OMICs, Epigenetics, and Genome Editing Techniques for Food and Nutritional Security

. 2021 Jul 12 ; 10 (7) : . [epub] 20210712

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34371624

Grantová podpora
075-15-2019-1881 Ministry of Science and Higher Education of the Russian Federation
426557363 Deutsche Forschungsgemeinschaft
Germany´s Excellence Strategy - EXC-2048/1 - project ID 390686111 Deutsche Forschungsgemeinschaft
CZ.02.1.01./0.0/0.0/16_019/0000827, SPP 813103381 Grantová Agentura České Republiky
1201973 Chilean National Fund for Scientific and Technological Development
20-16-00115 Russian Science Foundation
17-14-01363 Russian Science Foundation
NSERC Natural Sciences and Engineering Research Council of Canada

The incredible success of crop breeding and agricultural innovation in the last century greatly contributed to the Green Revolution, which significantly increased yields and ensures food security, despite the population explosion. However, new challenges such as rapid climate change, deteriorating soil, and the accumulation of pollutants require much faster responses and more effective solutions that cannot be achieved through traditional breeding. Further prospects for increasing the efficiency of agriculture are undoubtedly associated with the inclusion in the breeding strategy of new knowledge obtained using high-throughput technologies and new tools in the future to ensure the design of new plant genomes and predict the desired phenotype. This article provides an overview of the current state of research in these areas, as well as the study of soil and plant microbiomes, and the prospective use of their potential in a new field of microbiome engineering. In terms of genomic and phenomic predictions, we also propose an integrated approach that combines high-density genotyping and high-throughput phenotyping techniques, which can improve the prediction accuracy of quantitative traits in crop species.

Zobrazit více v PubMed

World Health Organization World Hunger Is Still Not Going Down after Three Years and Obesity Is Still Growing. [(accessed on 25 April 2021)]; Available online: https://www.who.int/news/item/15-07-2019-world-hunger-is-still-not-going-down-after-three-years-and-obesity-is-still-growing-un-report.

Watson J.D., Crick F.H. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature. 1953;171:737–738. doi: 10.1038/171737a0. PubMed DOI

Sanger F., Tuppy H. The amino-acid sequence in the phenylalanyl chain of insulin. I. The identification of lower peptides from partial hydrolysates. Biochem. J. 1951;49:463–481. doi: 10.1042/bj0490463. PubMed DOI PMC

Sanger F., Tuppy H. The amino-acid sequence in the phenylalanyl chain of insulin. 2. The investigation of peptides from enzymic hydrolysates. Biochem. J. 1951;49:481–490. doi: 10.1042/bj0490481. PubMed DOI PMC

Giani A.M., Gallo G.R., Gianfranceschi L., Formenti G. Long walk to genomics: History and current approaches to genome sequencing and assembly. Comput. Struct. Biotechnol. J. 2020;18:9–19. doi: 10.1016/j.csbj.2019.11.002. PubMed DOI PMC

Holley R.W., Apgar J., Everett G.A., Madison J.T., Marquisee M., Merrill S.H., Penswick J.R., Zamir A. Structure of a Ribonucleic Acid. Science. 1965;147:1462–1465. doi: 10.1126/science.147.3664.1462. PubMed DOI

Sanger F., Coulson A.R. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J. Mol. Biol. 1975;94:441–448. doi: 10.1016/0022-2836(75)90213-2. PubMed DOI

Maxam A.M., Gilbert W. A new method for sequencing DNA. Proc. Natl. Acad. Sci. USA. 1977;74:560–564. doi: 10.1073/pnas.74.2.560. PubMed DOI PMC

Sanger F., Nicklen S., Coulson A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA. 1977;74:5463–5467. doi: 10.1073/pnas.74.12.5463. PubMed DOI PMC

Swerdlow H., Gesteland R. Capillary gel electrophoresis for rapid, high resolution DNA sequencing. Nucleic Acids Res. 1990;18:1415–1419. doi: 10.1093/nar/18.6.1415. PubMed DOI PMC

Gut I.G. New sequencing technologies. Clin. Transl. Oncol. 2013;15:879–881. doi: 10.1007/s12094-013-1073-6. PubMed DOI

Kumar K.R., Cowley M.J., Davis R.L. Next-Generation Sequencing and Emerging Technologies. Semin. Thromb. Hemost. 2019;45:661–673. doi: 10.1055/s-0039-1688446. PubMed DOI

Slatko B.E., Gardner A.F., Ausubel F.M. Overview of Next-Generation Sequencing Technologies. Curr. Protoc. Mol. Biol. 2018;122:e59. doi: 10.1002/cpmb.59. PubMed DOI PMC

Heather J.M., Chain B. The sequence of sequencers: The history of sequencing DNA. Genomics. 2016;107:1–8. doi: 10.1016/j.ygeno.2015.11.003. PubMed DOI PMC

Lee H., Gurtowski J., Yoo S., Nattestad M., Marcus S., Goodwin S., McCombie W.R., Schatz M.C. Third-generation sequencing and the future of genomics. bioRxiv. 2016:048603. doi: 10.1101/048603. DOI

Eid J., Fehr A., Gray J., Luong K., Lyle J., Otto G., Peluso P., Rank D., Baybayan P., Bettman B., et al. Real-time DNA sequencing from single polymerase molecules. Science. 2009;323:133–138. doi: 10.1126/science.1162986. PubMed DOI

Jung H., Jeon M.S., Hodgett M., Waterhouse P., Eyun S.I. Comparative Evaluation of Genome Assemblers from Long-Read Sequencing for Plants and Crops. J. Agric. Food Chem. 2020;68:7670–7677. doi: 10.1021/acs.jafc.0c01647. PubMed DOI

Wee Y., Bhyan S.B., Liu Y., Lu J., Li X., Zhao M. The bioinformatics tools for the genome assembly and analysis based on third-generation sequencing. Brief. Funct. Genom. 2019;18:1–12. doi: 10.1093/bfgp/ely037. PubMed DOI

Lappalainen T., Scott A.J., Brandt M., Hall I.M. Genomic Analysis in the Age of Human Genome Sequencing. Cell. 2019;177:70–84. doi: 10.1016/j.cell.2019.02.032. PubMed DOI PMC

Goodwin S., McPherson J.D., McCombie W.R. Coming of age: Ten years of next-generation sequencing technologies. Nat. Rev. Genet. 2016;17:333–351. doi: 10.1038/nrg.2016.49. PubMed DOI PMC

Kersey P.J. Plant genome sequences: Past, present, future. Curr. Opin. Plant Biol. 2019;48:1–8. doi: 10.1016/j.pbi.2018.11.001. PubMed DOI

Blanc G., Wolfe K.H. Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell. 2004;16:1667–1678. doi: 10.1105/tpc.021345. PubMed DOI PMC

The International Wheat Genome Sequencing Consortium (IWGSC) Appels R., Eversole K., Stein N., Feuillet C., Keller B., Rogers J., Pozniak C.J., Choulet F., Distelfeld A., et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science. 2018;361 doi: 10.1126/science.aar7191. PubMed DOI

Bolger M., Schwacke R., Gundlach H., Schmutzer T., Chen J., Arend D., Oppermann M., Weise S., Lange M., Fiorani F., et al. From plant genomes to phenotypes. J. Biotechnol. 2017;261:46–52. doi: 10.1016/j.jbiotec.2017.06.003. PubMed DOI

Akpinar B.A., Lucas S.J., Vrana J., Dolezel J., Budak H. Sequencing chromosome 5D of Aegilops tauschii and comparison with its allopolyploid descendant bread wheat (Triticum aestivum) Plant Biotechnol. J. 2015;13:740–752. doi: 10.1111/pbi.12302. PubMed DOI

Wendel J.F., Jackson S.A., Meyers B.C., Wing R.A. Evolution of plant genome architecture. Genome Biol. 2016;17:37. doi: 10.1186/s13059-016-0908-1. PubMed DOI PMC

Zimin A.V., Puiu D., Hall R., Kingan S., Clavijo B.J., Salzberg S.L. The first near-complete assembly of the hexaploid bread wheat genome, Triticum aestivum. Gigascience. 2017;6:1–7. doi: 10.1093/gigascience/gix097. PubMed DOI PMC

GenBank and WGS Statistics. [(accessed on 4 February 2021)]; Available online: https://www.ncbi.nlm.nih.gov/genbank/statistics/

Cagirici H.B., Sen T.Z., Budak H. mirMachine: A One-Stop Shop for Plant miRNA Annotation. J. Vis. Exp. 2021;171 doi: 10.3791/62430. PubMed DOI

Leroy P., Guilhot N., Sakai H., Bernard A., Choulet F., Theil S., Reboux S., Amano N., Flutre T., Pelegrin C., et al. TriAnnot: A Versatile and High Performance Pipeline for the Automated Annotation of Plant Genomes. Front. Plant Sci. 2012;3:5. doi: 10.3389/fpls.2012.00005. PubMed DOI PMC

Coletta R.D., Qiu Y., Ou S., Hufford M.B., Hirsch C.N. How the pan-genome is changing crop genomics and improvement. Genome Biol. 2021;22:3. doi: 10.1186/s13059-020-02224-8. PubMed DOI PMC

Bayer P.E., Golicz A.A., Scheben A., Batley J., Edwards D. Plant pan-genomes are the new reference. Nat. Plants. 2020;6:914–920. doi: 10.1038/s41477-020-0733-0. PubMed DOI

Tettelin H., Masignani V., Cieslewicz M.J., Donati C., Medini D., Ward N.L., Angiuoli S.V., Crabtree J., Jones A.L., Durkin A.S., et al. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: Implications for the microbial “pan-genome”. Proc. Natl. Acad. Sci. USA. 2005;102:13950–13955. doi: 10.1073/pnas.0506758102. PubMed DOI PMC

Danilevicz M.F., Fernandez C.G.T., Marsh J.I., Bayer P.E., Edwards D. Plant pangenomics: Approaches, applications and advancements. Curr. Opin. Plant Biol. 2020;54:18–25. doi: 10.1016/j.pbi.2019.12.005. PubMed DOI

Paux E., Faure S., Choulet F., Roger D., Gauthier V., Martinant J.P., Sourdille P., Balfourier F., Le Paslier M.C., Chauveau A., et al. Insertion site-based polymorphism markers open new perspectives for genome saturation and marker-assisted selection in wheat. Plant Biotechnol. J. 2010;8:196–210. doi: 10.1111/j.1467-7652.2009.00477.x. PubMed DOI

Ray S., Satya P. Next generation sequencing technologies for next generation plant breeding. Front. Plant Sci. 2014;5:367. doi: 10.3389/fpls.2014.00367. PubMed DOI PMC

He J., Zhao X., Laroche A., Lu Z.X., Liu H., Li Z. Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front. Plant Sci. 2014;5:484. doi: 10.3389/fpls.2014.00484. PubMed DOI PMC

Pont C., Wagner S., Kremer A., Orlando L., Plomion C., Salse J. Paleogenomics: Reconstruction of plant evolutionary trajectories from modern and ancient DNA. Genome Biol. 2019;20:29. doi: 10.1186/s13059-019-1627-1. PubMed DOI PMC

Mendes R., Garbeva P., Raaijmakers J.M. The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 2013;37:634–663. doi: 10.1111/1574-6976.12028. PubMed DOI

Daniel R. The metagenomics of soil. Nat. Rev. Microbiol. 2005;3:470–478. doi: 10.1038/nrmicro1160. PubMed DOI

Thompson L.R., Sanders J.G., McDonald D., Amir A., Ladau J., Locey K.J., Prill R.J., Tripathi A., Gibbons S.M., Ackermann G., et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature. 2017;551:457–463. doi: 10.1038/nature24621. PubMed DOI PMC

Winogradsky H. Contribution to the study of microflora nitrification of wastewater and; Resistance of germs to unfavorable conditions. Ann. Inst. Pasteur. 1949;76:35–42. PubMed

Sanguin H., Remenant B., Dechesne A., Thioulouse J., Vogel T.M., Nesme X., Moenne-Loccoz Y., Grundmann G.L. Potential of a 16S rRNA-based taxonomic microarray for analyzing the rhizosphere effects of maize on Agrobacterium spp. and bacterial communities. Appl. Environ. Microbiol. 2006;72:4302–4312. doi: 10.1128/AEM.02686-05. PubMed DOI PMC

DeAngelis K.M., Brodie E.L., DeSantis T.Z., Andersen G.L., Lindow S.E., Firestone M.K. Selective progressive response of soil microbial community to wild oat roots. ISME J. 2009;3:168–178. doi: 10.1038/ismej.2008.103. PubMed DOI

Roesch L.F., Fulthorpe R.R., Riva A., Casella G., Hadwin A.K., Kent A.D., Daroub S.H., Camargo F.A., Farmerie W.G., Triplett E.W. Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J. 2007;1:283–290. doi: 10.1038/ismej.2007.53. PubMed DOI PMC

Fierer N., Breitbart M., Nulton J., Salamon P., Lozupone C., Jones R., Robeson M., Edwards R.A., Felts B., Rayhawk S., et al. Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of bacteria, archaea, fungi, and viruses in soil. Appl. Environ. Microbiol. 2007;73:7059–7066. doi: 10.1128/AEM.00358-07. PubMed DOI PMC

Uroz S., Buee M., Murat C., Frey-Klett P., Martin F. Pyrosequencing reveals a contrasted bacterial diversity between oak rhizosphere and surrounding soil. Environ. Microbiol. Rep. 2010;2:281–288. doi: 10.1111/j.1758-2229.2009.00117.x. PubMed DOI

Edwards R.A., Rodriguez-Brito B., Wegley L., Haynes M., Breitbart M., Peterson D.M., Saar M.O., Alexander S., Alexander E.C., Jr., Rohwer F. Using pyrosequencing to shed light on deep mine microbial ecology. BMC Genom. 2006;7:57. doi: 10.1186/1471-2164-7-57. PubMed DOI PMC

Rausch P., Ruhlemann M., Hermes B.M., Doms S., Dagan T., Dierking K., Domin H., Fraune S., von Frieling J., Hentschel U., et al. Comparative analysis of amplicon and metagenomic sequencing methods reveals key features in the evolution of animal metaorganisms. Microbiome. 2019;7:133. doi: 10.1186/s40168-019-0743-1. PubMed DOI PMC

Anderson I.C., Cairney J.W. Diversity and ecology of soil fungal communities: Increased understanding through the application of molecular techniques. Environ. Microbiol. 2004;6:769–779. doi: 10.1111/j.1462-2920.2004.00675.x. PubMed DOI

