Effects of 5-year experimental warming in the Alpine belt on soil Archaea: Multi-omics approaches and prospects
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36999249
PubMed Central
PMC10316362
DOI
10.1111/1758-2229.13152
Knihovny.cz E-zdroje
- MeSH
- Archaea * genetika MeSH
- klimatické změny MeSH
- multiomika MeSH
- půda * chemie MeSH
- půdní mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Itálie MeSH
- Názvy látek
- půda * MeSH
We currently lack a predictive understanding of how soil archaeal communities may respond to climate change, particularly in Alpine areas where warming is far exceeding the global average. Here, we characterized the abundance, structure, and function of total (by metagenomics) and active soil archaea (by metatranscriptomics) after 5-year experimental field warming (+1°C) in Italian Alpine grasslands and snowbeds. Our multi-omics approach unveiled an increasing abundance of Archaea during warming in snowbeds, which was negatively correlated with the abundance of fungi (by qPCR) and micronutrients (Ca and Mg), but positively correlated with soil water content. In the snowbeds transcripts, warming resulted in the enrichment of abundances of transcription and nucleotide biosynthesis. Our study provides novel insights into possible changes in soil Archaea composition and function in the climate change scenario.
Biological Institute of São Paulo Vila Mariana São Paulo Brazil
Department of Science and High Technology Insubria University Como CO Italy
Institute of Microbiology of the Czech Academy of Sciences Praha Czech Republic
Institute of Polar Sciences National Research Council of Italy Messina Italy
Norwegian College of Fishery Science UiT the Arctic University of Norway Tromsø Norway
Zobrazit více v PubMed
Bates, S.T. , Berg‐Lyons, D. , Caporaso, J.G. , Walters, W.A. , Knight, R. & Fierer, N. (2011) Examining the global distribution of dominant archaeal populations in soil. ISME Journal, 5, 908–917. PubMed PMC
Burke, D.J. , Smemo, K.A. , López‐Gutiérrez, J.C. & DeForest, J.L. (2012) Soil fungi influence the distribution of microbial functional groups that mediate forest greenhouse gas emissions. Soil Biology and Biochemistry, 53, 112–119.
Cannone, N. & Pignatti, S. (2014) Ecological responses of plant species and communities to climate warming: upward shift or range filling processes? Climatic Change, 123, 201–214.
Cannone, N. , Sgorbati, S. & Guglielmin, M. (2007) Unexpected impacts of climate change on alpine vegetation. Frontiers in Ecology and the Environment, 5, 360–364.
Cavaleri, M.A. , Reed, S.C. , Smith, W.K. & Wood, T.E. (2015) Urgent need for warming experiments in tropical forests. Global Change Biology, 21, 2111–2121. PubMed
Cavicchioli, R. , Thomas, T. & Curmi, P.M.G. (2000) Cold stress response in archaea. Extremophiles, 4, 321–331. PubMed
Clark, I.M. , Hughes, D.J. , Fu, Q. , Abadie, M. & Hirsch, P.R. (2021) Metagenomic approaches reveal differences in genetic diversity and relative abundance of nitrifying bacteria and archaea in contrasting soils. Scientific Reports, 11, 1–9. PubMed PMC
D'Alò, F. , Baldrian, P. , Odriozola, I. , Morais, D. , Větrovský, T. , Zucconi, L. et al. (2022) Composition and functioning of the soil microbiome in the highest altitudes of the Italian Alps and potential effects of climate change. FEMS Microbiology Ecology, 98, fiac025. PubMed
D'Alò, F. , Odriozola, I. , Baldrian, P. , Zucconi, L. , Ripa, C. , Cannone, N. et al. (2021) Microbial activity in alpine soils under climate change. Science of the Total Environment, 783, 147012. PubMed
DeLong, E.F. & Pace, N.R. (2001) Environmental diversity of bacteria and archaea. Systematic Biology, 50, 470–478. PubMed
Diaz, H.F. , Grosjean, M. & Graumlich, L. (2003) Climate variability and change in high elevation regions: past, present and future. Climatic Change, 59, 1–4.
