Lignocellulosics in plant cell wall and their potential biological degradation

. 2022 Oct ; 67 (5) : 671-681. [epub] 20220504

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35508797
Odkazy

PubMed 35508797
DOI 10.1007/s12223-022-00974-5
PII: 10.1007/s12223-022-00974-5
Knihovny.cz E-zdroje

Lignocellulosic materials are composed of three main structural polymers: hemicellulose, cellulose, and lignin. Cellulose is a long chain molecule of glucose requiring a small number of enzymes for degradation due to its simple structure while lignin is a complex polymer of phenylpropane making its biochemical decomposition difficult. Under anaerobic conditions, lignocellulose breakdown is much easier and more rapid than aerobic conditions. Various studies have been carried out to estimate the rate of degradation of lignocellulosic materials. Microorganisms play a key role in the degradation of lignocellulosic materials because they produce a variety of hydrolytic enzymes including cellulase, proteases, xylanases, lipases, laccase, and phosphatases during the degradation of lignocellulosic materials. Based on the body of literature, microorganismal activity can provide useful information about the process of organic matter decomposition.

Zobrazit více v PubMed

Abe MM, Branciforti MC, Brienzo M (2021) Biodegradation of hemicellulose-cellulose-starch-based bioplastics and microbial polyesters. Recycling 6(1):22. https://doi.org/10.3390/recycling6010022 DOI

Agger JW, Isaksen T, Várnai A, Vidal-Melgosa S, Willats WG, Ludwig R, Horn SJ, Eijsink VG, Westereng B (2014) Discovery of LPMO activity on hemicelluloses shows the importance of oxidative processes in plant cell wall degradation. Proc Natl Acad Sci 111(17):6287–6292. https://doi.org/10.1073/pnas.1323629111 PubMed DOI PMC

Ahmad M, Roberts JN, Hardiman EM, Singh R, Eltis LD, Bugg TD (2011) Identification of DypB from Rhodococcus jostii RHA1 as a lignin peroxidase. Biochemistry 50(23):5096–5107. https://doi.org/10.1021/bi101892z PubMed DOI

Alexander M (1978) Introduction to Soil Microbiology. John Wiley & Sons, Inc., New York DOI

Banoub JH, Benjelloun-Mlayah B, Ziarelli F, Joly N, Delmas M (2007) Elucidation of the complex molecular structure of wheat straw lignin polymer by atmospheric pressure photoionization quadrupole time-of-flight tandem mass spectrometry. Rapid Commun Mass Spectrom 21:2867–2888. https://doi.org/10.1002/rcm.3159 PubMed DOI

Beeson WT, Phillips CM, Cate JH, Marletta MA (2012) Oxidative cleavage of cellulose by fungal copper-dependent polysaccharide monooxygenases. J Am Chem Soc 134:890–892. https://doi.org/10.1021/ja210657t PubMed DOI

Behr M, El Jaziri M, Baucher M (2021) Lignin: an innovative, complex, and highly flexible plant material/component. In: Santos H, Figueiredo P (Eds.), Lignin-Based Materials for Biomedical Applications. Elsevier publisher 35–60. https://doi.org/10.1016/B978-0-12-820303-3.00002-3

Brown ME, Barros T, Chang MC (2012) Identification and characterization of a multifunctional dye eroxidase from a lignin-reactive bacterium. ACS Chem Biol 7:2074–2081. https://doi.org/10.1021/cb300383y PubMed DOI

Camarero S, Martínez MJ, Martínez AT (2014) Understanding lignin biodegradation for the improved utilization of plant biomass in modern biorefineries. Biofuels Bioprod Biorefin 8:615–625. https://doi.org/10.1002/bbb.1467 DOI

Chadha BS, Kaur B, Basotra N, Tsang A, Pandey A (2019) Thermostable xylanases from thermophilic fungi and bacteria: current perspective. Bioresour Technol 277:195–203. https://doi.org/10.1016/j.biortech.2019.01.044 PubMed DOI