Schoch C.L., Seifert K.A., Huhndorf S., Robert V., Spouge J.L., Levesque C.A., Chen W. Fungal Barcoding Consortium. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. USA. 2012;109:6241–6246. doi: 10.1073/pnas.1117018109. PubMed DOI PMC

Blaalid R., Kumar S., Nilsson R.H., Abarenkov K., Kirk P.M., Kauserud H. ITS1 versus ITS2 as DNA metabarcodes for fungi. Mol. Ecol. Resour. 2013;13:218–224. doi: 10.1111/1755-0998.12065. PubMed DOI

Tremblay J., Singh K., Fern A., Kirton E.S., He S., Woyke T., Lee J., Chen F., Dangl J.L., Tringe S.G. Primer and platform effects on 16S rRNA tag sequencing. Front. Microbiol. 2015;6:771. doi: 10.3389/fmicb.2015.00771. PubMed DOI PMC

Bahram M., Anslan S., Hildebrand F., Bork P., Tedersoo L. Newly designed 16S rRNA metabarcoding primers amplify diverse and novel archaeal taxa from the environment. Environ. Microbiol. Rep. 2019;11:487–494. doi: 10.1111/1758-2229.12684. PubMed DOI PMC

Shakya M., Lo C.C., Chain P.S.G. Advances and Challenges in Metatranscriptomic Analysis. Front. Genet. 2019;10:904. doi: 10.3389/fgene.2019.00904. PubMed DOI PMC

Escobar-Zepeda A., de Leon A.V.-P., Sanchez-Flores A. The Road to Metagenomics: From Microbiology to DNA Sequencing Technologies and Bioinformatics. Front. Genet. 2015;6:348. doi: 10.3389/fgene.2015.00348. PubMed DOI PMC

Schloss P.D., Handelsman J. Metagenomics for studying unculturable microorganisms: Cutting the Gordian knot. Genome Biol. 2005;6:229. doi: 10.1186/gb-2005-6-8-229. PubMed DOI PMC

Laudadio I., Fulci V., Palone F., Stronati L., Cucchiara S., Carissimi C. Quantitative Assessment of Shotgun Metagenomics and 16S rDNA Amplicon Sequencing in the Study of Human Gut Microbiome. OMICS. 2018;22:248–254. doi: 10.1089/omi.2018.0013. PubMed DOI

Jovel J., Patterson J., Wang W., Hotte N., O’Keefe S., Mitchel T., Perry T., Kao D., Mason A.L., Madsen K.L., et al. Characterization of the Gut Microbiome Using 16S or Shotgun Metagenomics. Front. Microbiol. 2016;7:459. doi: 10.3389/fmicb.2016.00459. PubMed DOI PMC

Ranjan R., Rani A., Metwally A., McGee H.S., Perkins D.L. Analysis of the microbiome: Advantages of whole genome shotgun versus 16S amplicon sequencing. Biochem. Biophys. Res. Commun. 2016;469:967–977. doi: 10.1016/j.bbrc.2015.12.083. PubMed DOI PMC

Xu J., Zhang Y., Zhang P., Trivedi P., Riera N., Wang Y., Liu X., Fan G., Tang J., Coletta-Filho H.D., et al. The structure and function of the global citrus rhizosphere microbiome. Nat. Commun. 2018;9:4894. doi: 10.1038/s41467-018-07343-2. PubMed DOI PMC

Ma Y., Marais A., Lefebvre M., Theil S., Svanella-Dumas L., Faure C., Candresse T. Phytovirome Analysis of Wild Plant Populations: Comparison of Double-Stranded RNA and Virion-Associated Nucleic Acid Metagenomic Approaches. J. Virol. 2019;94 doi: 10.1128/JVI.01462-19. PubMed DOI PMC

Keegan K.P., Glass E.M., Meyer F. MG-RAST, a Metagenomics Service for Analysis of Microbial Community Structure and Function. Methods Mol. Biol. 2016;1399:207–233. doi: 10.1007/978-1-4939-3369-3_13. PubMed DOI

Quince C., Walker A.W., Simpson J.T., Loman N.J., Segata N. Shotgun metagenomics, from sampling to analysis. Nat. Biotechnol. 2017;35:833–844. doi: 10.1038/nbt.3935. PubMed DOI

Douglas G.M., Maffei V.J., Zaneveld J.R., Yurgel S.N., Brown J.R., Taylor C.M., Huttenhower C., Langille M.G.I. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 2020;38:685–688. doi: 10.1038/s41587-020-0548-6. PubMed DOI PMC

Nguyen M., Wemheuer B., Laffy P.W., Webster N.S., Thomas T. Taxonomic, functional and expression analysis of viral communities associated with marine sponges. PeerJ. 2021;9:e10715. doi: 10.7717/peerj.10715. PubMed DOI PMC

Murali A., Bhargava A., Wright E.S. IDTAXA: A novel approach for accurate taxonomic classification of microbiome sequences. Microbiome. 2018;6:140. doi: 10.1186/s40168-018-0521-5. PubMed DOI PMC

Young J.P.W., Moeskjaer S., Afonin A., Rahi P., Maluk M., James E.K., Cavassim M.I.A., Rashid M.H., Aserse A.A., Perry B.J., et al. Defining the Rhizobium leguminosarum Species Complex. Genes. 2021;12:111. doi: 10.3390/genes12010111. PubMed DOI PMC

Balvociute M., Huson D.H. SILVA, RDP, Greengenes, NCBI and OTT—How do these taxonomies compare? BMC Genom. 2017;18:114. doi: 10.1186/s12864-017-3501-4. PubMed DOI PMC

Xu J. Fungal DNA barcoding. Genome. 2016;59:913–932. doi: 10.1139/gen-2016-0046. PubMed DOI

Segata N., Waldron L., Ballarini A., Narasimhan V., Jousson O., Huttenhower C. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat. Methods. 2012;9:811–814. doi: 10.1038/nmeth.2066. PubMed DOI PMC

Franzosa E.A., McIver L.J., Rahnavard G., Thompson L.R., Schirmer M., Weingart G., Lipson K.S., Knight R., Caporaso J.G., Segata N., et al. Species-level functional profiling of metagenomes and metatranscriptomes. Nat. Methods. 2018;15:962–968. doi: 10.1038/s41592-018-0176-y. PubMed DOI PMC

Liu F., Hewezi T., Lebeis S.L., Pantalone V., Grewal P.S., Staton M.E. Soil indigenous microbiome and plant genotypes cooperatively modify soybean rhizosphere microbiome assembly. BMC Microbiol. 2019;19:201. doi: 10.1186/s12866-019-1572-x. PubMed DOI PMC

Murray A.E., Freudenstein J., Gribaldo S., Hatzenpichler R., Hugenholtz P., Kampfer P., Konstantinidis K.T., Lane C.E., Papke R.T., Parks D.H., et al. Roadmap for naming uncultivated Archaea and Bacteria. Nat. Microbiol. 2020;5:987–994. doi: 10.1038/s41564-020-0733-x. PubMed DOI PMC

Schulz T., Stoye J., Doerr D. GraphTeams: A method for discovering spatial gene clusters in Hi-C sequencing data. BMC Genom. 2018;19:308. doi: 10.1186/s12864-018-4622-0. PubMed DOI PMC

Berendsen R.L., Pieterse C.M., Bakker P.A. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012;17:478–486. doi: 10.1016/j.tplants.2012.04.001. PubMed DOI

Ciccazzo S., Esposito A., Rolli E., Zerbe S., Daffonchio D., Brusetti L. Different pioneer plant species select specific rhizosphere bacterial communities in a high mountain environment. Springerplus. 2014;3:391. doi: 10.1186/2193-1801-3-391. PubMed DOI PMC

Lundberg D.S., Lebeis S.L., Paredes S.H., Yourstone S., Gehring J., Malfatti S., Tremblay J., Engelbrektson A., Kunin V., Del Rio T.G., et al. Defining the core Arabidopsis thaliana root microbiome. Nature. 2012;488:86–90. doi: 10.1038/nature11237. PubMed DOI PMC

Santoyo G., Moreno-Hagelsieb G., Mdel C.O.-M., Glick B.R. Plant growth-promoting bacterial endophytes. Microbiol. Res. 2016;183:92–99. doi: 10.1016/j.micres.2015.11.008. PubMed DOI

Turner T.R., James E.K., Poole P.S. The plant microbiome. Genome Biol. 2013;14:209. doi: 10.1186/gb-2013-14-6-209. PubMed DOI PMC

Bulgarelli D., Rott M., Schlaeppi K., van Themaat E.V.L., Ahmadinejad N., Assenza F., Rauf P., Huettel B., Reinhardt R., Schmelzer E., et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature. 2012;488:91–95. doi: 10.1038/nature11336. PubMed DOI

Mendes R., Kruijt M., de Bruijn I., Dekkers E., van der Voort M., Schneider J.H., Piceno Y.M., DeSantis T.Z., Andersen G.L., Bakker P.A., et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science. 2011;332:1097–1100. doi: 10.1126/science.1203980. PubMed DOI

Xu T., Cao L., Zeng J., Franco C.M.M., Yang Y., Hu X., Liu Y., Wang X., Gao Y., Bu Z., et al. The antifungal action mode of the rice endophyte Streptomyces hygroscopicus OsiSh-2 as a potential biocontrol agent against the rice blast pathogen. Pestic. Biochem. Physiol. 2019;160:58–69. doi: 10.1016/j.pestbp.2019.06.015. PubMed DOI

Teplitski M., Barak J.D., Schneider K.R. Human enteric pathogens in produce: Un-answered ecological questions with direct implications for food safety. Curr. Opin. Biotechnol. 2009;20:166–171. doi: 10.1016/j.copbio.2009.03.002. PubMed DOI

Marin S., Ramos A.J., Cano-Sancho G., Sanchis V. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food Chem. Toxicol. 2013;60:218–237. doi: 10.1016/j.fct.2013.07.047. PubMed DOI

Melotto M., Brandl M.T., Jacob C., Jay-Russell M.T., Micallef S.A., Warburton M.L., Van Deynze A. Breeding Crops for Enhanced Food Safety. Front. Plant Sci. 2020;11:428. doi: 10.3389/fpls.2020.00428. PubMed DOI PMC

Gorshkov V., Osipova E., Ponomareva M., Ponomarev S., Gogoleva N., Petrova O., Gogoleva O., Meshcherov A., Balkin A., Vetchinkina E., et al. Rye Snow Mold-Associated Microdochium nivale Strains Inhabiting a Common Area: Variability in Genetics, Morphotype, Extracellular Enzymatic Activities, and Virulence. J. Fungi. 2020;6:335. doi: 10.3390/jof6040335. PubMed DOI PMC

Chiu C.Y., Miller S.A. Clinical metagenomics. Nat. Rev. Genet. 2019;20:341–355. doi: 10.1038/s41576-019-0113-7. PubMed DOI PMC

Jain M., Olsen H.E., Paten B., Akeson M. The Oxford Nanopore MinION: Delivery of nanopore sequencing to the genomics community. Genome Biol. 2016;17:239. doi: 10.1186/s13059-016-1103-0. PubMed DOI PMC

Leggett R.M., Clark M.D. A world of opportunities with nanopore sequencing. J. Exp. Bot. 2017;68:5419–5429. doi: 10.1093/jxb/erx289. PubMed DOI

Rang F.J., Kloosterman W.P., de Ridder J. From squiggle to basepair: Computational approaches for improving nanopore sequencing read accuracy. Genome Biol. 2018;19:90. doi: 10.1186/s13059-018-1462-9. PubMed DOI PMC

Oxford Nanopore Technologies Nanopore Sequencing Accuracy. [(accessed on 10 July 2021)]; Available online: https://nanoporetech.com/accuracy.

Sevim V., Lee J., Egan R., Clum A., Hundley H., Lee J., Everroad R.C., Detweiler A.M., Bebout B.M., Pett-Ridge J., et al. Shotgun metagenome data of a defined mock community using Oxford Nanopore, PacBio and Illumina technologies. Sci. Data. 2019;6:285. doi: 10.1038/s41597-019-0287-z. PubMed DOI PMC

Jongman M., Carmichael P.C., Bill M. Technological Advances in Phytopathogen Detection and Metagenome Profiling Techniques. Curr. Microbiol. 2020;77:675–681. doi: 10.1007/s00284-020-01881-z. PubMed DOI

Llontop M.E.M., Sharma P., Flores M.A., Yang S., Pollock J., Tian L., Huang C., Rideout S., Heath L.S., Li S., et al. Strain-Level Identification of Bacterial Tomato Pathogens Directly from Metagenomic Sequences. Phytopathology. 2020;110:768–779. doi: 10.1094/PHYTO-09-19-0351-R. PubMed DOI

Chalupowicz L., Dombrovsky A., Gaba V., Luria N., Reuven M., Beerman A., Lachman O., Dror O., Nissan G., Manulis-Sasson S. Diagnosis of plant diseases using the Nanopore sequencing platform. Plant Pathol. 2019;68:229–238. doi: 10.1111/ppa.12957. DOI

Ciuffreda L., Rodriguez-Perez H., Flores C. Nanopore sequencing and its application to the study of microbial communities. Comput. Struct. Biotechnol. J. 2021;19:1497–1511. doi: 10.1016/j.csbj.2021.02.020. PubMed DOI PMC

Schlaeppi K., Bulgarelli D. The plant microbiome at work. Mol. Plant Microbe Interact. 2015;28:212–217. doi: 10.1094/MPMI-10-14-0334-FI. PubMed DOI

Bulgarelli D., Schlaeppi K., Spaepen S., van Themaat E.V.L., Schulze-Lefert P. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 2013;64:807–838. doi: 10.1146/annurev-arplant-050312-120106. PubMed DOI

Dangl J.L., Horvath D.M., Staskawicz B.J. Pivoting the plant immune system from dissection to deployment. Science. 2013;341:746–751. doi: 10.1126/science.1236011. PubMed DOI PMC

Stark R., Grzelak M., Hadfield J. RNA sequencing: The teenage years. Nat. Rev. Genet. 2019;20:631–656. doi: 10.1038/s41576-019-0150-2. PubMed DOI

Rani B., Sharma V. Transcriptome profiling: Methods and applications—A review. Agric. Rev. 2017;38:271–281. doi: 10.18805/ag.R-1549. DOI

