Effects of 5-year experimental warming in the Alpine belt on soil Archaea: Multi-omics approaches and prospects

. 2023 Aug ; 15 (4) : 291-297. [epub] 20230330

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36999249

We currently lack a predictive understanding of how soil archaeal communities may respond to climate change, particularly in Alpine areas where warming is far exceeding the global average. Here, we characterized the abundance, structure, and function of total (by metagenomics) and active soil archaea (by metatranscriptomics) after 5-year experimental field warming (+1°C) in Italian Alpine grasslands and snowbeds. Our multi-omics approach unveiled an increasing abundance of Archaea during warming in snowbeds, which was negatively correlated with the abundance of fungi (by qPCR) and micronutrients (Ca and Mg), but positively correlated with soil water content. In the snowbeds transcripts, warming resulted in the enrichment of abundances of transcription and nucleotide biosynthesis. Our study provides novel insights into possible changes in soil Archaea composition and function in the climate change scenario.

Zobrazit více v PubMed

PubMed PMC

Burke, D.J. , Smemo, K.A. , López‐Gutiérrez, J.C. & DeForest, J.L. (2012) Soil fungi influence the distribution of microbial functional groups that mediate forest greenhouse gas emissions. Soil Biology and Biochemistry, 53, 112–119.

Cannone, N. & Pignatti, S. (2014) Ecological responses of plant species and communities to climate warming: upward shift or range filling processes? Climatic Change, 123, 201–214.

Cannone, N. , Sgorbati, S. & Guglielmin, M. (2007) Unexpected impacts of climate change on alpine vegetation. Frontiers in Ecology and the Environment, 5, 360–364.

PubMed

PubMed

PubMed PMC

PubMed

PubMed

PubMed

Diaz, H.F. , Grosjean, M. & Graumlich, L. (2003) Climate variability and change in high elevation regions: past, present and future. Climatic Change, 59, 1–4.

PubMed

PubMed PMC

PubMed PMC

PubMed PMC

Hedderich, R. & Whitman, W.B. (2006) Physiology and biochemistry of the methane‐producing archaea. The Prokaryotes, 2, 1050–1079.

PubMed

IPCC . (2018) Summary for policymakers. In: Global warming of 1.5°C. Geneva: IPCC.

PubMed PMC

PubMed PMC

PubMed PMC

Klein, J.A. , Harte, J. & Zhao, X.Q. (2005) Dynamic and complex microclimate responses to warming and grazing manipulations. Global Change Biology, 11, 1440–1451.

PubMed PMC

PubMed

PubMed PMC

PubMed

PubMed

PubMed PMC

Malfasi, F. & Cannone, N. (2021) Phytosociology of the vegetation communities of the Stelvio pass area. Journal of Maps, 17, 367–375.

PubMed PMC

PubMed PMC

PubMed PMC

PubMed PMC

R Core Team. (2020) R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. https://www.R-project.org/. R Foundation for Statistical Computing

PubMed

PubMed PMC

PubMed

PubMed

Thompson, L.G. (2000) Ice core evidence for climate change in the tropics: implications for our future. Quaternary Science Reviews, 19, 19–35.

Timonen, S. & Bomberg, M. (2009) Archaea in dry soil environments. Phytochemistry Reviews, 8, 505–518.

PubMed

PubMed

PubMed

Yuan, M.M. , Guo, X. , Wu, L. , Zhang, Y. , Xiao, N. , Ning, D. et al. (2021) Climate warming enhances microbial network complexity and stability. Nature Climate Change, 11, 343–348.

PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat...

Možnosti archivace

Nahrávání dat...