Chang Y, Middleton R, Ogawa Y, Gregory T, Steiner LM, Kovalev A, Karanja RHN, Rudall PJ, Glover BJ, Gorb SN, Silvia Vignolini S (2021) Cell wall composition determines handedness reversal in helicoidal cellulose architectures of Pollia condensata fruits. Proceed Nat Acad Sci 118(51):e2111723118. https://doi.org/10.1073/pnas.2111723118 DOI

Chauhan PS (2020) Role of various bacterial enzymes in complete depolymerization of lignin: a review. Biocatal Agri Biotech 23:101498. https://doi.org/10.1016/j.bcab.2020.101498 DOI

Chen H-P, Chow M, Liu C-C, Lau A, Liu J, Eltis LD (2012) Vanillin catabolism in Rhodococcus jostii RHA1. Appl Environ Microbiol 78:586–588. https://doi.org/10.1128/AEM.06876-11 PubMed DOI PMC

Chundawat SP, Beckham GT, Himmel ME, Dale BE (2011) Deconstruction of lignocellulosic biomass to fuels and chemicals. Annu Rev Chem Biomol Eng 2:121–145. https://doi.org/10.1146/annurev-chembioeng-061010-114205 PubMed DOI

de Gonzalo G, Colpa DI, Habib MH, Fraaije MW (2016) Bacterial enzymes involved in lignin degradation. J Biotechnol 236:110–119. https://doi.org/10.1016/j.jbiotec.2016.08.011 PubMed DOI

Echeverria M, Cardelli R, Bedini S, Colombini A, Incrocci L, Castagna A, Agnolucci M, Cristani C, Ranieri A, Saviozzi A (2012) Microbially-enhanced composting of wet olive husks. Bioresour Technol 104:509–517. https://doi.org/10.1016/j.biortech.2011.11.042 PubMed DOI

Eibinger M, Ganner T, Bubner P, Rošker S, Kracher D, Haltrich D, Ludwig R, Plank H, Nidetzky B (2014) Cellulose surface degradation by a lytic polysaccharide monooxygenase and its effect on cellulose hydrolytic efficiency. J Biol Chem 289:35929–35938. https://doi.org/10.1074/jbc.M114.602227 PubMed DOI PMC

El Fels L, Lemee L, Ambles A, Hafidi M (2014) Identification and biotransformation of lignin compounds during co-composting of sewage sludge-palm tree waste using pyrolysis-GC/MS. Int Biodeterior Biodegradation 92:26–35. https://doi.org/10.1016/j.ibiod.2014.04.001 DOI

El Ouaqoudi FZ, Meddich A, Lemée L, Amblès A, Hafidi M (2019) Assessment of compost-derived humic acids structure from ligno-cellulose waste by TMAH-thermochemolysis. Waste Biomass Valor 10:2661–2672. https://doi.org/10.1007/s12649-018-0268-z DOI

Etesami H, Hemati A, Alikhani HA (2019) Microbial bioconversion of agricultural wastes for rural sanitation and soil carbon enrichment. In: Singh D, Gupta V, Prabha R (Eds.) Microbial Interventions in Agriculture and Environment. Springer, Singapore. https://doi.org/10.1007/978-981-13-8383-0_6

Gaind S, Pandey AK (2005) Biodegradation study of crop residues as affected by exogenous inorganic nitrogen fungal inoculants. J Basic Microbiol 4:301–310. https://doi.org/10.1002/jobm.200410483 DOI

Ghatora SK, Chadha BS, Badhan A, Saini H, Bhat M (2006) Identification and characterization of diverse xylanases from thermophilic and thermotolerant fungi. BioResearch 1:18–33 DOI

Girfoglio M, Rossi M, Cannio R (2012) Cellulose degradation by Sulfolobus solfataricus requires a cell-anchored endo-β-1-4-glucanase. J Bacteriol 194:5091–5100. https://doi.org/10.1128/JB.00672-12 PubMed DOI PMC

