Explorative Meta-Analysis of 417 Extant Archaeal Genomes to Predict Their Contribution to the Total Microbiome Functionality
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-02022Y
Grantová Agentura České Republiky
PubMed
33668634
PubMed Central
PMC7918521
DOI
10.3390/microorganisms9020381
PII: microorganisms9020381
Knihovny.cz E-zdroje
- Klíčová slova
- archaea, functional diversity, microbiome functionality,
- Publikační typ
- časopisecké články MeSH
Revealing the relationship between taxonomy and function in microbiomes is critical to discover their contribution to ecosystem functioning. However, while the relationship between taxonomic and functional diversity in bacteria and fungi is known, this is not the case for archaea. Here, we used a meta-analysis of 417 completely annotated extant and taxonomically unique archaeal genomes to predict the extent of microbiome functionality on Earth contained within archaeal genomes using accumulation curves of all known level 3 functions of KEGG Orthology. We found that intergenome redundancy as functions present in multiple genomes was inversely related to intragenome redundancy as multiple copies of a gene in one genome, implying the tradeoff between additional copies of functionally important genes or a higher number of different genes. A logarithmic model described the relationship between functional diversity and species richness better than both the unsaturated and the saturated model, which suggests a limited total number of archaeal functions in contrast to the sheer unlimited potential of bacteria and fungi. Using the global archaeal species richness estimate of 13,159, the logarithmic model predicted 4164.1 ± 2.9 KEGG level 3 functions. The non-parametric bootstrap estimate yielded a lower bound of 2994 ± 57 KEGG level 3 functions. Our approach not only highlighted similarities in functional redundancy but also the difference in functional potential of archaea compared to other domains of life.
Zobrazit více v PubMed
Woese C.R., Kandler O., Wheelis M.L. Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA. 1990;87:4576–4579. doi: 10.1073/pnas.87.12.4576. PubMed DOI PMC
Delong E.F. Everything in moderation: Archaea as “non-extremophiles.”. Curr. Opin. Genet. Dev. 1998;8:649–654. doi: 10.1016/S0959-437X(98)80032-4. PubMed DOI
Timonen S., Bomberg M. Archaea in dry soil environments. Phytochem. Rev. 2009;8:505–518. doi: 10.1007/s11101-009-9137-5. DOI
DeLong E.F., Pace N.R. Environmental diversity of bacteria and archaea. Syst. Biol. 2001;50:470–478. doi: 10.1080/106351501750435040. PubMed DOI
Stoica E., Herndl G.J. Contribution of Crenarchaeota and Euryarchaeota to the prokaryotic plankton in the coastal northwestern Black Sea. J. Plankton Res. 2007;29:699–706. doi: 10.1093/plankt/fbm051. DOI
Bates S.T., Berg-Lyons D., Caporaso J.G., Walters W.A., Knight R., Fierer N. Examining the global distribution of dominant archaeal populations in soil. Isme J. 2011;5:907–917. doi: 10.1038/ismej.2010.171. PubMed DOI PMC
Korzhenkov A.A., Toshchakov S.V., Bargiela R., Gibbard H., Ferrer M., Teplyuk A.V., Jones D.L., Kublanov I.V., Golyshin P.N., Golyshina O.V. Archaea dominate the microbial community in an ecosystem with low-to-moderate temperature and extreme acidity. Microbiome. 2019;7:11–14. doi: 10.1186/s40168-019-0623-8. PubMed DOI PMC
Leininger S., Urich T., Schloter M., Schwark L., Qi J., Nicol G.W., Prosser J.I., Schuster S.C., Schleper C. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature. 2006;442:806–809. doi: 10.1038/nature04983. PubMed DOI
Bengtson P., Sterngren A.E., Rousk J. Archaeal abundance across a pH gradient in an arable soil and its relationship to bacterial and fungal growth rates. Appl. Env. Microbiol. 2012;78:5906–5911. doi: 10.1128/AEM.01476-12. PubMed DOI PMC
Hubbell S.P. Neutral theory in community ecology and the hypothesis of functional equivalence. Funct. Ecol. 2005;19:166–172. doi: 10.1111/j.0269-8463.2005.00965.x. DOI
Žifčáková L., Větrovský T., Lombard V., Henrissat B., Howe A., Baldrian P. Feed in summer, rest in winter: Microbial carbon utilization in forest topsoil. Microbiome. 2017;5:1–12. doi: 10.1186/s40168-017-0340-0. PubMed DOI PMC
Starke R., Capek P., Morais D., Jehmlich N., Baldrian P. Explorative Meta-Analysis of 377 Extant Fungal Genomes Predicted a Total Mycobiome Functionality of 42.4 Million KEGG Functions. Front. Microbiol. 2020;11:143. doi: 10.3389/fmicb.2020.00143. PubMed DOI PMC
Starke R., Capek P., Morais D., Callister S.J., Jehmlich N. The total microbiome functions in bacteria and fungi. J. Proteom. 2020;2013:103623. doi: 10.1016/j.jprot.2019.103623. PubMed DOI
Starke R., Capek P., Morais D.K., Jehmlich N., Baldrian P. The Total Fungal Microbiome Functionality. [(accessed on 17 July 2020)];2019 Available online: https://www.biorxiv.org/content/biorxiv/early/2020/08/04/2020.08.04.236075.full.pdf.
