy and dynamic light scattering corroborate these conclusions.
Zobrazit více v PubMed
Liang F., Chen B. A Review on Biomedical Applications of Single-Walled Carbon Nanotubes. Curr. Med. Chem. 2010;17:10–24. doi: 10.2174/092986710789957742. PubMed DOI
Bacakova L., Kopova I., Stankova L., Liskova J., Vacik J., Lavrentiev V., Kromka A., Potocky S., Stranska D. Bone Cells in Cultures on Nanocarbon-Based Materials for Potential Bone Tissue Engineering: A Review. Phys. Status Solidi A. 2014;211:2688–2702. doi: 10.1002/pssa.201431402. DOI
Verdanova M., Rezek B., Broz A., Ukraintsev E., Babchenko O., Artemenko A., Izak T., Kromka A., Kalbac M., Hubalek Kalbacova M. Nanocarbon Allotropes-Graphene and Nanocrystalline Diamond-Promote Cell Proliferation. Small Weinh. Bergstr. Ger. 2016;12:2499–2509. doi: 10.1002/smll.201503749. PubMed DOI
Balasubramanian G., Lazariev A., Arumugam S.R., Duan D.-W. Nitrogen-Vacancy Color Center in Diamond-Emerging Nanoscale Applications in Bioimaging and Biosensing. Curr. Opin. Chem. Biol. 2014;20:69–77. doi: 10.1016/j.cbpa.2014.04.014. PubMed DOI
Stobiecka M., Dworakowska B., Jakiela S., Lukasiak A., Chalupa A., Zembrzycki K. Sensing of Survivin MRNA in Malignant Astrocytes Using Graphene Oxide Nanocarrier-Supported Oligonucleotide Molecular Beacons. Sens. Actuators B Chem. 2016;235:136–145. doi: 10.1016/j.snb.2016.04.176. DOI
Ratajczak K., Stobiecka M. Ternary Interactions and Energy Transfer between Fluorescein Isothiocyanate, Adenosine Triphosphate, and Graphene Oxide Nanocarriers. J. Phys. Chem. B. 2017;121:6822–6830. doi: 10.1021/acs.jpcb.7b04295. PubMed DOI
Jakubowski W., Bartosz G., Niedzielski P., Szymanski W., Walkowiak B. Nanocrystalline Diamond Surface Is Resistant to Bacterial Colonization. Diam. Relat. Mater. 2004;13:1761–1763. doi: 10.1016/j.diamond.2004.03.003. DOI
Wehling J., Dringen R., Zare R.N., Maas M., Rezwan K. Bactericidal Activity of Partially Oxidized Nanodiamonds. ACS Nano. 2014;8:6475–6483. doi: 10.1021/nn502230m. PubMed DOI
Sawosz E., Chwalibog A., Mitura K., Mitura S., Szeliga J., Niemiec T., Rupiewicz M., Grodzik M., Sokołowska A. Visualisation of Morphological Interaction of Diamond and Silver Nanoparticles with Salmonella Enteritidis and Listeria Monocytogenes. J. Nanosci. Nanotechnol. 2011;11:7635–7641. doi: 10.1166/jnn.2011.4735. PubMed DOI
Beranová J., Seydlová G., Kozak H., Benada O., Fišer R., Artemenko A., Konopásek I., Kromka A. Sensitivity of Bacteria to Diamond Nanoparticles of Various Size Differs in Gram-Positive and Gram-Negative Cells. FEMS Microbiol. Lett. 2014;351:179–186. doi: 10.1111/1574-6968.12373. PubMed DOI
Jastrzębska A.M., Kurtycz P., Olszyna A.R. Recent Advances in Graphene Family Materials Toxicity Investigations. J. Nanopart. Res. 2012;14:1320. doi: 10.1007/s11051-012-1320-8. PubMed DOI PMC
Kurantowicz N., Sawosz E., Jaworski S., Kutwin M., Strojny B., Wierzbicki M., Szeliga J., Hotowy A., Lipińska L., Koziński R., et al. Interaction of Graphene Family Materials with Listeria Monocytogenes and Salmonella Enterica. Nanoscale Res. Lett. 2015;10:23. doi: 10.1186/s11671-015-0749-y. PubMed DOI PMC
Nanda S.S., Yi D.K., Kim K. Study of Antibacterial Mechanism of Graphene Oxide Using Raman Spectroscopy. Sci. Rep. 2016;6:28443. doi: 10.1038/srep28443. PubMed DOI PMC
Kromka A., Jira J., Stenclova P., Kriha V., Kozak H., Beranova J., Vretenar V., Skakalova V., Rezek B. Bacterial Response to Nanodiamonds and Graphene Oxide Sheets. Phys. Status Solidi B. 2016;253:2481–2485. doi: 10.1002/pssb.201600237. DOI