Velculescu V.E., Zhang L., Vogelstein B., Kinzler K.W. Serial analysis of gene expression. Science. 1995;270:484–487. doi: 10.1126/science.270.5235.484. PubMed DOI

Schena M., Shalon D., Davis R.W., Brown P.O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 1995;270:467–470. doi: 10.1126/science.270.5235.467. PubMed DOI

Klepikova A.V., Logacheva M.D., Dmitriev S.E., Penin A.A. RNA-seq analysis of an apical meristem time series reveals a critical point in Arabidopsis thaliana flower initiation. BMC Genom. 2015;16:466. doi: 10.1186/s12864-015-1688-9. PubMed DOI PMC

Gorshkov O., Mokshina N., Gorshkov V., Chemikosova S., Gogolev Y., Gorshkova T. Transcriptome portrait of cellulose-enriched flax fibres at advanced stage of specialization. Plant Mol. Biol. 2017;93:431–449. doi: 10.1007/s11103-016-0571-7. PubMed DOI

Hu R., Xu Y., Yu C., He K., Tang Q., Jia C., He G., Wang X., Kong Y., Zhou G. Transcriptome analysis of genes involved in secondary cell wall biosynthesis in developing internodes of Miscanthus lutarioriparius. Sci. Rep. 2017;7:9034. doi: 10.1038/s41598-017-08690-8. PubMed DOI PMC

Kozlova L.V., Nazipova A.R., Gorshkov O.V., Petrova A.A., Gorshkova T.A. Elongating maize root: Zone-specific combinations of polysaccharides from type I and type II primary cell walls. Sci. Rep. 2020;10:10956. doi: 10.1038/s41598-020-67782-0. PubMed DOI PMC

Malviya M.K., Li C.N., Solanki M.K., Singh R.K., Htun R., Singh P., Verma K.K., Yang L.T., Li Y.R. Comparative analysis of sugarcane root transcriptome in response to the plant growth-promoting Burkholderia anthina MYSP113. PLoS ONE. 2020;15:e0231206. doi: 10.1371/journal.pone.0231206. PubMed DOI PMC

Castandet B., Hotto A.M., Strickler S.R., Stern D.B. ChloroSeq, an Optimized Chloroplast RNA-Seq Bioinformatic Pipeline, Reveals Remodeling of the Organellar Transcriptome Under Heat Stress. G3 Genes Genomes Genet. 2016;6:2817–2827. doi: 10.1534/g3.116.030783. PubMed DOI PMC

Xiong B., Qiu X., Huang S., Wang X., Zhang X., Dong T., Wang T., Li S., Sun G., Zhu J., et al. Physiological and transcriptome analyses of photosynthesis and chlorophyll metabolism in variegated Citrus (Shiranuhi and Huangguogan) seedlings. Sci. Rep. 2019;9:15670. doi: 10.1038/s41598-019-52276-5. PubMed DOI PMC

Romanowski A., Schlaen R.G., Perez-Santangelo S., Mancini E., Yanovsky M.J. Global transcriptome analysis reveals circadian control of splicing events in Arabidopsis thaliana. Plant J. 2020;103:889–902. doi: 10.1111/tpj.14776. PubMed DOI

Li Y., Guo G., Zhou L., Chen Y., Zong Y., Huang J., Lu R., Liu C. Transcriptome Analysis Identifies Candidate Genes and Functional Pathways Controlling the Response of Two Contrasting Barley Varieties to Powdery Mildew Infection. Int. J. Mol. Sci. 2019;21:151. doi: 10.3390/ijms21010151. PubMed DOI PMC

Tsers I., Gorshkov V., Gogoleva N., Parfirova O., Petrova O., Gogolev Y. Plant Soft Rot Development and Regulation from the Viewpoint of Transcriptomic Profiling. Plants. 2020;9:1176. doi: 10.3390/plants9091176. PubMed DOI PMC

Duan Y., Duan S., Armstrong M.R., Xu J., Zheng J., Hu J., Chen X., Hein I., Li G., Jin L. Comparative Transcriptome Profiling Reveals Compatible and Incompatible Patterns of Potato Toward Phytophthora infestans. G3 Genes Genomes Genet. 2020;10:623–634. doi: 10.1534/g3.119.400818. PubMed DOI PMC

Liu Y., Liu Y., Spetz C., Li L., Wang X. Comparative transcriptome analysis in Triticum aestivum infecting wheat dwarf virus reveals the effects of viral infection on phytohormone and photosynthesis metabolism pathways. Phytopathol. Res. 2020;2:1–13. doi: 10.1186/s42483-019-0042-6. DOI

Kang W.H., Sim Y.M., Koo N., Nam J.Y., Lee J., Kim N., Jang H., Kim Y.M., Yeom S.I. Transcriptome profiling of abiotic responses to heat, cold, salt, and osmotic stress of Capsicum annuum L. Sci. Data. 2020;7:17. doi: 10.1038/s41597-020-0352-7. PubMed DOI PMC

Huang J., Zhao X., Chory J. The Arabidopsis Transcriptome Responds Specifically and Dynamically to High Light Stress. Cell Rep. 2019;29:4186–4199. doi: 10.1016/j.celrep.2019.11.051. PubMed DOI PMC

Qiao D., Zhang Y., Xiong X., Li M., Cai K., Luo H., Zeng B. Transcriptome analysis on responses of orchardgrass (Dactylis glomerata L.) leaves to a short term flooding. Hereditas. 2020;157:20. doi: 10.1186/s41065-020-00134-0. PubMed DOI PMC

Safavi-Rizi V., Herde M., Stohr C. RNA-Seq reveals novel genes and pathways associated with hypoxia duration and tolerance in tomato root. Sci. Rep. 2020;10:1692. doi: 10.1038/s41598-020-57884-0. PubMed DOI PMC

Mokshina N., Gorshkov O., Galinousky D., Gorshkova T. Genes with bast fiber-specific expression in flax plants—Molecular keys for targeted fiber crop improvement. Ind. Crop. Prod. 2020;152 doi: 10.1016/j.indcrop.2020.112549. DOI

Galinousky D., Mokshina N., Padvitski T., Ageeva M., Bogdan V., Kilchevsky A., Gorshkova T. The Toolbox for Fiber Flax Breeding: A Pipeline From Gene Expression to Fiber Quality. Front. Genet. 2020;11:589881. doi: 10.3389/fgene.2020.589881. PubMed DOI PMC

Brandt R., Mascher M., Thiel J. Laser Capture Microdissection-Based RNA-Seq of Barley Grain Tissues. Methods Mol. Biol. 2018;1723:397–409. doi: 10.1007/978-1-4939-7558-7_23. PubMed DOI

Gorshkova T., Chernova T., Mokshina N., Gorshkov V., Kozlova L., Gorshkov O. Transcriptome Analysis of Intrusively Growing Flax Fibers Isolated by Laser Microdissection. Sci. Rep. 2018;8:14570. doi: 10.1038/s41598-018-32869-2. PubMed DOI PMC

Shulse C.N., Cole B.J., Ciobanu D., Lin J., Yoshinaga Y., Gouran M., Turco G.M., Zhu Y., O’Malley R.C., Brady S.M., et al. High-Throughput Single-Cell Transcriptome Profiling of Plant Cell Types. Cell Rep. 2019;27:2241–2247. e2244. doi: 10.1016/j.celrep.2019.04.054. PubMed DOI PMC

Shaw R., Tian X., Xu J. Single-Cell Transcriptome Analysis in Plants: Advances and Challenges. Mol. Plant. 2021;14:115–126. doi: 10.1016/j.molp.2020.10.012. PubMed DOI

Xu J., Chen Z., Wang F., Jia W., Xu Z. Combined transcriptomic and metabolomic analyses uncover rearranged gene expression and metabolite metabolism in tobacco during cold acclimation. Sci. Rep. 2020;10:5242. doi: 10.1038/s41598-020-62111-x. PubMed DOI PMC

Gao W., Sun H.X., Xiao H., Cui G., Hillwig M.L., Jackson A., Wang X., Shen Y., Zhao N., Zhang L., et al. Combining metabolomics and transcriptomics to characterize tanshinone biosynthesis in Salvia miltiorrhiza. BMC Genom. 2014;15:73. doi: 10.1186/1471-2164-15-73. PubMed DOI PMC

Wang R., Liu P., Fan J., Li L. Comparative transcriptome analysis two genotypes of Acer truncatum Bunge seeds reveals candidate genes that influences seed VLCFAs accumulation. Sci. Rep. 2018;8:15504. doi: 10.1038/s41598-018-33999-3. PubMed DOI PMC

Murat F., Van de Peer Y., Salse J. Decoding plant and animal genome plasticity from differential paleo-evolutionary patterns and processes. Genome Biol. Evol. 2012;4:917–928. doi: 10.1093/gbe/evs066. PubMed DOI PMC

Das S., McClain C.J., Rai S.N. Fifteen Years of Gene Set Analysis for High-Throughput Genomic Data: A Review of Statistical Approaches and Future Challenges. Entropy. 2020;22:427. doi: 10.3390/e22040427. PubMed DOI PMC

Hill D.P., Smith B., McAndrews-Hill M.S., Blake J.A. Gene Ontology annotations: What they mean and where they come from. BMC Bioinform. 2008;9:S2. doi: 10.1186/1471-2105-9-S5-S2. PubMed DOI PMC

Gotz S., Garcia-Gomez J.M., Terol J., Williams T.D., Nagaraj S.H., Nueda M.J., Robles M., Talon M., Dopazo J., Conesa A. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 2008;36:3420–3435. doi: 10.1093/nar/gkn176. PubMed DOI PMC

Kanehisa M., Sato Y., Morishima K. BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. J. Mol. Biol. 2016;428:726–731. doi: 10.1016/j.jmb.2015.11.006. PubMed DOI

Huerta-Cepas J., Szklarczyk D., Heller D., Hernandez-Plaza A., Forslund S.K., Cook H., Mende D.R., Letunic I., Rattei T., Jensen L.J., et al. eggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019;47:D309–D314. doi: 10.1093/nar/gky1085. PubMed DOI PMC

Schwacke R., Ponce-Soto G.Y., Krause K., Bolger A.M., Arsova B., Hallab A., Gruden K., Stitt M., Bolger M.E., Usadel B. MapMan4: A Refined Protein Classification and Annotation Framework Applicable to Multi-Omics Data Analysis. Mol. Plant. 2019;12:879–892. doi: 10.1016/j.molp.2019.01.003. PubMed DOI

Huang D.W., Sherman B.T., Lempicki R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009;4:44–57. doi: 10.1038/nprot.2008.211. PubMed DOI

Thomas P.D., Kejariwal A., Campbell M.J., Mi H., Diemer K., Guo N., Ladunga I., Ulitsky-Lazareva B., Muruganujan A., Rabkin S., et al. PANTHER: A browsable database of gene products organized by biological function, using curated protein family and subfamily classification. Nucleic Acids Res. 2003;31:334–341. doi: 10.1093/nar/gkg115. PubMed DOI PMC

Caspi R., Billington R., Fulcher C.A., Keseler I.M., Kothari A., Krummenacker M., Latendresse M., Midford P.E., Ong Q., Ong W.K., et al. The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Res. 2018;46:D633–D639. doi: 10.1093/nar/gkx935. PubMed DOI PMC

Asp M., Bergenstråhle J., Lundeberg J. Spatially resolved transcriptomes—Next generation tools for tissue exploration. BioEssays. 2020;42:1–19. doi: 10.1002/bies.201900221. PubMed DOI

Moses L., Pachter L. Museum of Spatial Transcriptomics. [(accessed on 1 April 2021)]; Available online: https://bookdown.org/lambdamoses/museumst/

Kerk N.M., Ceserani T., Tausta S.L., Sussex I.M., Nelson T.M. Laser capture microdissection of cells from plant tissues. Plant Physiol. 2003;132:27–35. doi: 10.1104/pp.102.018127. PubMed DOI PMC

Gautam V., Singh A., Singh S., Sarkar A.K. An Efficient LCM-Based Method for Tissue Specific Expression Analysis of Genes and miRNAs. Sci. Rep. 2016;6:21577. doi: 10.1038/srep21577. PubMed DOI PMC

Reuper H., Amari K., Krenz B. Analyzing the G3BP-like gene family of Arabidopsis thaliana in early turnip mosaic virus infection. Sci. Rep. 2021;11:1–11. doi: 10.1038/s41598-021-81276-7. PubMed DOI PMC

Nelson T., Tausta S.L., Gandotra N., Liu T. Laser microdissection of plant tissue: What you see is what you get. Annu. Rev. Plant Biol. 2006;57:181–201. doi: 10.1146/annurev.arplant.56.032604.144138. PubMed DOI

Liew L.C., Wang Y., Peirats-Llobet M., Berkowitz O., Whelan J., Lewsey M.G. Laser-Capture Microdissection RNA-sequencing for spatial and temporal tissue-specific gene expression analysis in plants. J. Vis. Exp. 2020;162 doi: 10.3791/61517. PubMed DOI

Shibutani M., Uneyama C., Miyazaki K., Toyoda K., Hirose M. Methacarn fixation: A novel tool for analysis of gene expressions in paraffin-embedded tissue specimens. Lab. Investig. 2000;80:199–208. doi: 10.1038/labinvest.3780023. PubMed DOI

Serova T.A., Tikhonovich I.A., Tsyganov V.E. Analysis of nodule senescence in pea (Pisum sativum L.) using laser microdissection, real-time PCR, and ACC immunolocalization. J. Plant. Physiol. 2017;212:29–44. doi: 10.1016/j.jplph.2017.01.012. PubMed DOI

Schrader J., Nilsson J., Mellerowicz E., Berglund A., Nilsson P., Hertzberg M., Sandberg G. A high-resolution transcript profile across the wood-forming meristem of poplar identifies potential regulators of cambial stem cell identity. Plant Cell. 2004;16:2278–2292. doi: 10.1105/tpc.104.024190. PubMed DOI PMC

Immanen J., Nieminen K., Smolander O.-P., Kojima M., Alonso Serra J., Koskinen P., Zhang J., Elo A., Mähönen A.P., Street N., et al. Cytokinin and auxin display distinct but interconnected distribution and signaling profiles to stimulate cambial activity. Curr. Biol. 2016;26:1990–1997. doi: 10.1016/j.cub.2016.05.053. PubMed DOI