Donhauser, J. & Frey, B. (2018) Alpine soil microbial ecology in a changing world. FEMS Microbiology Ecology, 94, fiy099. PubMed
Eddy, S.R. (2011) Accelerated profile HMM searches. PLoS Computational Biology, 7, e1002195 PubMed PMC
Grigoriev, I.V. , Nikitin, R. , Haridas, S. , Kuo, A. , Ohm, R. , Otillar, R. et al. (2014) MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Research, 42, D699–D704. PubMed PMC
Hansman, R.L. , Griffin, S. , Watson, J.T. , Druffel, E.R. , Ingalls, A.E. , Pearson, A. et al. (2009) The radiocarbon signature of microorganisms in the mesopelagic ocean. Proceedings of the National Academy of Sciences, 106, 6513–6518. PubMed PMC
Hedderich, R. & Whitman, W.B. (2006) Physiology and biochemistry of the methane‐producing archaea. The Prokaryotes, 2, 1050–1079.
Hofmann, K. , Lamprecht, A. , Pauli, H. & Illmer, P. (2016) Distribution of prokaryotic abundance and microbial nutrient cycling across a high‐alpine altitudinal gradient in the Austrian Central Alps is affected by vegetation, temperature, and soil nutrients. Microbial Ecology, 72, 704–716. PubMed
IPCC . (2018) Summary for policymakers. In: Global warming of 1.5°C. Geneva: IPCC.
Isoda, R. , Hara, S. , Tahvanainen, T. & Hashidoko, Y. (2017) Comparison of archaeal communities in mineral soils at a boreal forest in Finland and a cold‐temperate forest in Japan. Microbes and Environments ME17100., 32, 390–393. PubMed PMC
Kakuk, B. , Wirth, R. , Maróti, G. , Szuhaj, M. , Rakhely, G. , Laczi, K. et al. (2021) Early response of methanogenic archaea to H2 as evaluated by metagenomics and metatranscriptomics. Microbial Cell Factories, 20, 1–18. PubMed PMC
Kanehisa, M. & Goto, S. (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28, 27–30. PubMed PMC
Klein, J.A. , Harte, J. & Zhao, X.Q. (2005) Dynamic and complex microclimate responses to warming and grazing manipulations. Global Change Biology, 11, 1440–1451.
Korzhenkov, A.A. , Toshchakov, S.V. , Bargiela, R. , Gibbard, H. , Ferrer, M. , Teplyuk, A.V. et al. (2019) Archaea dominate the microbial community in an ecosystem with low‐to‐moderate temperature and extreme acidity. Microbiome, 7, 1–14. PubMed PMC
Könneke, M. , Bernhard, A.E. , de La Torre, J.R. , Walker, C.B. , Waterbury, J.B. , & Stahl, D.A. (2005) Isolation of an autotrophic ammonia‐oxidizing marine archaeon. Nature, 437, 543–546. PubMed
Langmead, B. & Salzberg, S.L. (2012) Fast gapped‐read alignment with bowtie 2. Nature Methods, 9, 357–359. PubMed PMC
Leininger, S. , Urich, T. , Schloter, M. , Schwark, L. , Qi, J. , Nicol, G.W. et al. (2006) Archaea predominate among ammonia‐oxidizing prokaryotes in soils. Nature, 442, 806–809. PubMed
Li, D. , Liu, C.M. , Luo, R. , Sadakane, K. & Lam, T.W. (2015) MEGAHIT: an ultra‐fast single‐node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics, 31, 1674–1676. PubMed
Lyu, Z. , Chou, C.W. , Shi, H. , Wang, L. , Ghebreab, R. , Phillips, D. et al. (2018) Assembly of methyl coenzyme M reductase in the methanogenic archaeon Methanococcus maripaludis. Journal of Bacteriology, 200, e00746–e00717. PubMed PMC
Malfasi, F. & Cannone, N. (2021) Phytosociology of the vegetation communities of the Stelvio pass area. Journal of Maps, 17, 367–375.