Von Moos N., Slaveykova V.I. Oxidative Stress Induced by Inorganic Nanoparticles in Bacteria and Aquatic Microalgae--State of the Art and Knowledge Gaps. Nanotoxicology. 2014;8:605–630. doi: 10.3109/17435390.2013.809810. PubMed DOI
Ginés L., Mandal S., Ashek-I-Ahmed, Cheng C.-L., Sow M., Williams O.A. Positive Zeta Potential of Nanodiamonds. Nanoscale. 2017;9:12549–12555. doi: 10.1039/C7NR03200E. PubMed DOI
Kozak H., Remes Z., Houdkova J., Stehlik S., Kromka A., Rezek B. Chemical Modifications and Stability of Diamond Nanoparticles Resolved by Infrared Spectroscopy and Kelvin Force Microscopy. J. Nanopart. Res. 2013;15:1568. doi: 10.1007/s11051-013-1568-7. DOI
Chen W., Yan L., Bangal P. Preparation of Graphene by the Rapid and Mild Thermal Reduction of Graphene Oxide Induced by Microwaves. Carbon. 2010;48:1146–1152. doi: 10.1016/j.carbon.2009.11.037. DOI
Brodie B.C. On the Atomic Weight of Graphite. Philos. Trans. R. Soc. Lond. 1859;149:249–259. doi: 10.1098/rstl.1859.0013. DOI
Mueller Hinton Agar (MHA)—Composition, Principle, Uses and Preparation. Online Microbiology Notes. [(accessed on 11 February 2018)];2015 Available online: https://microbiologyinfo.com/mueller-hinton-agar-mha-composition-principle-uses-and-preparation/
Sezonov G., Joseleau-Petit D., D’Ari R. Escherichia Coli Physiology in Luria-Bertani Broth. J. Bacteriol. 2007;189:8746–8749. doi: 10.1128/JB.01368-07. PubMed DOI PMC
Barth A. Infrared Spectroscopy of Proteins. Biochim. Biophys. Acta Bioenerg. 2007;1767:1073–1101. doi: 10.1016/j.bbabio.2007.06.004. PubMed DOI
Sukhoruchkin S.I., Soroko Z.N. Nuclei with Z = 1 − 54. Springer; Berlin/Heidelberg, Germany: 2009. Atomic Mass and Nuclear Binding Energy for Mg-24 (Magnesium) pp. 618–620. Landolt-Börnstein—Group I Elementary Particles, Nuclei and Atoms.
Liu S., Zeng T.H., Hofmann M., Burcombe E., Wei J., Jiang R., Kong J., Chen Y. Antibacterial Activity of Graphite, Graphite Oxide, Graphene Oxide, and Reduced Graphene Oxide: Membrane and Oxidative Stress. ACS Nano. 2011;5:6971–6980. doi: 10.1021/nn202451x. PubMed DOI
Wang L., Hu C., Shao L. The Antimicrobial Activity of Nanoparticles: Present Situation and Prospects for the Future. Int. J. Nanomed. 2017;12:1227–1249. doi: 10.2147/IJN.S121956. PubMed DOI PMC
Hu W., Peng C., Luo W., Lv M., Li X., Li D., Huang Q., Fan C. Graphene-Based Antibacterial Paper. ACS Nano. 2010;4:4317–4323. doi: 10.1021/nn101097v. PubMed DOI
Beranová J., Seydlová G., Kozak H., Potocký Š., Konopásek I., Kromka A. Antibacterial Behavior of Diamond Nanoparticles against Escherichia coli. Phys. Status Solidi B. 2012;249:2581–2584. doi: 10.1002/pssb.201200079. DOI
Qi X., Wang T., Long Y., Ni J. Synergetic Antibacterial Activity of Reduced Graphene Oxide and Boron Doped Diamond Anode in Three Dimensional Electrochemical Oxidation System. Sci. Rep. 2015;5:10388. doi: 10.1038/srep10388. PubMed DOI PMC
Niemiec T., Szmidt M., Sawosz E., Grodzik M., Mitura K. The Effect of Diamond Nanoparticles on Redox and Immune Parameters in Rats. J. Nanosci. Nanotechnol. 2011;11:9072–9077. doi: 10.1166/jnn.2011.3511. PubMed DOI
The Limitations of LB Medium. [(accessed on 30 December 2017)]; Available online: http://schaechter.asmblog.org/schaechter/2009/11/the-limitations-of-lb-medium.html.
Cernak I., Savic V., Kotur J., Prokic V., Kuljic B., Grbovic D., Veljovic M. Alterations in Magnesium and Oxidative Status during Chronic Emotional Stress. Magnes. Res. 2000;13:29–36. PubMed
Growth Inhibition of Gram-Positive and Gram-Negative Bacteria by Zinc Oxide Hedgehog Particles