Hart T, De Leij F, Kinsey G, Kelley J, Lynch J (2002) Strategies for the isolation of cellulolytic fungi for composting of wheat straw. World J Microbiol Biotechnol 18:471–480. https://doi.org/10.1023/A:1015519005814 DOI

Hatakka A (2001) Biodegradation of lignin. In: Hofrichter M, Steinb_chel A (eds) Biopolymers: biology, chemistry, biotechnology, applications, vol 1. Lignin, humic substances and coal. Wiley VCH, Weinheim 129–180

Heim A, Schmidt MW (2007) Lignin turnover in arable soil and grassland analysed with two different labelling approaches. Eur J Soil Sci 58:599–608. https://doi.org/10.1111/j.1365-2389.2006.00848.x DOI

Hemati A, Aliasgharzad N, Khakvar R, Khoshmanzar E, Asgari Lajayer B, van Hullebusch ED (2021) Role of lignin and thermophilic lignocellulolytic bacteria in the evolution of humification indices and enzymatic activities during compost production. Waste Manag 119:122–134. https://doi.org/10.1016/j.wasman.2020.09.042 PubMed DOI

Hemati A, Aliasgharzad N, Khakvar R, Delangiz N, Asgari Lajayer B, van Hullebusch ED (2022) Bioaugmentation of thermophilic lignocellulose degrading bacteria accelerate the composting process of lignocellulosic materials. Biomass Conv Bioref. https://doi.org/10.1007/s13399-021-02238-7 DOI

Hori C, Gaskell J, Igarashi K, Kersten P, Mozuch M, Samejima M, Cullen D (2014) Temporal alterations in the secretome of the selective ligninolytic fungus Ceriporiopsis subvermispora during growth on aspen wood reveal this organism’s strategy for degrading lignocellulose. Appl Environ Microbiol 80:2062–2070. https://doi.org/10.1128/AEM.03652-13 PubMed DOI PMC

Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink V (2012) Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 5:45. https://doi.org/10.1186/1754-6834-5-45 PubMed DOI PMC

Howard R, Abotsi E, Van Rensburg EJ, Howard S (2003) Lignocellulose biotechnology: Issues of bioconversion and enzyme production (Review). Afr J Biotechnol 2:602–619. https://doi.org/10.5897/AJB2003.000-1115 DOI

Jurado M, Suárez-Estrella F, Vargas-García M, López M, López-González J, Moreno J (2014) Evolution of enzymatic activities and carbon fractions throughout composting of plant waste. J Environ Manage 133:355–364. https://doi.org/10.1016/j.jenvman.2013.12.020 PubMed DOI

Kamimura N, Takahashi K, Mori K, Araki T, Fujita M, Higuchi Y, Masai E (2017) Bacterial catabolism of lignin-derived aromatics: new findings in a recent decade. Env Microbiol Rep 9(6):679–705. https://doi.org/10.1111/1758-2229.12597 DOI

Khosravi F, Khaleghi M, Naghavi H (2022) Screening and identification of cellulose-degrading bacteria from soil and leaves at Kerman province. Iran Arch Microbiol 204:88. https://doi.org/10.1007/s00203-021-02713-9 DOI

Kluczek-Turpeinen B, Tuomela M, Hatakka A, Hofrichter M (2003) Lignin degradation in a compost environment by the deuteromycete Paecilomyces inflatus. Appl Microbiol Biotechnol 61:374–379. https://doi.org/10.1007/s00253-003-1272-0 PubMed DOI

Kong K, Dommergues Y (1970) Limited cellulolysis in organic soils. Rev D Ecol Biol Soil 7:441–456

Langarica-Fuentes A, Handley PS, Houlden A, Fox G, Robson GD (2014) An investigation of the biodiversity of thermophilic and thermotolerant fungal species in composts using culture-based and molecular techniques. Fungalecology 11:132–144. https://doi.org/10.1016/j.funeco.2014.05.007 DOI

Lee S, Kang M, Bae J, Sohn J, Sung B (2019) Bacterial valorization of lignin: strains, enzymes, conversion pathways, biosensors, and perspectives. Front Bioeng Biotechnol 7:209. https://doi.org/10.3389/fbioe.2019.00209 PubMed DOI PMC