Kanehisa M., Sato Y., Kawashima M., Furumichi M., Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44:D457–D462. doi: 10.1093/nar/gkv1070. PubMed DOI PMC
Kanehisa M., Sato Y., Morishima K. BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. J. Mol. Biol. 2016;428:726–731. doi: 10.1016/j.jmb.2015.11.006. PubMed DOI
Pham V.H.T., Kim J. Cultivation of unculturable soil bacteria. Trends Biotechnol. 2012;30:475–484. doi: 10.1016/j.tibtech.2012.05.007. PubMed DOI
Martiny A.C. High proportions of bacteria are culturable across major biomes. ISME J. 2019;13:2125–2128. doi: 10.1038/s41396-019-0410-3. PubMed DOI PMC
Starke R., Jehmlich N., Bastida F. Using proteins to study how microbes contribute to soil ecosystem services: The current state and future perspectives of soil metaproteomics. J. Proteom. 2018;198:50–58. doi: 10.1016/j.jprot.2018.11.011. PubMed DOI
Větrovský T., Kohout P., Kopecký M., Macháč A., Man M., Bahnmann B.D., Brabcová V., Choi J., Meszárošová L., Human Z.R., et al. A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat. Commun. 2019;10:1–9. doi: 10.1038/s41467-019-13164-8. PubMed DOI PMC
Gotelli N.J., Colwell R.K. Quantifying biodiversity: Procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 2001;4:379–391. doi: 10.1046/j.1461-0248.2001.00230.x. DOI
Thompson G.G., Withers P.C., Pianka E.R., Thompson S.A. Assessing biodiversity with species accumulation curves; inventories of small reptiles by pit-trapping in Western Australia. Austral. Ecol. 2003;28:361–383. doi: 10.1046/j.1442-9993.2003.01295.x. DOI
Oksanen J., Blanchet F.G., Friendly M., Kindt R., Legendre P., McGlinn D., Minchin P.R., O’Hara R.B., Simpson G.L., Solymos P., et al. Vegan: Community Ecology Package. [(accessed on 17 July 2020)];2015 Available online: https://cran.r-project.org/web/packages/vegan/index.html.
Čapek P., Kotas P., Manzoni S., Šantrůčková H. Drivers of phosphorus limitation across soil microbial communities. Funct. Ecol. 2016;30:1705–1713. doi: 10.1111/1365-2435.12650. DOI
Bertrand P.V., Sakamoto Y., Ishiguro M., Kitagawa G. Akaike Information Criterion Statistics. J. R. Stat. Soc. Ser. A. 2006;151:567–568. doi: 10.2307/2983028. DOI
Yarza P., Yilmaz P., Pruesse E., Glöckner F.O., Ludwig W., Schleifer K.H., Whitman W.B., Euzéby J., Amann R., Rosselló-Móra R. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat. Rev. Microbiol. 2014;12:635–645. doi: 10.1038/nrmicro3330. PubMed DOI
Spiess A.N. Propagate: Propagation of Uncertainty. [(accessed on 17 July 2020)];2018 Available online: https://cran.r-project.org/web/packages/vegan/index.html.