Sundell D., Street N.R., Kumar M., Mellerowicz E.J., Kucukoglu M., Johnsson C., Kumar V., Mannapperuma C., Delhomme N., Nilsson O., et al. AspWood: High-spatial-resolution transcriptome profiles reveal uncharacterized modularity of wood formation in Populus tremula. Plant Cell. 2017;29:1585–1604. doi: 10.1105/tpc.17.00153. PubMed DOI PMC

Angerer L.M., Angerer R.C. Detection of poly A+ RNA in sea urchin eggs and embryos by quantitative in situ hybridization. Nucleic Acids Res. 1981;9:2819–2840. doi: 10.1093/nar/9.12.2819. PubMed DOI PMC

Dietrich R.A., Maslyar D.J., Heupel R.C., Harada J.J. Spatial patterns of gene expression in Brassica napus seedlings: Identification of a cortex-specific gene and localization of mRNAs encoding isocitrate lyase and a polypeptide homologous to proteinases. Plant Cell. 1989;1:73–80. doi: 10.1105/tpc.1.1.73. PubMed DOI PMC

Young A.P., Jackson D.J., Wyeth R.C. A technical review and guide to RNA fluorescence in situ hybridization. PeerJ. 2020;8:1–27. doi: 10.7717/peerj.8806. PubMed DOI PMC

Singer R.H., Ward D.C. Actin gene expression visualized in chicken muscle tissue culture by using in situ hybridization with a biotinated nucleotide analog. Proc. Natl. Acad. Sci. USA. 1982;79:7331–7335. doi: 10.1073/pnas.79.23.7331. PubMed DOI PMC

Kitomi Y., Hanzawa E., Kuya N., Inoue H., Hara N., Kawai S., Kanno N., Endo M., Sugimoto K., Yamazaki T., et al. Root angle modifications by the DRO1 homolog improve rice yields in saline paddy fields. Proc. Natl. Acad. Sci. USA. 2020;117:21242–21250. doi: 10.1073/pnas.2005911117. PubMed DOI PMC

Yang W., Cortijo S., Korsbo N., Roszak P., Schiessl K., Gurzadyan A., Wightman R., Jonsson H., Meyerowitz E. Molecular mechanism of cytokinin-activated cell division in Arabidopsis. Science. 2021;371:1350–1355. doi: 10.1126/science.abe2305. PubMed DOI PMC

Duncan S., Rosa S. Gaining insight into plant gene transcription using smFISH. Transcription. 2018;9:166–170. doi: 10.1080/21541264.2017.1372043. PubMed DOI PMC

Femino A.M., Fay F.S., Fogarty K., Singer R.H. Visualization of single RNA transcripts in situ. Science. 1998;280:585–590. doi: 10.1126/science.280.5363.585. PubMed DOI

Rosa S., Duncan S., Dean C. Mutually exclusive sense-antisense transcription at FLC facilitates environmentally induced gene repression. Nat. Commun. 2016;7:13031. doi: 10.1038/ncomms13031. PubMed DOI PMC

Duncan S., Olsson T.S.G., Hartley M., Dean C., Rosa S. A method for detecting single mRNA molecules in Arabidopsis thaliana. Plant Methods. 2016;12:1–10. doi: 10.1186/s13007-016-0114-x. PubMed DOI PMC

Duncan S., Olsson T.S.G., Hartley M., Dean C., Rosa S. Single molecule RNA FISH in Arabidopsis root cells. Bio Protocol. 2017;7:1–10. doi: 10.21769/BioProtoc.2240. PubMed DOI PMC

Huang K., Demirci F., Batish M., Treible W., Meyers B.C., Caplan J.L. Quantitative, super-resolution localization of small RNAs with sRNA-PAINT. Nucleic Acids Res. 2020;48:1–13. doi: 10.1093/nar/gkaa623. PubMed DOI PMC

Huang K., Batish M., Teng C., Harkess A., Meyers B.C., Caplan J.L. Quantitative fluorescence in situ hybridization detection of plant mRNAs with single-molecule resolution. In: Heinlein M., editor. RNA Tagging: Methods and Protocols. Volume 2166. Springer; New York, NY, USA: 2020. pp. 23–33. PubMed

Wang F., Flanagan J., Su N., Wang L.-C., Bui S., Nielson A., Wu X., Vo H.-T., Ma X.-J., Luo Y. RNAscope: A novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J. Mol. Diagn. 2012;14:22–29. doi: 10.1016/j.jmoldx.2011.08.002. PubMed DOI PMC

Bowling A.J., Pence H.E., Church J.B. Application of a novel and automated branched DNA in situ hybridization method for the rapid and sensitive localization of mRNA molecules in plant tissues. Appl. Plant Sci. 2014;2:1–5. doi: 10.3732/apps.1400011. PubMed DOI PMC

Bergua M., Phelan D.M., Bak A., Bloom D.C., Folimonova S.Y. Simultaneous visualization of two Citrus tristeza virus genotypes provides new insights into the structure of multi-component virus populations in a host. Virology. 2016;491:10–19. doi: 10.1016/j.virol.2016.01.017. PubMed DOI

Munganyinka E., Margaria P., Sheat S., Ateka E.M., Tairo F., Ndunguru J., Winter S. Localization of cassava brown streak virus in Nicotiana rustica and cassava Manihot esculenta (Crantz) using RNAscope® in situ hybridization. Virol. J. 2018;15:1–11. doi: 10.1186/s12985-018-1038-z. PubMed DOI PMC

Sheat S., Winter S., Margaria P. Duplex in situ hybridization of virus nucleic acids in plant tissues using RNAscope®. In: Nielsen B.S., Jones J., editors. In Situ Hybridization Protocols. 5th ed. Volume 2148. Springer; New York, NY, USA: 2020. pp. 203–215. Methods in Molecular Biology. PubMed

Solanki S., Ameen G., Zhao J., Flaten J., Borowicz P., Brueggeman R.S. Visualization of spatial gene expression in plants by modified RNAscope fluorescent in situ hybridization. Plant Methods. 2020;16:1–9. doi: 10.1186/s13007-020-00614-4. PubMed DOI PMC

plaBiPD. [(accessed on 1 April 2021)]; Available online: https://www.plabipd.de/index.ep.

Wang K.N., editor. Agrobacterium Protocols. 3rd ed. Volume 1–2. Springer; New York, NY, USA: 2015. p. 365.

Kumar S., Barone P., Smith M., editors. Transgenic Plants: Methods and Protocols. Volume 1864. Springer; New York, NY, USA: 2020. p. 438.

Valla S., Lale R., editors. DNA Cloning and Assembly Methods. Volume 1116. Springer; New York, NY, USA: 2014. p. 308.

Ståhl P.L., Salmén F., Vickovic S., Lundmark A., Navarro J.F., Magnusson J., Giacomello S., Asp M., Westholm J.O., Huss M., et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science. 2016;353:78–82. doi: 10.1126/science.aaf2403. PubMed DOI

Marx V. Method of the year: Spatially resolved transcriptomics. Nat. Methods. 2021;18:9–14. doi: 10.1038/s41592-020-01033-y. PubMed DOI

Giacomello S., Salmén F., Terebieniec B.K., Vickovic S., Navarro J.F., Alexeyenko A., Reimegård J., McKee L.S., Mannapperuma C., Bulone V., et al. Spatially resolved transcriptome profiling in model plant species. Nat. Plants. 2017;3:1–11. doi: 10.1038/nplants.2017.61. PubMed DOI

Giacomello S., Lundeberg J. Preparation of plant tissue to enable spatial transcriptomics profiling using barcoded microarrays. Nat. Protoc. 2018;13:2425–2446. doi: 10.1038/s41596-018-0046-1. PubMed DOI

Birnbaum K., Shasha D.E., Wang J.Y., Jung J.W., Lambert G.M., Galbraith D.W., Benfey P.N. A gene expression map of the Arabidopsis root. Science. 2003;302:1956–1960. doi: 10.1126/science.1090022. PubMed DOI

Birnbaum K., Jung J.W., Wang J.Y., Lambert G.M., Hirst J.A., Galbraith D.W., Benfey P.N. Cell type–specific expression profiling in plants via cell sorting of protoplasts from fluorescent reporter lines. Nat. Methods. 2005;2:615–619. doi: 10.1038/nmeth0805-615. PubMed DOI

Brady S.M., Orlando D.A., Lee J.-Y., Wang J.Y., Koch J., Dinneny J.R., Mace D., Ohler U., Benfey P.N. A high-resolution root spatiotemporal map reveals dominant expression patterns. Science. 2007;318:801–806. doi: 10.1126/science.1146265. PubMed DOI

Zanetti M.E., Chang I.-F., Gong F., Galbraith D.W., Bailey-Serres J. Immunopurification of polyribosomal complexes of arabidopsis for global analysis of gene expression. Plant Physiol. 2005;138:624–635. doi: 10.1104/pp.105.059477. PubMed DOI PMC

Thellmann M., Andersen T.G., Vermeer J.E.M. Translating Ribosome Affinity Purification (TRAP) to investigate Arabidopsis thaliana root development at a cell type-specific scale. J. Vis. Exp. 2020;159:1–15. doi: 10.3791/60919. PubMed DOI

Zhang C., Barthelson R.A., Lambert G.M., Galbraith D.W. Global characterization of cell-specific gene expression through fluorescence-activated sorting of nuclei. Plant Physiol. 2008;147:30–40. doi: 10.1104/pp.107.115246. PubMed DOI PMC

Deal R.B., Henikoff S. A simple method for gene expression and chromatin profiling of individual cell types within a tissue. Dev. Cell. 2010;18:1030–1040. doi: 10.1016/j.devcel.2010.05.013. PubMed DOI PMC

Deal R.B., Henikoff S. The INTACT method for cell type–specific gene expression and chromatin profiling in Arabidopsis thaliana. Nat. Protoc. 2011;6:56–68. doi: 10.1038/nprot.2010.175. PubMed DOI PMC

Palovaara J., Saiga S., Wendrich J.R., van‘t Wout Hofland N., van Schayck J.P., Hater F., Mutte S., Sjollema J., Boekschoten M., Hooiveld G.J., et al. Transcriptome dynamics revealed by a gene expression atlas of the early Arabidopsis embryo. Nat. Plants. 2017;3:894–904. doi: 10.1038/s41477-017-0035-3. PubMed DOI PMC

Bobrovskikh A., Doroshkov A., Mazzoleni S., Carteni F., Giannino F., Zubairova U. A Sight on Single-Cell Transcriptomics in Plants Through the Prism of Cell-Based Computational Modeling Approaches: Benefits and Challenges for Data Analysis. Front Genet. 2021;12:652974. doi: 10.3389/fgene.2021.652974. PubMed DOI PMC

Thibivilliers S., Libault M. Plant single-cell multiomics: Cracking the molecular profiles of plant cells. Trends Plant Sci. 2021;26:662–663. doi: 10.1016/j.tplants.2021.03.001. PubMed DOI

Seyfferth C., Renema J., Wendrich J.R., Eekhout T., Seurinck R., Vandamme N., Blob B., Saeys Y., Helariutta Y., Birnbaum K.D., et al. Advances and opportunities of single-cell transcriptomics for plant research. Annu. Rev. Plant Biol. 2021;72:1–20. doi: 10.1146/annurev-arplant-081720-010120. PubMed DOI PMC

Brennecke P., Anders S., Kim J.K., Kołodziejczyk A.A., Zhang X., Proserpio V., Baying B., Benes V., Teichmann S.A., Marioni J.C., et al. Accounting for technical noise in single-cell RNA-seq experiments. Nat. Methods. 2013;10:1093–1095. doi: 10.1038/nmeth.2645. PubMed DOI

Efroni I., Ip P.-L., Nawy T., Mello A., Birnbaum K.D. Quantification of cell identity from single-cell gene expression profiles. Genome Biol. 2015;16:1–12. doi: 10.1186/s13059-015-0580-x. PubMed DOI PMC

Efroni I., Mello A., Nawy T., Ip P.-L., Rahni R., DelRose N., Powers A., Satija R., Birnbaum K.D. Root regeneration triggers an embryo-like sequence guided by hormonal interactions. Cell. 2016;165:1721–1733. doi: 10.1016/j.cell.2016.04.046. PubMed DOI PMC

Macosko E.Z., Basu A., Satija R., Nemesh J., Shekhar K., Goldman M., Tirosh I., Bialas A.R., Kamitaki N., Martersteck E.M., et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161:1202–1214. doi: 10.1016/j.cell.2015.05.002. PubMed DOI PMC

Wendrich J.R., Yang B., Vandamme N., Verstaen K., Smet W., Van de Velde C., Minne M., Wybouw B., Mor E., Arents H.E., et al. Vascular transcription factors guide plant epidermal responses to limiting phosphate conditions. Science. 2020;370:1–13. doi: 10.1126/science.aay4970. PubMed DOI PMC

Farmer A., Thibivilliers S., Ryu K.H., Schiefelbein J., Libault M. Single-nucleus RNA and ATAC sequencing reveals the impact of chromatin accessibility on gene expression in Arabidopsis roots at the single-cell level. Mol. Plant. 2021;14:372–383. doi: 10.1016/j.molp.2021.01.001. PubMed DOI

Long Y., Liu Z., Jia J., Mo W., Fang L., Lu D., Liu B., Zhang H., Chen W., Zhai J. FlsnRNA-seq: Protoplasting-free full-length single-nucleus RNA profiling in plants. Genome Biol. 2021;22:1–14. doi: 10.1186/s13059-021-02288-0. PubMed DOI PMC

Dorrity M.W., Alexandre C.M., Hamm M., Vigil A.-L., Fields S., Queitsch C., Cuperus J. The regulatory landscape of Arabidopsis thaliana roots at single-cell resolution. bioRxiv. 2021 doi: 10.1101/2020.07.17.204792. PubMed DOI PMC

Rich-Griffin C., Stechemesser A., Finch J., Lucas E., Ott S., Schäfer P. Single-cell transcriptomics: A high-resolution avenue for plant functional genomics. Trends Plant Sci. 2020;25:186–197. doi: 10.1016/j.tplants.2019.10.008. PubMed DOI

Valihrach L., Androvic P., Kubista M. Platforms for single-cell collection and analysis. Int. J. Mol. Sci. 2018;19:807. doi: 10.3390/ijms19030807. PubMed DOI PMC

McGinnis C.S., Murrow L.M., Gartner Z.J. DoubletFinder: Doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 2019;8:329–337. doi: 10.1016/j.cels.2019.03.003. PubMed DOI PMC