Metcalf, W.W. , Griffin, B.M. , Cicchillo, R.M. , Gao, J. , Janga, S.C. , Cooke, H.A. et al. (2012) Synthesis of methylphosphonic acid by marine microbes: a source for methane in the aerobic ocean. Science, 337(6098), 1104–1107. PubMed PMC
Meyer, F. , Paarmann, D. , D'Souza, M. , Olson, R. , Glass, E.M. , Kubal, M. et al. (2008) The metagenomics RAST server–a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics, 9, 1–8. PubMed PMC
Neilson, J.W. , Califf, K. , Cardona, C. , Copeland, A. , van Treuren, W. , Josephson, K.L. et al. (2017) Significant impacts of increasing aridity on the arid soil microbiome. mSystems, 2, e00195–e00116. PubMed PMC
Prestat, E. , David, M.M. , Hultman, J. , Taş, N. , Lamendella, R. , Dvornik, J. et al. (2014) FOAM (functional ontology assignments for metagenomes): a hidden Markov model (HMM) database with environmental focus. Nucleic Acids Research, 42, e145. PubMed PMC
R Core Team. (2020) R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. https://www.R-project.org/. R Foundation for Statistical Computing
Sannino, C. , Cannone, N. , D'Alò, F. , Franzetti, A. , Gandolfi, I. , Pittino, F. et al. (2022) Fungal communities in European alpine soils are not affected by short‐term in situ simulated warming than bacterial communities. Environmental Microbiology, 24, 4178–4192. PubMed
Souza, R.C. , Mendes, I.C. , Reis‐Junior, F.B. , Carvalho, F.M. , Nogueira, M.A. , Vasconcelos, A.T.R. et al. (2016) Shifts in taxonomic and functional microbial diversity with agriculture: how fragile is the Brazilian Cerrado? BMC Microbiology, 16, 1–15. PubMed PMC
Stahl, D.A. & de la Torre, J.R. (2012) Physiology and diversity of ammonia‐oxidizing archaea. Annual Review of Microbiology, 66, 83–101. PubMed
Starke, R. , Siles, J.A. , Fernandes, M.L.P. , Schallert, K. , Benndorf, D. , Plaza, C. et al. (2021) The structure and function of soil archaea across biomes. Journal of Proteomics, 237, 104147. PubMed
Thompson, L.G. (2000) Ice core evidence for climate change in the tropics: implications for our future. Quaternary Science Reviews, 19, 19–35.
Timonen, S. & Bomberg, M. (2009) Archaea in dry soil environments. Phytochemistry Reviews, 8, 505–518.
Treusch, A.H. , Leininger, S. , Kletzin, A. , Schuster, S.C. , Klenk, H.P. & Schleper, C. (2005) Novel genes for nitrite reductase and Amo‐related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environmental Microbiology, 7, 1985–1995. PubMed
Venter, J.C. , Remington, K. , Heidelberg, J.F. , Halpern, A.L. , Rusch, D. , Eisen, J.A. et al. (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science, 304, 66–74. PubMed
Yu, Y. , Liu, L. , Wang, J. , Zhang, Y. & Xiao, C. (2021) Effects of warming on the bacterial community and its function in a temperate steppe. Science of the Total Environment, 792, 148409. PubMed
Yuan, M.M. , Guo, X. , Wu, L. , Zhang, Y. , Xiao, N. , Ning, D. et al. (2021) Climate warming enhances microbial network complexity and stability. Nature Climate Change, 11, 343–348.
Žifčáková, L. , Větrovský, T. , Lombard, V. , Henrissat, B. , Howe, A. & Baldrian, P. (2017) Feed in summer, rest in winter: microbial carbon utilization in forest topsoil. Microbiome, 5, 1–12. PubMed PMC