Chao A. Non-parametric estimation of the classes in a population. Scand. J. Stat. 1984;11:265–270. doi: 10.2307/4615964. DOI
Chao A. Estimating Population Size for Sparse Data in Capture-Recapture Experiments. Biometrics. 1989;45:427–438. doi: 10.2307/2531487. DOI
Tukey J.W. Comparing Individual Means in the Analysis of Variance. Biometrics. 1949;5:99–114. doi: 10.2307/3001913. PubMed DOI
De Mendiburu F. Agricolae: Statistical Procedures for Agricultural Research. [(accessed on 17 July 2020)];2014 Available online: https://cran.r-project.org/web/packages/agricolae/index.html.
Petrov D.A. Evolution of genome size: New approaches to an old problem. Trends Genet. 2001;17:23–28. doi: 10.1016/S0168-9525(00)02157-0. PubMed DOI
Cavalier-Smith T. Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. J. Cell Sci. 1978;24:247–278. PubMed
Vinogradov A.E. Buffering: A possible passive-homeostasis role for redundant DNA. J. Biol. 1998;193:197–199. doi: 10.1006/jtbi.1997.0629. PubMed DOI
Wang H.Y., Guo S.Y., Huang M.R., Thorsten L.H., Wei J.C. Ascomycota has a faster evolutionary rate and higher species diversity than Basidiomycota. Sci. China Life Sci. 2010;53:1163–1169. doi: 10.1007/s11427-010-4063-8. PubMed DOI
Větrovský T., Baldrian P. The Variability of the 16S rRNA Gene in Bacterial Genomes and Its Consequences for Bacterial Community Analyses. PLoS ONE. 2013;8:e57923. doi: 10.1371/journal.pone.0057923. PubMed DOI PMC
Falkowski P.G., Fenchel T., Delong E.F. The microbial engines that drive earth’s biogeochemical cycles. Science. 2008;320:1034–1039. doi: 10.1126/science.1153213. PubMed DOI
Rineau F., Courty P.E. Secreted enzymatic activities of ectomycorrhizal fungi as a case study of functional diversity and functional redundancy. Anna. For. Sci. 2011;68:69–80. doi: 10.1007/s13595-010-0008-4. DOI
Gotelli N., Colwell R. Estimating species richness. Biol. Divers. Front. Meas. Assess. 2011;12:39–54. doi: 10.2307/3547060. DOI
Chao A., Colwell R.K., Lin C.W., Gotelli N.J. Sufficient sampling for asymptotic minimum species richness estimators. Ecology. 2009;90:1125–1133. doi: 10.1890/07-2147.1. PubMed DOI
Williams T.A., Szöllosi G.J., Spang A., Foster P.G., Heaps S.E., Boussau B., Ettema T.J.G., Martin Embley T. Integrative modeling of gene and genome evolution roots the archaeal tree of life. Proc. Natl. Acad. Sci. USA. 2017;114:E4602–E4611. doi: 10.1073/pnas.1618463114. PubMed DOI PMC
Castelle C.J., Banfield J.F. Major New Microbial Groups Expand Diversity and Alter our Understanding of the Tree of Life. Cell. 2018;172:1181–1197. doi: 10.1016/j.cell.2018.02.016. PubMed DOI
Amann R., Rosselló-Móra R. After all, only millions? MBio. 2016;7:e00201-16. doi: 10.1128/mBio.00999-16. PubMed DOI PMC
Zhu Q., Mai U., Pfeiffer W., Janssen S., Asnicar F., Sanders J.G., Belda-Ferre P., Al-Ghalith G.A., Kopylova E., McDonald D., et al. Phylogenomics of 10,575 genomes reveals evolutionary proximity between domains Bacteria and Archaea. Nat. Commun. 2019;10:1–14. doi: 10.1038/s41467-019-13443-4. PubMed DOI PMC
Starke R., Fernandes M.L.P., Morais D.K., Odriozola I., Jehmlich N., Baldrian P. Explorative Meta-Analysis of 417 Extant Archaeal Genomes to Predict Their Contribution to the Total Microbiome Functionality. [(accessed on 17 July 2020)];2020 Available online: https://www.biorxiv.org/content/10.1101/2020.08.04.236075v1. PubMed DOI PMC