Liu Y, Wu Y, Zhang Y, Yang X, Yang E, Xu H, Yang Q, Chagan I, Cui X, Chen W (2019) Lignin degradation potential and draft genome sequence of Trametes trogii S0301. Biotechnol Biofuels 12:256. https://doi.org/10.1186/s13068-019-1596-3 PubMed DOI PMC

López-Mondéjar R, Zühlke D, Becher D, Riedel K, Baldrian P (2016) Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems. Sci Rep 6:25279. https://doi.org/10.1038/srep25279 PubMed DOI PMC

Loredano P, Fabio T, Elena R (2015) Lignin-degrading enzymes. FEBS J 282:1190–1213. https://doi.org/10.1111/febs.13224 DOI

Maijala P, Kango N, Szijarto N, Viikari L (2012) Characterization of hemicellulases from thermophilic fungi. Antonie Van Leeuwenhoek 101:905–917. https://doi.org/10.1007/s10482-012-9706-2 PubMed DOI

Majeke B, Collard F-X, Tyhoda L, Görgens J (2021) The synergistic application of quinone reductase and lignin peroxidase for the deconstruction of industrial (technical) lignins and analysis of the degraded lignin products. Bioresour Technol 319:124152. https://doi.org/10.1016/j.biortech.2020.124152 PubMed DOI

Malherbe S, Cloete TE (2002) Lignocellulose biodegradation fundamentals applications. Envir Sci Biotech 12:105–114. https://doi.org/10.1023/A:1020858910646 DOI

Masai E, Katayama Y, Fukuda M (2007a) Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds. Biosci Biotechnol Biochem 71:1–15. https://doi.org/10.1271/bbb.60437 PubMed DOI

Masai E, Yamamoto Y, Inoue T, Takamura K, Hara H, Kasai D, Katayama Y, Fukuda M (2007b) Characterization of ligV essential for catabolism of vanillin by Sphingomonas paucimobilis SYK-6. Biosci Biotechnol Biochem 71:2487–2492. https://doi.org/10.1271/bbb.70267 PubMed DOI

Nogales J, Canales Á, Jiménez-Barbero J, Serra B, Pingarrón JM, García JL, Díaz E (2011) Unravelling the gallic acid degradation pathway in bacteria: the gal cluster from Pseudomonas putida. Mol Microbiol 79:359–374. https://doi.org/10.1111/j.1365-2958.2010.07448.x PubMed DOI

Piccolo A (2002) The supramolecular structure of humic substances: a novel understanding of humus chemistry and implications in soil science. Adv Agr 75:57–134. https://doi.org/10.1016/S0065-2113(02)75003-7 DOI

Polizeli M, Rizzatti A, Monti R, Terenzi H, Jorge JA, Amorim D (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591. https://doi.org/10.1007/s00253-005-1904-7 PubMed DOI

Portillo M, Villahermosa D, Corzo A, Gonzalez J (2010) Microbial community fingerprinting by differential display-denaturing gradient gel electrophoresis. Appl Environ Microbiol 77:351–354. https://doi.org/10.1128/AEM.01316-10 PubMed DOI PMC

Prabhu KA, Maheshwari R (1999) Biochemical properties of xylanases from a thermophilic fungus, Melanocarpus albomyces, and their action on plant cell walls. J Biosci 24(4):461–470. https://doi.org/10.1007/BF02942657 DOI

Puchart V, Vršanská M, Svoboda P, Pohl J, Ögel ZB, Biely P (2004) Purification and characterization of two forms of endo-beta-1,4-mannanase from a thermotolerant fungus, Aspergillus fumigatus IMI 385708 (formerly Thermomyces lanuginosus IMI 158749). Biochim Biophys Acta 1674:239–250. https://doi.org/10.1016/j.bbagen.2004.06.022 PubMed DOI

Romero M, Aguado J, González L, Ladero M (1999) Cellulase production by Neurospora crassa on wheat straw. Enzyme Microb Technol 25:244–250. https://doi.org/10.1016/S0141-0229(99)00035-6 DOI