Wolock S.L., Lopez R., Klein A.M. Scrublet: Computational identification of cell doublets in single-cell transcriptomic data. Cell Syst. 2019;8:281–291. doi: 10.1016/j.cels.2018.11.005. PubMed DOI PMC

DePasquale E.A.K., Schnell D.J., Van Camp P.-J., Valiente-Alandí Í., Blaxall B.C., Grimes H.L., Singh H., Salomonis N. DoubletDecon: Deconvoluting doublets from single-cell RNA-sequencing data. Cell Rep. 2019;29:1718–1727. doi: 10.1016/j.celrep.2019.09.082. PubMed DOI PMC

DePasquale E.A.K., Schnell D., Chetal K., Salomonis N. Protocol for identification and removal of doublets with DoubletDecon. STAR Protoc. 2020;1:1–19. doi: 10.1016/j.xpro.2020.100085. PubMed DOI PMC

Zappia L., Phipson B., Oshlack A. Exploring the single-cell RNA-seq analysis landscape with the scRNA-tools database. PLoS Comput. Biol. 2018;14:e1006245. doi: 10.1371/journal.pcbi.1006245. PubMed DOI PMC

Ma X., Denyer T., Timmermans M.C.P. PscB: A browser to explore plant single cell RNA-sequencing data sets. Plant Physiol. 2020;183:464–467. doi: 10.1104/pp.20.00250. PubMed DOI PMC

Baldrian P. The known and the unknown in soil microbial ecology. FEMS Microbiol. Ecol. 2019;95 doi: 10.1093/femsec/fiz005. PubMed DOI

Zifcakova L., Vetrovsky T., Lombard V., Henrissat B., Howe A., Baldrian P. Feed in summer, rest in winter: Microbial carbon utilization in forest topsoil. Microbiome. 2017;5:122. doi: 10.1186/s40168-017-0340-0. PubMed DOI PMC

Damon C., Lehembre F., Oger-Desfeux C., Luis P., Ranger J., Fraissinet-Tachet L., Marmeisse R. Metatranscriptomics reveals the diversity of genes expressed by eukaryotes in forest soils. PLoS ONE. 2012;7:e28967. doi: 10.1371/journal.pone.0028967. PubMed DOI PMC

Geisen S., Tveit A.T., Clark I.M., Richter A., Svenning M.M., Bonkowski M., Urich T. Metatranscriptomic census of active protists in soils. ISME J. 2015;9:2178–2190. doi: 10.1038/ismej.2015.30. PubMed DOI PMC

White R.A., 3rd, Bottos E.M., Chowdhury T.R., Zucker J.D., Brislawn C.J., Nicora C.D., Fansler S.J., Glaesemann K.R., Glass K., Jansson J.K. Moleculo Long-Read Sequencing Facilitates Assembly and Genomic Binning from Complex Soil Metagenomes. mSystems. 2016;1 doi: 10.1128/mSystems.00045-16. PubMed DOI PMC

Hayden H.L., Savin K.W., Wadeson J., Gupta V., Mele P.M. Comparative Metatranscriptomics of Wheat Rhizosphere Microbiomes in Disease Suppressive and Non-suppressive Soils for Rhizoctonia solani AG8. Front. Microbiol. 2018;9:859. doi: 10.3389/fmicb.2018.00859. PubMed DOI PMC

Marti J.M., Arias-Giraldo L.F., Diaz-Villanueva W., Arnau V., Rodriguez-Franco A., Garay C.P. Metatranscriptomic dynamics after Verticillium dahliae infection and root damage in Olea europaea. BMC Plant Biol. 2020;20:79. doi: 10.1186/s12870-019-2185-0. PubMed DOI PMC

Jo Y., Back C.G., Choi H., Cho W.K. Comparative Microbiome Study of Mummified Peach Fruits by Metagenomics and Metatranscriptomics. Plants. 2020;9:1052. doi: 10.3390/plants9081052. PubMed DOI PMC

Westermann A.J., Gorski S.A., Vogel J. Dual RNA-seq of pathogen and host. Nat. Rev. Microbiol. 2012;10:618–630. doi: 10.1038/nrmicro2852. PubMed DOI

Ettwiller L., Buswell J., Yigit E., Schildkraut I. A novel enrichment strategy reveals unprecedented number of novel transcription start sites at single base resolution in a model prokaryote and the gut microbiome. BMC Genom. 2016;17:199. doi: 10.1186/s12864-016-2539-z. PubMed DOI PMC

Sharma C.M., Hoffmann S., Darfeuille F., Reignier J., Findeiss S., Sittka A., Chabas S., Reiche K., Hackermuller J., Reinhardt R., et al. The primary transcriptome of the major human pathogen Helicobacter pylori. Nature. 2010;464:250–255. doi: 10.1038/nature08756. PubMed DOI

Gorshkov V., Gubaev R., Petrova O., Daminova A., Gogoleva N., Ageeva M., Parfirova O., Prokchorchik M., Nikolaichik Y., Gogolev Y. Transcriptome profiling helps to identify potential and true molecular switches of stealth to brute force behavior in Pectobacterium atrosepticum during systemic colonization of tobacco plants. Eur. J. Plant. Pathol. 2018;152:957–976. doi: 10.1007/s10658-018-1496-6. DOI

Crump B.C., Wojahn J.M., Tomas F., Mueller R.S. Metatranscriptomics and Amplicon Sequencing Reveal Mutualisms in Seagrass Microbiomes. Front. Microbiol. 2018;9:388. doi: 10.3389/fmicb.2018.00388. PubMed DOI PMC

Saminathan T., Garcia M., Ghimire B., Lopez C., Bodunrin A., Nimmakayala P., Abburi V.L., Levi A., Balagurusamy N., Reddy U.K. Metagenomic and Metatranscriptomic Analyses of Diverse Watermelon Cultivars Reveal the Role of Fruit Associated Microbiome in Carbohydrate Metabolism and Ripening of Mature Fruits. Front. Plant Sci. 2018;9:4. doi: 10.3389/fpls.2018.00004. PubMed DOI PMC

Gomez-Cabrero D., Abugessaisa I., Maier D., Teschendorff A., Merkenschlager M., Gisel A., Ballestar E., Bongcam-Rudloff E., Conesa A., Tegner J. Data integration in the era of omics: Current and future challenges. BMC Syst. Biol. 2014;8:I1. doi: 10.1186/1752-0509-8-S2-I1. PubMed DOI PMC

Subramanian I., Verma S., Kumar S., Jere A., Anamika K. Multi-omics Data Integration, Interpretation, and Its Application. Bioinform. Biol. Insights. 2020;14 doi: 10.1177/1177932219899051. PubMed DOI PMC

Kim T.Y., Kim H.U., Lee S.Y. Data integration and analysis of biological networks. Curr. Opin. Biotechnol. 2010;21:78–84. doi: 10.1016/j.copbio.2010.01.003. PubMed DOI

Fukushima A., Kanaya S., Nishida K. Integrated network analysis and effective tools in plant systems biology. Front. Plant Sci. 2014;5:598. doi: 10.3389/fpls.2014.00598. PubMed DOI PMC

Moreno-Risueno M.A., Busch W., Benfey P.N. Omics meet networks—Using systems approaches to infer regulatory networks in plants. Curr. Opin. Plant Biol. 2010;13:126–131. doi: 10.1016/j.pbi.2009.11.005. PubMed DOI PMC

Yu T., Bai Y. Analyzing LC/MS metabolic profiling data in the context of existing metabolic networks. Curr. Metab. 2013;1:83–91. doi: 10.2174/2213235X11301010084. PubMed DOI PMC

Kim M., Tagkopoulos I. Data integration and predictive modeling methods for multi-omics datasets. Mol. Omics. 2018;14:8–25. doi: 10.1039/C7MO00051K. PubMed DOI

Plomion C., Bastien C., Bogeat-Triboulot M.-B., Bouffier L., Déjardin A., Duplessis S., Fady B., Heuertz M., Le Gac A.-L., Provost S., et al. Forest tree genomics: 10 achievements from the past 10 years and future prospects. Ann. For. Sci. 2016;73:77–103. doi: 10.1007/s13595-015-0488-3. DOI

Ballesta P., Maldonado C., Perez-Rodriguez P., Mora F. SNP and Haplotype-Based Genomic Selection of Quantitative Traits in Eucalyptus globulus. Plants. 2019;8:331. doi: 10.3390/plants8090331. PubMed DOI PMC

Tsai H.Y., Cericola F., Edriss V., Andersen J.R., Orabi J., Jensen J.D., Jahoor A., Janss L., Jensen J. Use of multiple traits genomic prediction, genotype by environment interactions and spatial effect to improve prediction accuracy in yield data. PLoS ONE. 2020;15:e0232665. doi: 10.1371/journal.pone.0232665. PubMed DOI PMC

Fikere M., Barbulescu D.M., Malmberg M.M., Maharjan P., Salisbury P.A., Kant S., Panozzo J., Norton S., Spangenberg G.C., Cogan N.O.I., et al. Genomic Prediction and Genetic Correlation of Agronomic, Blackleg Disease, and Seed Quality Traits in Canola (Brassica napus L.) Plants. 2020;9:719. doi: 10.3390/plants9060719. PubMed DOI PMC

Maldonado C., Mora-Poblete F., Contreras-Soto R.I., Ahmar S., Chen J.T., Junior A.T.D.T., Scapim C.A. Genome-Wide Prediction of Complex Traits in Two Outcrossing Plant Species Through Deep Learning and Bayesian Regularized Neural Network. Front. Plant Sci. 2020;11:593897. doi: 10.3389/fpls.2020.593897. PubMed DOI PMC

Haberer G., Kamal N., Bauer E., Gundlach H., Fischer I., Seidel M.A., Spannagl M., Marcon C., Ruban A., Urbany C., et al. European maize genomes highlight intraspecies variation in repeat and gene content. Nat. Genet. 2020;52:950–957. doi: 10.1038/s41588-020-0671-9. PubMed DOI PMC

Lopez-Cortes X.A., Matamala F., Maldonado C., Mora-Poblete F., Scapim C.A. A Deep Learning Approach to Population Structure Inference in Inbred Lines of Maize. Front. Genet. 2020;11:543459. doi: 10.3389/fgene.2020.543459. PubMed DOI PMC

Cappetta E., Andolfo G., Di Matteo A., Barone A., Frusciante L., Ercolano M.R. Accelerating Tomato Breeding by Exploiting Genomic Selection Approaches. Plants. 2020;9:1236. doi: 10.3390/plants9091236. PubMed DOI PMC

Wang X., Gao L., Jiao C., Stravoravdis S., Hosmani P.S., Saha S., Zhang J., Mainiero S., Strickler S.R., Catala C., et al. Genome of Solanum pimpinellifolium provides insights into structural variants during tomato breeding. Nat. Commun. 2020;11:5817. doi: 10.1038/s41467-020-19682-0. PubMed DOI PMC

Sun C., Dong Z., Zhao L., Ren Y., Zhang N., Chen F. The Wheat 660K SNP array demonstrates great potential for marker-assisted selection in polyploid wheat. Plant Biotechnol. J. 2020;18:1354–1360. doi: 10.1111/pbi.13361. PubMed DOI PMC

Babu P., Baranwal D.K., Harikrishna, Pal D., Bharti H., Joshi P., Thiyagarajan B., Gaikwad K.B., Bhardwaj S.C., Singh G.P., et al. Application of Genomics Tools in Wheat Breeding to Attain Durable Rust Resistance. Front. Plant Sci. 2020;11:567147. doi: 10.3389/fpls.2020.567147. PubMed DOI PMC

Liu C., Song J., Wang Y., Huang X., Zhang F., Wang W., Xu J., Zhang Y., Yu H., Pang Y., et al. Rapid prediction of head rice yield and grain shape for genome-wide association study in indica rice. J. Cereal Sci. 2020;96 doi: 10.1016/j.jcs.2020.103091. DOI

Morales K.Y., Singh N., Perez F.A., Ignacio J.C., Thapa R., Arbelaez J.D., Tabien R.E., Famoso A., Wang D.R., Septiningsih E.M., et al. An improved 7K SNP array, the C7AIR, provides a wealth of validated SNP markers for rice breeding and genetics studies. PLoS ONE. 2020;15:e0232479. doi: 10.1371/journal.pone.0232479. PubMed DOI PMC

Maldonado C., Mora F., Scapim C.A., Coan M. Genome-wide haplotype-based association analysis of key traits of plant lodging and architecture of maize identifies major determinants for leaf angle: hapLA4. PLoS ONE. 2019;14:e0212925. doi: 10.1371/journal.pone.0212925. PubMed DOI PMC

Mora-Poblete F., Ballesta P., Lobos G.A., Molina-Montenegro M., Gleadow R., Ahmar S., Jimenez-Aspee F. Genome-wide association study of cyanogenic glycosides, proline, sugars, and pigments in Eucalyptus cladocalyx after 18 consecutive dry summers. Physiol. Plant. 2021 doi: 10.1111/ppl.13349. PubMed DOI

Allier A., Teyssedre S., Lehermeier C., Moreau L., Charcosset A. Optimized breeding strategies to harness genetic resources with different performance levels. BMC Genom. 2020;21:349. doi: 10.1186/s12864-020-6756-0. PubMed DOI PMC

Meuwissen T.H., Hayes B.J., Goddard M.E. Prediction of total genetic value using genome-wide dense marker maps. Genetics. 2001;157:1819–1829. doi: 10.1093/genetics/157.4.1819. PubMed DOI PMC

Daetwyler H.D., Calus M.P., Pong-Wong R., de Los Campos G., Hickey J.M. Genomic prediction in animals and plants: Simulation of data, validation, reporting, and benchmarking. Genetics. 2013;193:347–365. doi: 10.1534/genetics.112.147983. PubMed DOI PMC

Supple M.A., Bragg J.G., Broadhurst L.M., Nicotra A.B., Byrne M., Andrew R.L., Widdup A., Aitken N.C., Borevitz J.O. Landscape genomic prediction for restoration of a Eucalyptus foundation species under climate change. eLife. 2018;7 doi: 10.7554/eLife.31835. PubMed DOI PMC

Tibshirani R. Regression Shrinkage and Selection via the Lasso. J. R. Stat. Soc. Ser. B. 1996;58:267–288. doi: 10.1111/j.2517-6161.1996.tb02080.x. DOI

Habier D., Fernando R.L., Kizilkaya K., Garrick D.J. Extension of the bayesian alphabet for genomic selection. BMC Bioinform. 2011;12:186. doi: 10.1186/1471-2105-12-186. PubMed DOI PMC

VanRaden P.M. Efficient methods to compute genomic predictions. J. Dairy Sci. 2008;91:4414–4423. doi: 10.3168/jds.2007-0980. PubMed DOI

Heslot N., Yang H.-P., Sorrells M.E., Jannik J.-L. Genomic Selection in Plant Breeding: A Comparison of Models. Crop Breed. Genet. 2012;52:146–160. doi: 10.2135/cropsci2011.06.0297. DOI

Du Q., Lu W., Quan M., Xiao L., Song F., Li P., Zhou D., Xie J., Wang L., Zhang D. Genome-Wide Association Studies to Improve Wood Properties: Challenges and Prospects. Front. Plant Sci. 2018;9:1912. doi: 10.3389/fpls.2018.01912. PubMed DOI PMC

Gao H., Su G., Janss L., Zhang Y., Lund M.S. Model comparison on genomic predictions using high-density markers for different groups of bulls in the Nordic Holstein population. J. Dairy Sci. 2013;96:4678–4687. doi: 10.3168/jds.2012-6406. PubMed DOI

Wu X., Lund M.S., Sun D., Zhang Q., Su G. Impact of relationships between test and training animals and among training animals on reliability of genomic prediction. J. Anim. Breed. Genet. 2015;132:366–375. doi: 10.1111/jbg.12165. PubMed DOI

Rutkoski J., Poland J., Mondal S., Autrique E., Perez L.G., Crossa J., Reynolds M., Singh R. Canopy Temperature and Vegetation Indices from High-Throughput Phenotyping Improve Accuracy of Pedigree and Genomic Selection for Grain Yield in Wheat. G3 Genes Genomes Genet. 2016;6:2799–2808. doi: 10.1534/g3.116.032888. PubMed DOI PMC

Crain J., Mondal S., Rutkoski J., Singh R.P., Poland J. Combining High-Throughput Phenotyping and Genomic Information to Increase Prediction and Selection Accuracy in Wheat Breeding. Plant Genome. 2018;11 doi: 10.3835/plantgenome2017.05.0043. PubMed DOI

Cabrera-Bosquet L., Crossa J., von Zitzewitz J., Serret M.D., Araus J.L. High-throughput phenotyping and genomic selection: The frontiers of crop breeding converge. J. Integr. Plant Biol. 2012;54:312–320. doi: 10.1111/j.1744-7909.2012.01116.x. PubMed DOI

Singh D., Wang X., Kumar U., Gao L., Noor M., Imtiaz M., Singh R.P., Poland J. High-Throughput Phenotyping Enabled Genetic Dissection of Crop Lodging in Wheat. Front. Plant Sci. 2019;10:394. doi: 10.3389/fpls.2019.00394. PubMed DOI PMC

Mackay I., Ober E., Hickey J. GplusE: Beyond genomic selection. Food Energy Secur. 2015;4:25–35. doi: 10.1002/fes3.52. PubMed DOI PMC

Sun J., Rutkoski J.E., Poland J.A., Crossa J., Jannink J.L., Sorrells M.E. Multitrait, Random Regression, or Simple Repeatability Model in High-Throughput Phenotyping Data Improve Genomic Prediction for Wheat Grain Yield. Plant Genome. 2017;10 doi: 10.3835/plantgenome2016.11.0111. PubMed DOI

Leng P., Lubberstedt T., Xu M.L. Genomics-assisted breeding—A revolutionary strategy for crop improvement. J. Integr. Agric. 2017;16:2674–2685. doi: 10.1016/S2095-3119(17)61813-6. DOI

Feng H., Guo Z., Yang W., Huang C., Chen G., Fang W., Xiong X., Zhang H., Wang G., Xiong L., et al. An integrated hyperspectral imaging and genome-wide association analysis platform provides spectral and genetic insights into the natural variation in rice. Sci. Rep. 2017;7:4401. doi: 10.1038/s41598-017-04668-8. PubMed DOI PMC

Rincent R., Charpentier J.P., Faivre-Rampant P., Paux E., Le Gouis J., Bastien C., Segura V. Phenomic Selection Is a Low-Cost and High-Throughput Method Based on Indirect Predictions: Proof of Concept on Wheat and Poplar. G3 Genes Genomes Genet. 2018;8:3961–3972. doi: 10.1534/g3.118.200760. PubMed DOI PMC

Krause M.R., Gonzalez-Perez L., Crossa J., Perez-Rodriguez P., Montesinos-Lopez O., Singh R.P., Dreisigacker S., Poland J., Rutkoski J., Sorrells M., et al. Hyperspectral Reflectance-Derived Relationship Matrices for Genomic Prediction of Grain Yield in Wheat. G3 Genes Genomes Genet. 2019;9:1231–1247. doi: 10.1534/g3.118.200856. PubMed DOI PMC

Iwasaki M., Paszkowski J. Epigenetic memory in plants. EMBO J. 2014;33:1987–1998. doi: 10.15252/embj.201488883. PubMed DOI PMC

Roudier F., Ahmed I., Berard C., Sarazin A., Mary-Huard T., Cortijo S., Bouyer D., Caillieux E., Duvernois-Berthet E., Al-Shikhley L., et al. Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. EMBO J. 2011;30:1928–1938. doi: 10.1038/emboj.2011.103. PubMed DOI PMC

Rigal M., Mathieu O. A “mille-feuille” of silencing: Epigenetic control of transposable elements. Biochim. Biophys. Acta. 2011;1809:452–458. doi: 10.1016/j.bbagrm.2011.04.001. PubMed DOI

Haag J.R., Pikaard C.S. Multisubunit RNA polymerases IV and V: Purveyors of non-coding RNA for plant gene silencing. Nat. Rev. Mol. Cell Biol. 2011;12:483–492. doi: 10.1038/nrm3152. PubMed DOI

Law J.A., Jacobsen S.E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 2010;11:204–220. doi: 10.1038/nrg2719. PubMed DOI PMC

Stroud H., Greenberg M.V., Feng S., Bernatavichute Y.V., Jacobsen S.E. Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell. 2013;152:352–364. doi: 10.1016/j.cell.2012.10.054. PubMed DOI PMC

Stroud H., Do T., Du J., Zhong X., Feng S., Johnson L., Patel D.J., Jacobsen S.E. Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. Nat. Struct. Mol. Biol. 2014;21:64–72. doi: 10.1038/nsmb.2735. PubMed DOI PMC

Ebbs M.L., Bender J. Locus-specific control of DNA methylation by the Arabidopsis SUVH5 histone methyltransferase. Plant Cell. 2006;18:1166–1176. doi: 10.1105/tpc.106.041400. PubMed DOI PMC

Kakutani T., Jeddeloh J.A., Richards E.J. Characterization of an Arabidopsis thaliana DNA hypomethylation mutant. Nucleic Acids Res. 1995;23:130–137. doi: 10.1093/nar/23.1.130. PubMed DOI PMC

Zemach A., Kim M.Y., Hsieh P.H., Coleman-Derr D., Eshed-Williams L., Thao K., Harmer S.L., Zilberman D. The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell. 2013;153:193–205. doi: 10.1016/j.cell.2013.02.033. PubMed DOI PMC

Khan A., Yadav N.S., Morgenstern Y., Zemach A., Grafi G. Activation of Tag1 transposable elements in Arabidopsis dedifferentiating cells and their regulation by CHROMOMETHYLASE 3-mediated CHG methylation. Biochim. Biophys. Acta. 2016;1859:1289–1298. doi: 10.1016/j.bbagrm.2016.07.012. PubMed DOI

Yadav N.S., Khadka J., Domb K., Zemach A., Grafi G. CMT3 and SUVH4/KYP silence the exonic Evelknievel retroelement to allow for reconstitution of CMT1 mRNA. Epigenetics Chromatin. 2018;11:69. doi: 10.1186/s13072-018-0240-y. PubMed DOI PMC

Gehring M., Henikoff S. DNA methylation and demethylation in Arabidopsis. Arab. Book. 2008;6:e0102. doi: 10.1199/tab.0102. PubMed DOI PMC

Li B., Carey M., Workman J.L. The role of chromatin during transcription. Cell. 2007;128:707–719. doi: 10.1016/j.cell.2007.01.015. PubMed DOI

Xiao J., Lee U.S., Wagner D. Tug of war: Adding and removing histone lysine methylation in Arabidopsis. Curr. Opin. Plant Biol. 2016;34:41–53. doi: 10.1016/j.pbi.2016.08.002. PubMed DOI

Liu C., Lu F., Cui X., Cao X. Histone methylation in higher plants. Annu. Rev. Plant Biol. 2010;61:395–420. doi: 10.1146/annurev.arplant.043008.091939. PubMed DOI

Cao R., Wang L., Wang H., Xia L., Erdjument-Bromage H., Tempst P., Jones R.S., Zhang Y. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science. 2002;298:1039–1043. doi: 10.1126/science.1076997. PubMed DOI

Jackson J.P., Johnson L., Jasencakova Z., Zhang X., PerezBurgos L., Singh P.B., Cheng X., Schubert I., Jenuwein T., Jacobsen S.E. Dimethylation of histone H3 lysine 9 is a critical mark for DNA methylation and gene silencing in Arabidopsis thaliana. Chromosoma. 2004;112:308–315. doi: 10.1007/s00412-004-0275-7. PubMed DOI

Zhang C., Du X., Tang K., Yang Z., Pan L., Zhu P., Luo J., Jiang Y., Zhang H., Wan H., et al. Arabidopsis AGDP1 links H3K9me2 to DNA methylation in heterochromatin. Nat. Commun. 2018;9:4547. doi: 10.1038/s41467-018-06965-w. PubMed DOI PMC

Kim D.H., Sung S. Polycomb-mediated gene silencing in Arabidopsis thaliana. Mol. Cells. 2014;37:841–850. doi: 10.14348/molcells.2014.0249. PubMed DOI PMC

Chen X., Hu Y., Zhou D.X. Epigenetic gene regulation by plant Jumonji group of histone demethylase. Biochim. Biophys. Acta. 2011;1809:421–426. doi: 10.1016/j.bbagrm.2011.03.004. PubMed DOI

Yadav N.S., Titov V., Ayemere I., Byeon B., Ilnytskyy Y., Kovalchuk I. Multigenerational exposure to heat stress induces phenotypic resilience, and genetic and epigenetic variations in Arabidopsis thaliana offspring. bioRxiv. 2020 doi: 10.1101/2020.11.30.405365. PubMed DOI PMC

Wong M.M., Chong G.L., Verslues P.E. Epigenetics and RNA Processing: Connections to Drought, Salt, and ABA? Methods Mol. Biol. 2017;1631:3–21. doi: 10.1007/978-1-4939-7136-7_1. PubMed DOI

Wang G., Li H., Meng S., Yang J., Ye N., Zhang J. Analysis of Global Methylome and Gene Expression during Carbon Reserve Mobilization in Stems under Soil Drying. Plant Physiol. 2020;183:1809–1824. doi: 10.1104/pp.20.00141. PubMed DOI PMC

Al-Harrasi I., Al-Yahyai R., Yaish M.W. Differential DNA methylation and transcription profiles in date palm roots exposed to salinity. PLoS ONE. 2018;13:e0191492. doi: 10.1371/journal.pone.0191492. PubMed DOI PMC

Yaish M.W., Al-Lawati A., Al-Harrasi I., Patankar H.V. Genome-wide DNA Methylation analysis in response to salinity in the model plant caliph medic (Medicago truncatula) BMC Genom. 2018;19:78. doi: 10.1186/s12864-018-4484-5. PubMed DOI PMC

Ma Y., Min L., Wang M., Wang C., Zhao Y., Li Y., Fang Q., Wu Y., Xie S., Ding Y., et al. Disrupted Genome Methylation in Response to High Temperature Has Distinct Affects on Microspore Abortion and Anther Indehiscence. Plant Cell. 2018;30:1387–1403. doi: 10.1105/tpc.18.00074. PubMed DOI PMC

Hossain M.S., Kawakatsu T., Kim K.D., Zhang N., Nguyen C.T., Khan S.M., Batek J.M., Joshi T., Schmutz J., Grimwood J., et al. Divergent cytosine DNA methylation patterns in single-cell, soybean root hairs. New Phytol. 2017;214:808–819. doi: 10.1111/nph.14421. PubMed DOI

Li J., Huang Q., Sun M., Zhang T., Li H., Chen B., Xu K., Gao G., Li F., Yan G., et al. Global DNA methylation variations after short-term heat shock treatment in cultured microspores of Brassica napus cv. Topas. Sci. Rep. 2016;6:38401. doi: 10.1038/srep38401. PubMed DOI PMC

Gao G., Li J., Li H., Li F., Xu K., Yan G., Chen B., Qiao J., Wu X. Comparison of the heat stress induced variations in DNA methylation between heat-tolerant and heat-sensitive rapeseed seedlings. Breed. Sci. 2014;64:125–133. doi: 10.1270/jsbbs.64.125. PubMed DOI PMC

Villagomez-Aranda A.L., Garcia-Ortega L.F., Torres-Pacheco I., Guevara-Gonzalez R.G. Whole-Genome DNA Methylation Analysis in Hydrogen Peroxide Overproducing Transgenic Tobacco Resistant to Biotic and Abiotic Stresses. Plants. 2021;10:178. doi: 10.3390/plants10010178. PubMed DOI PMC

Xu J., Zhou S., Gong X., Song Y., van Nocker S., Ma F., Guan Q. Single-base methylome analysis reveals dynamic epigenomic differences associated with water deficit in apple. Plant. Biotechnol. J. 2018;16:672–687. doi: 10.1111/pbi.12820. PubMed DOI PMC

Rajkumar M.S., Shankar R., Garg R., Jain M. Bisulphite sequencing reveals dynamic DNA methylation under desiccation and salinity stresses in rice cultivars. Genomics. 2020;112:3537–3548. doi: 10.1016/j.ygeno.2020.04.005. PubMed DOI

Li R., Hu F., Li B., Zhang Y., Chen M., Fan T., Wang T. Whole genome bisulfite sequencing methylome analysis of mulberry (Morus alba) reveals epigenome modifications in response to drought stress. Sci. Rep. 2020;10:8013. doi: 10.1038/s41598-020-64975-5. PubMed DOI PMC

Qian Y., Hu W., Liao J., Zhang J., Ren Q. The Dynamics of DNA methylation in the maize (Zea mays L.) inbred line B73 response to heat stress at the seedling stage. Biochem. Biophys. Res. Commun. 2019;512:742–749. doi: 10.1016/j.bbrc.2019.03.150. PubMed DOI

Sun L., Miao X., Cui J., Deng J., Wang X., Wang Y., Zhang Y., Gao S., Yang K. Genome-wide high-resolution mapping of DNA methylation identifies epigenetic variation across different salt stress in Maize (Zea mays L.) Euphytica. 2018;214 doi: 10.1007/s10681-017-2076-0. DOI

An Y.C., Goettel W., Han Q., Bartels A., Liu Z., Xiao W. Dynamic Changes of Genome-Wide DNA Methylation during Soybean Seed Development. Sci. Rep. 2017;7:12263. doi: 10.1038/s41598-017-12510-4. PubMed DOI PMC

Atighi M.R., Verstraeten B., De Meyer T., Kyndt T. Genome-wide DNA hypomethylation shapes nematode pattern-triggered immunity in plants. New Phytol. 2020;227:545–558. doi: 10.1111/nph.16532. PubMed DOI PMC

Lamke J., Baurle I. Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biol. 2017;18:124. doi: 10.1186/s13059-017-1263-6. PubMed DOI PMC

Boyko A., Kovalchuk I. Transgenerational response to stress in Arabidopsis thaliana. Plant Signal. Behav. 2010;5:995–998. doi: 10.4161/psb.5.8.12227. PubMed DOI PMC

Suter L., Widmer A. Phenotypic effects of salt and heat stress over three generations in Arabidopsis thaliana. PLoS ONE. 2013;8:e80819. doi: 10.1371/journal.pone.0080819. PubMed DOI PMC

Ramirez-Carrasco G., Martinez-Aguilar K., Alvarez-Venegas R. Transgenerational Defense Priming for Crop Protection against Plant Pathogens: A Hypothesis. Front. Plant Sci. 2017;8:696. doi: 10.3389/fpls.2017.00696. PubMed DOI PMC

Wibowo A., Becker C., Marconi G., Durr J., Price J., Hagmann J., Papareddy R., Putra H., Kageyama J., Becker J., et al. Hyperosmotic stress memory in Arabidopsis is mediated by distinct epigenetically labile sites in the genome and is restricted in the male germline by DNA glycosylase activity. eLife. 2016;5 doi: 10.7554/eLife.13546. PubMed DOI PMC

Zheng X., Chen L., Xia H., Wei H., Lou Q., Li M., Li T., Luo L. Transgenerational epimutations induced by multi-generation drought imposition mediate rice plant’s adaptation to drought condition. Sci. Rep. 2017;7:39843. doi: 10.1038/srep39843. PubMed DOI PMC

Ou X., Zhang Y., Xu C., Lin X., Zang Q., Zhuang T., Jiang L., von Wettstein D., Liu B. Transgenerational inheritance of modified DNA methylation patterns and enhanced tolerance induced by heavy metal stress in rice (Oryza sativa L.) PLoS ONE. 2012;7:e41143. doi: 10.1371/journal.pone.0041143. PubMed DOI PMC

Kim J.M., Sasaki T., Ueda M., Sako K., Seki M. Chromatin changes in response to drought, salinity, heat, and cold stresses in plants. Front. Plant Sci. 2015;6:114. doi: 10.3389/fpls.2015.00114. PubMed DOI PMC

van Dijk K., Ding Y., Malkaram S., Riethoven J.J., Liu R., Yang J., Laczko P., Chen H., Xia Y., Ladunga I., et al. Dynamic changes in genome-wide histone H3 lysine 4 methylation patterns in response to dehydration stress in Arabidopsis thaliana. BMC Plant Biol. 2010;10:238. doi: 10.1186/1471-2229-10-238. PubMed DOI PMC

Yan L., Fan G., Li X. Genome-wide analysis of three histone marks and gene expression in Paulownia fortunei with phytoplasma infection. BMC Genom. 2019;20 doi: 10.1186/s12864-019-5609-1. PubMed DOI PMC

Yan L., Zhai X., Zhao Z., Fan G. Whole-genome landscape of H3K4me3, H3K36me3 and H3K9ac and their association with gene expression during Paulownia witches’ broom disease infection and recovery processes. 3 Biotech. 2020;10:336. doi: 10.1007/s13205-020-02331-0. PubMed DOI PMC

Hussey S.G., Loots M.T., van der Merwe K., Mizrachi E., Myburg A.A. Integrated analysis and transcript abundance modelling of H3K4me3 and H3K27me3 in developing secondary xylem. Sci. Rep. 2017;7:3370. doi: 10.1038/s41598-017-03665-1. PubMed DOI PMC

Zeng Z., Zhang W., Marand A.P., Zhu B., Buell C.R., Jiang J. Cold stress induces enhanced chromatin accessibility and bivalent histone modifications H3K4me3 and H3K27me3 of active genes in potato. Genome Biol. 2019;20:123. doi: 10.1186/s13059-019-1731-2. PubMed DOI PMC

Zhang Y., Liang Y., Dong Y., Gao Y., Yang X., Yuan J., Qiu D. The Magnaporthe oryzae Alt A 1-like protein MoHrip1 binds to the plant plasma membrane. Biochem. Biophys. Res. Commun. 2017;492:55–60. doi: 10.1016/j.bbrc.2017.08.039. PubMed DOI

Li Z., Jiang G., Liu X., Ding X., Zhang D., Wang X., Zhou Y., Yan H., Li T., Wu K., et al. Histone demethylase SlJMJ6 promotes fruit ripening by removing H3K27 methylation of ripening-related genes in tomato. New Phytol. 2020;227:1138–1156. doi: 10.1111/nph.16590. PubMed DOI

Liu B., Wendel J.F. Epigenetic phenomena and the evolution of plant allopolyploids. Mol. Phylogenet Evol. 2003;29:365–379. doi: 10.1016/S1055-7903(03)00213-6. PubMed DOI

Zhang Y.Y., Fischer M., Colot V., Bossdorf O. Epigenetic variation creates potential for evolution of plant phenotypic plasticity. New Phytol. 2013;197:314–322. doi: 10.1111/nph.12010. PubMed DOI

Varotto S., Tani E., Abraham E., Krugman T., Kapazoglou A., Melzer R., Radanovic A., Miladinovic D. Epigenetics: Possible applications in climate-smart crop breeding. J. Exp. Bot. 2020;71:5223–5236. doi: 10.1093/jxb/eraa188. PubMed DOI PMC

Yang X., Kundariya H., Xu Y.Z., Sandhu A., Yu J., Hutton S.F., Zhang M., Mackenzie S.A. MutS HOMOLOG1-derived epigenetic breeding potential in tomato. Plant Physiol. 2015;168:222–232. doi: 10.1104/pp.15.00075. PubMed DOI PMC

Raju S.K.K., Shao M.R., Sanchez R., Xu Y.Z., Sandhu A., Graef G., Mackenzie S. An epigenetic breeding system in soybean for increased yield and stability. Plant Biotechnol. J. 2018;16:1836–1847. doi: 10.1111/pbi.12919. PubMed DOI PMC

Hauben M., Haesendonckx B., Standaert E., Van Der Kelen K., Azmi A., Akpo H., Van Breusegem F., Guisez Y., Bots M., Lambert B., et al. Energy use efficiency is characterized by an epigenetic component that can be directed through artificial selection to increase yield. Proc. Natl. Acad. Sci. USA. 2009;106:20109–20114. doi: 10.1073/pnas.0908755106. PubMed DOI PMC

Greaves I.K., Groszmann M., Wang A., Peacock W.J., Dennis E.S. Inheritance of Trans Chromosomal Methylation patterns from Arabidopsis F1 hybrids. Proc. Natl. Acad. Sci. USA. 2014;111:2017–2022. doi: 10.1073/pnas.1323656111. PubMed DOI PMC

Wang L., Greaves I.K., Groszmann M., Wu L.M., Dennis E.S., Peacock W.J. Hybrid mimics and hybrid vigor in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2015;112:E4959–E4967. doi: 10.1073/pnas.1514190112. PubMed DOI PMC

Jonas E., de Koning D.J. Does genomic selection have a future in plant breeding? Trends Biotechnol. 2013;31:497–504. doi: 10.1016/j.tibtech.2013.06.003. PubMed DOI

Oakey H., Cullis B., Thompson R., Comadran J., Halpin C., Waugh R. Genomic Selection in Multi-environment Crop Trials. G3 Genes Genomes Genet. 2016;6:1313–1326. doi: 10.1534/g3.116.027524. PubMed DOI PMC

Johannes F., Porcher E., Teixeira F.K., Saliba-Colombani V., Simon M., Agier N., Bulski A., Albuisson J., Heredia F., Audigier P., et al. Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genet. 2009;5:e1000530. doi: 10.1371/journal.pgen.1000530. PubMed DOI PMC

Reinders J., Wulff B.B., Mirouze M., Mari-Ordonez A., Dapp M., Rozhon W., Bucher E., Theiler G., Paszkowski J. Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes. Genes Dev. 2009;23:939–950. doi: 10.1101/gad.524609. PubMed DOI PMC

Roux F., Colome-Tatche M., Edelist C., Wardenaar R., Guerche P., Hospital F., Colot V., Jansen R.C., Johannes F. Genome-wide epigenetic perturbation jump-starts patterns of heritable variation found in nature. Genetics. 2011;188:1015–1017. doi: 10.1534/genetics.111.128744. PubMed DOI PMC

Cortijo S., Wardenaar R., Colome-Tatche M., Gilly A., Etcheverry M., Labadie K., Caillieux E., Hospital F., Aury J.M., Wincker P., et al. Mapping the epigenetic basis of complex traits. Science. 2014;343:1145–1148. doi: 10.1126/science.1248127. PubMed DOI

Bond D.M., Baulcombe D.C. Small RNAs and heritable epigenetic variation in plants. Trends Cell Biol. 2014;24:100–107. doi: 10.1016/j.tcb.2013.08.001. PubMed DOI

Latzel V., Allan E., Bortolini Silveira A., Colot V., Fischer M., Bossdorf O. Epigenetic diversity increases the productivity and stability of plant populations. Nat. Commun. 2013;4:2875. doi: 10.1038/ncomms3875. PubMed DOI

Abdelnoor R.V., Yule R., Elo A., Christensen A.C., Meyer-Gauen G., Mackenzie S.A. Substoichiometric shifting in the plant mitochondrial genome is influenced by a gene homologous to MutS. Proc. Natl. Acad. Sci. USA. 2003;100:5968–5973. doi: 10.1073/pnas.1037651100. PubMed DOI PMC

Xu Y.Z., Arrieta-Montiel M.P., Virdi K.S., de Paula W.B., Widhalm J.R., Basset G.J., Davila J.I., Elthon T.E., Elowsky C.G., Sato S.J., et al. MutS HOMOLOG1 is a nucleoid protein that alters mitochondrial and plastid properties and plant response to high light. Plant Cell. 2011;23:3428–3441. doi: 10.1105/tpc.111.089136. PubMed DOI PMC

Shedge V., Davila J., Arrieta-Montiel M.P., Mohammed S., Mackenzie S.A. Extensive rearrangement of the Arabidopsis mitochondrial genome elicits cellular conditions for thermotolerance. Plant Physiol. 2010;152:1960–1970. doi: 10.1104/pp.109.152827. PubMed DOI PMC

Xu Y.Z., Rde L.S., Virdi K.S., Arrieta-Montiel M.P., Razvi F., Li S., Ren G., Yu B., Alexander D., Guo L., et al. The chloroplast triggers developmental reprogramming when mutS HOMOLOG1 is suppressed in plants. Plant Physiol. 2012;159:710–720. doi: 10.1104/pp.112.196055. PubMed DOI PMC

Virdi K.S., Wamboldt Y., Kundariya H., Laurie J.D., Keren I., Kumar K.R.S., Block A., Basset G., Luebker S., Elowsky C., et al. MSH1 Is a Plant Organellar DNA Binding and Thylakoid Protein under Precise Spatial Regulation to Alter Development. Mol. Plant. 2016;9:245–260. doi: 10.1016/j.molp.2015.10.011. PubMed DOI

Kalisz S., Kramer E.M. Variation and constraint in plant evolution and development. Heredity. 2008;100:171–177. doi: 10.1038/sj.hdy.6800939. PubMed DOI

Virdi K.S., Laurie J.D., Xu Y.Z., Yu J., Shao M.R., Sanchez R., Kundariya H., Wang D., Riethoven J.J., Wamboldt Y., et al. Arabidopsis MSH1 mutation alters the epigenome and produces heritable changes in plant growth. Nat. Commun. 2015;6:6386. doi: 10.1038/ncomms7386. PubMed DOI PMC

Shao M.R., Raju S.K.K., Laurie J.D., Sanchez R., Mackenzie S.A. Stress-responsive pathways and small RNA changes distinguish variable developmental phenotypes caused by MSH1 loss. BMC Plant Biol. 2017;17:47. doi: 10.1186/s12870-017-0996-4. PubMed DOI PMC

de la Rosa Santamaria R., Shao M.R., Wang G., Nino-Liu D.O., Kundariya H., Wamboldt Y., Dweikat I., Mackenzie S.A. MSH1-induced non-genetic variation provides a source of phenotypic diversity in Sorghum bicolor. PLoS ONE. 2014;9:e108407. doi: 10.1371/journal.pone.0108407. PubMed DOI PMC

Manning K., Tor M., Poole M., Hong Y., Thompson A.J., King G.J., Giovannoni J.J., Seymour G.B. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat. Genet. 2006;38:948–952. doi: 10.1038/ng1841. PubMed DOI

Bilichak A., Kovalchuk I. Transgenerational response to stress in plants and its application for breeding. J. Exp. Bot. 2016;67:2081–2092. doi: 10.1093/jxb/erw066. PubMed DOI

Johnson L.M., Du J., Hale C.J., Bischof S., Feng S., Chodavarapu R.K., Zhong X., Marson G., Pellegrini M., Segal D.J., et al. SRA- and SET-domain-containing proteins link RNA polymerase V occupancy to DNA methylation. Nature. 2014;507:124–128. doi: 10.1038/nature12931. PubMed DOI PMC

Gallego-Bartolome J., Gardiner J., Liu W., Papikian A., Ghoshal B., Kuo H.Y., Zhao J.M., Segal D.J., Jacobsen S.E. Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain. Proc. Natl. Acad. Sci. USA. 2018;115:E2125–E2134. doi: 10.1073/pnas.1716945115. PubMed DOI PMC

Vojta A., Dobrinic P., Tadic V., Bockor L., Korac P., Julg B., Klasic M., Zoldos V. Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res. 2016;44:5615–5628. doi: 10.1093/nar/gkw159. PubMed DOI PMC

Xiong T., Meister G.E., Workman R.E., Kato N.C., Spellberg M.J., Turker F., Timp W., Ostermeier M., Novina C.D. Targeted DNA methylation in human cells using engineered dCas9-methyltransferases. Sci. Rep. 2017;7:6732. doi: 10.1038/s41598-017-06757-0. PubMed DOI PMC

McDonald J.I., Celik H., Rois L.E., Fishberger G., Fowler T., Rees R., Kramer A., Martens A., Edwards J.R., Challen G.A. Reprogrammable CRISPR/Cas9-based system for inducing site-specific DNA methylation. Biol. Open. 2016;5:866–874. doi: 10.1242/bio.019067. PubMed DOI PMC

Xu X., Tao Y., Gao X., Zhang L., Li X., Zou W., Ruan K., Wang F., Xu G.L., Hu R. A CRISPR-based approach for targeted DNA demethylation. Cell Discov. 2016;2:16009. doi: 10.1038/celldisc.2016.9. PubMed DOI PMC

Choudhury S.R., Cui Y., Lubecka K., Stefanska B., Irudayaraj J. CRISPR-dCas9 mediated TET1 targeting for selective DNA demethylation at BRCA1 promoter. Oncotarget. 2016;7:46545–46556. doi: 10.18632/oncotarget.10234. PubMed DOI PMC

Papikian A., Liu W., Gallego-Bartolome J., Jacobsen S.E. Site-specific manipulation of Arabidopsis loci using CRISPR-Cas9 SunTag systems. Nat. Commun. 2019;10:729. doi: 10.1038/s41467-019-08736-7. PubMed DOI PMC

Nunez J.K., Chen J., Pommier G.C., Cogan J.Z., Replogle J.M., Adriaens C., Ramadoss G.N., Shi Q., Hung K.L., Samelson A.J., et al. Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell. 2021;184:2503–2519. e2517. doi: 10.1016/j.cell.2021.03.025. PubMed DOI PMC

Hu J.H., Miller S.M., Geurts M.H., Tang W., Chen L., Sun N., Zeina C.M., Gao X., Rees H.A., Lin Z., et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature. 2018;556:57–63. doi: 10.1038/nature26155. PubMed DOI PMC

Xu X., Qi L.S. A CRISPR-dCas Toolbox for Genetic Engineering and Synthetic Biology. J. Mol. Biol. 2019;431:34–47. doi: 10.1016/j.jmb.2018.06.037. PubMed DOI

Quenneville S., Turelli P., Bojkowska K., Raclot C., Offner S., Kapopoulou A., Trono D. The KRAB-ZFP/KAP1 system contributes to the early embryonic establishment of site-specific DNA methylation patterns maintained during development. Cell Rep. 2012;2:766–773. doi: 10.1016/j.celrep.2012.08.043. PubMed DOI PMC

Fernie A.R., Yan J. De Novo Domestication: An Alternative Route toward New Crops for the Future. Mol. Plant. 2019;12:615–631. doi: 10.1016/j.molp.2019.03.016. PubMed DOI

Zsogon A., Cermak T., Naves E.R., Notini M.M., Edel K.H., Weinl S., Freschi L., Voytas D.F., Kudla J., Peres L.E.P. De novo domestication of wild tomato using genome editing. Nat. Biotechnol. 2018 doi: 10.1038/nbt.4272. PubMed DOI

Hu X., Cui Y., Dong G., Feng A., Wang D., Zhao C., Zhang Y., Hu J., Zeng D., Guo L., et al. Using CRISPR-Cas9 to generate semi-dwarf rice lines in elite landraces. Sci. Rep. 2019;9:19096. doi: 10.1038/s41598-019-55757-9. PubMed DOI PMC

Lacchini E., Kiegle E., Castellani M., Adam H., Jouannic S., Gregis V., Kater M.M. CRISPR-mediated accelerated domestication of African rice landraces. PLoS ONE. 2020;15:e0229782. doi: 10.1371/journal.pone.0229782. PubMed DOI PMC

Okuzaki A., Ogawa T., Koizuka C., Kaneko K., Inaba M., Imamura J., Koizuka N. CRISPR/Cas9-mediated genome editing of the fatty acid desaturase 2 gene in Brassica napus. Plant Physiol. Biochem. 2018;131:63–69. doi: 10.1016/j.plaphy.2018.04.025. PubMed DOI

Cermak T., Baltes N.J., Cegan R., Zhang Y., Voytas D.F. High-frequency, precise modification of the tomato genome. Genome Biol. 2015;16:232. doi: 10.1186/s13059-015-0796-9. PubMed DOI PMC

Kim Y.G., Cha J., Chandrasegaran S. Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proc. Natl. Acad. Sci. USA. 1996;93:1156–1160. doi: 10.1073/pnas.93.3.1156. PubMed DOI PMC

Boch J., Scholze H., Schornack S., Landgraf A., Hahn S., Kay S., Lahaye T., Nickstadt A., Bonas U. Breaking the code of DNA binding specificity of TAL-type III effectors. Science. 2009;326:1509–1512. doi: 10.1126/science.1178811. PubMed DOI

Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816–821. doi: 10.1126/science.1225829. PubMed DOI PMC

Sanchez-Leon S., Gil-Humanes J., Ozuna C.V., Gimenez M.J., Sousa C., Voytas D.F., Barro F. Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol. J. 2018;16:902–910. doi: 10.1111/pbi.12837. PubMed DOI PMC

Cong L., Ran F.A., Cox D., Lin S., Barretto R., Habib N., Hsu P.D., Wu X., Jiang W., Marraffini L.A., et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819–823. doi: 10.1126/science.1231143. PubMed DOI PMC

Zetsche B., Gootenberg J.S., Abudayyeh O.O., Slaymaker I.M., Makarova K.S., Essletzbichler P., Volz S.E., Joung J., van der Oost J., Regev A., et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. 2015;163:759–771. doi: 10.1016/j.cell.2015.09.038. PubMed DOI PMC

Ran F.A., Cong L., Yan W.X., Scott D.A., Gootenberg J.S., Kriz A.J., Zetsche B., Shalem O., Wu X., Makarova K.S., et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature. 2015;520:186–191. doi: 10.1038/nature14299. PubMed DOI PMC

Nishimasu H., Shi X., Ishiguro S., Gao L., Hirano S., Okazaki S., Noda T., Abudayyeh O.O., Gootenberg J.S., Mori H., et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science. 2018;361:1259–1262. doi: 10.1126/science.aas9129. PubMed DOI PMC

Gorbunova V., Levy A.A. Non-homologous DNA end joining in plant cells is associated with deletions and filler DNA insertions. Nucleic Acids Res. 1997;25:4650–4657. doi: 10.1093/nar/25.22.4650. PubMed DOI PMC

Lindbo J.A. A historical overview of RNAi in plants. Methods Mol. Biol. 2012;894:1–16. doi: 10.1007/978-1-61779-882-5_1. PubMed DOI

Budhagatapalli N., Rutten T., Gurushidze M., Kumlehn J., Hensel G. Targeted Modification of Gene Function Exploiting Homology-Directed Repair of TALEN-Mediated Double-Strand Breaks in Barley. G3 Genes Genomes Genet. 2015;5:1857–1863. doi: 10.1534/g3.115.018762. PubMed DOI PMC

Svitashev S., Young J.K., Schwartz C., Gao H., Falco S.C., Cigan A.M. Targeted Mutagenesis, Precise Gene Editing, and Site-Specific Gene Insertion in Maize Using Cas9 and Guide RNA. Plant Physiol. 2015;169:931–945. doi: 10.1104/pp.15.00793. PubMed DOI PMC

Najera V.A., Twyman R.M., Christou P., Zhu C. Applications of multiplex genome editing in higher plants. Curr. Opin. Biotechnol. 2019;59:93–102. doi: 10.1016/j.copbio.2019.02.015. PubMed DOI

Kannan B., Jung J.H., Moxley G.W., Lee S.M., Altpeter F. TALEN-mediated targeted mutagenesis of more than 100 COMT copies/alleles in highly polyploid sugarcane improves saccharification efficiency without compromising biomass yield. Plant. Biotechnol. J. 2018;16:856–866. doi: 10.1111/pbi.12833. PubMed DOI PMC

Stuttmann J., Barthel K., Martin P., Ordon J., Erickson J.L., Herr R., Ferik F., Kretschmer C., Berner T., Keilwagen J., et al. Highly efficient multiplex editing: One-shot generation of 8x Nicotiana benthamiana and 12x Arabidopsis mutants. Plant J. 2021;106:8–22. doi: 10.1111/tpj.15197. PubMed DOI

Wang Y., Cheng X., Shan Q., Zhang Y., Liu J., Gao C., Qiu J.L. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 2014;32:947–951. doi: 10.1038/nbt.2969. PubMed DOI

Liang Z., Zhang K., Chen K., Gao C. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J. Genet. Genom. 2014;41:63–68. doi: 10.1016/j.jgg.2013.12.001. PubMed DOI

Ku H.K., Ha S.H. Improving Nutritional and Functional Quality by Genome Editing of Crops: Status and Perspectives. Front. Plant Sci. 2020;11:577313. doi: 10.3389/fpls.2020.577313. PubMed DOI PMC

Komor A.C., Kim Y.B., Packer M.S., Zuris J.A., Liu D.R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016;533:420–424. doi: 10.1038/nature17946. PubMed DOI PMC

Anzalone A.V., Randolph P.B., Davis J.R., Sousa A.A., Koblan L.W., Levy J.M., Chen P.J., Wilson C., Newby G.A., Raguram A., et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576:149–157. doi: 10.1038/s41586-019-1711-4. PubMed DOI PMC

Schmidt C., Fransz P., Ronspies M., Dreissig S., Fuchs J., Heckmann S., Houben A., Puchta H. Changing local recombination patterns in Arabidopsis by CRISPR/Cas mediated chromosome engineering. Nat. Commun. 2020;11:4418. doi: 10.1038/s41467-020-18277-z. PubMed DOI PMC

Kumlehn J., Pietralla J., Hensel G., Pacher M., Puchta H. The CRISPR/Cas revolution continues: From efficient gene editing for crop breeding to plant synthetic biology. J. Integr. Plant Biol. 2018;60:1127–1153. doi: 10.1111/jipb.12734. PubMed DOI

Schindele A., Dorn A., Puchta H. CRISPR/Cas brings plant biology and breeding into the fast lane. Curr. Opin. Biotechnol. 2020;61:7–14. doi: 10.1016/j.copbio.2019.08.006. PubMed DOI

Ganie S.A., Wani S.H., Henry R., Hensel G. Improving rice salt tolerance by precision breeding in a new era. Curr. Opin. Plant Biol. 2021;60:101996. doi: 10.1016/j.pbi.2020.101996. PubMed DOI

Chandrasekaran J., Brumin M., Wolf D., Leibman D., Klap C., Pearlsman M., Sherman A., Arazi T., Gal-On A. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol. Plant Pathol. 2016;17:1140–1153. doi: 10.1111/mpp.12375. PubMed DOI PMC

Waltz E. Gene-edited CRISPR mushroom escapes US regulation. Nature. 2016;532:293. doi: 10.1038/nature.2016.19754. PubMed DOI

Osakabe Y., Liang Z., Ren C., Nishitani C., Osakabe K., Wada M., Komori S., Malnoy M., Velasco R., Poli M., et al. CRISPR-Cas9-mediated genome editing in apple and grapevine. Nat. Protoc. 2018;13:2844–2863. doi: 10.1038/s41596-018-0067-9. PubMed DOI

Schmidt S.M., Belisle M., Frommer W.B. The evolving landscape around genome editing in agriculture: Many countries have exempted or move to exempt forms of genome editing from GMO regulation of crop plants. EMBO Rep. 2020;21:e50680. doi: 10.15252/embr.202050680. PubMed DOI PMC

Evangelatos N., Upadya S.P., Venne J., Satyamoorthy K., Brand H., Ramashesha C.S., Brand A. Digital Transformation and Governance Innovation for Public Biobanks and Free/Libre Open Source Software Using a Blockchain Technology. OMICS. 2020;24:278–285. doi: 10.1089/omi.2019.0178. PubMed DOI

Liu J., Huang L., Wang C., Liu Y., Yan Z., Wang Z., Xiang L., Zhong X., Gong F., Zheng Y., et al. Genome-Wide Association Study Reveals Novel Genomic Regions Associated With High Grain Protein Content in Wheat Lines Derived From Wild Emmer Wheat. Front. Plant Sci. 2019;10:464. doi: 10.3389/fpls.2019.00464. PubMed DOI PMC

Galan R.J., Bernal-Vasquez A.M., Jebsen C., Piepho H.P., Thorwarth P., Steffan P., Gordillo A., Miedaner T. Integration of genotypic, hyperspectral, and phenotypic data to improve biomass yield prediction in hybrid rye. Theor. Appl. Genet. 2020;133:3001–3015. doi: 10.1007/s00122-020-03651-8. PubMed DOI PMC

Marzec M., Braszewska-Zalewska A., Hensel G. Prime Editing: A New Way for Genome Editing. Trends Cell Biol. 2020;30:257–259. doi: 10.1016/j.tcb.2020.01.004. PubMed DOI

Khatri S., Sharma S. How does organic farming shape the soil- and plant-associated microbiota? Symbiosis. 2021:1–8. doi: 10.1007/s13199-021-00767-3. PubMed DOI

Belimov A.A., Shaposhnikov A.I., Azarova T.S., Makarova N.M., Safronova V.I., Litvinskiy V.A., Nosikov V.V., Zavalin A.A., Tikhonovich I.A. Microbial Consortium of PGPR, Rhizobia and Arbuscular Mycorrhizal Fungus Makes Pea Mutant SGECd(t) Comparable with Indian Mustard in Cadmium Tolesrance and Accumulation. Plants. 2020;9:975. doi: 10.3390/plants9080975. PubMed DOI PMC

Reynolds M., Atkin O.K., Bennett M., Cooper M., Dodd I.C., Foulkes M.J., Frohberg C., Hammer G., Henderson I.R., Huang B., et al. Addressing Research Bottlenecks to Crop Productivity. Trends Plant Sci. 2021;26:607–630. doi: 10.1016/j.tplants.2021.03.011. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...