Ruhland CT, Remund AJ, Tiry CM, Secott TE (2018) Litter decomposition of three lignin-deficient mutants of Sorghum bicolor during spring thaw. Acta Oecol 91:16–21. https://doi.org/10.1016/j.actao.2018.05.009 DOI

Saparrat MC, Mocchiutti P, Liggieri CS, Aulicino MB, Caffini NO, Balatti PA, Martínez MJ (2008) Ligninolytic enzyme ability and potential biotechnology applications of the white-rot fungus Grammothele subargentea LPSC no. 436 strain. Process Biochem 43:368–375. https://doi.org/10.1016/j.procbio.2007.12.016 DOI

Saparrat MCN, Guillen F (2005) Ligninolytic ability and potential biotechnology applications of the South American fungus Pleurotus laciniatocrenatus. Folia Microbiol 50:155–160. https://doi.org/10.1007/BF02931465 DOI

Schwarz W (2001) The cellulosome and cellulose degradation by anaerobic bacteria. Appl Microbiol Biotechnol 56:634–649. https://doi.org/10.1007/s002530100710 PubMed DOI

Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6:219–228. https://doi.org/10.1016/S1369-5274(03)00056-0 PubMed DOI

Singh S, Madlala AM, Prior BA (2003) Thermomyces lanuginosus: properties of strains and their hemicellulases. FEMS Microbiol Rev 27:3–16. https://doi.org/10.1016/S0168-6445(03)00018-4 PubMed DOI

Szczęśniak B, Phuriragpitikhon J, Choma J, Jaroniec M (2020) Recent advances in the development and applications of biomass-derived carbons with uniform porosity. J Mater Chem A 8(36):18464–18491. https://doi.org/10.1039/D0TA05094F DOI

Tan T-C, Kracher D, Gandini R, Sygmund C, Kittl R, Haltrich D, Hällberg BM, Ludwig R, Divne C (2015) Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation. Nat Commun 6:7542. https://doi.org/10.1038/ncomms8542 PubMed DOI

Ting ASY, Tay H, Peh KL, Tan WS, Tee CS (2013) Novel isolation of thermophilic Ureibacillus terrenus from compost of empty fruit bunches (EFB) of oil palm and its enzymatic activities. Biocatal Agric Biotechnol 2:162–164. https://doi.org/10.1016/j.bcab.2012.11.004 DOI

Tsukada T, Igarashi K, Yoshida M, Samejima M (2006) Molecular cloning and characterization of two intracellular β-glucosidases belonging to glycoside hydrolase family from the basidiomycete Phanerochaete chrysosporium. Appl Microbiol Biotechnol 73:807–814. https://doi.org/10.1007/s00253-006-0526-z PubMed DOI

Tuomela M, Vikman M, Hatakka A, Itävaara M (2000) Biodegradation of lignin in a compost environment: a review. Bioresour Technol 72:169–183. https://doi.org/10.1016/S0960-8524(99)00104-2 DOI

Van Dyk J, Pletschke B (2012) A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes factors affecting enzymes, conversion and synergy. Biotechnol Adv 30:1458–1480. https://doi.org/10.1016/j.biotechadv.2012.03.002 PubMed DOI

Vargas-García M, Suárez-Estrella F, López M, Moreno J (2010) Microbial population dynamics and enzyme activities in composting processes with different starting materials. Waste Manag 30:771–778. https://doi.org/10.1016/j.wasman.2009.12.019 PubMed DOI

Vargas-Garcia M, Suárez-Estrella FF, López MJ, Moreno J (2006) Influence of microbial inoculation and co-composting material on the evolution of humiclike substances during composting of horticultural wastes. Process Biochem 41:1438–1443. https://doi.org/10.1016/j.procbio.2006.01.011 DOI

Vázquez G, Antorrena G, González J, Freire S, López S (1997) Acetosolv pulping of pine wood. Kinetic modelling of lignin solubilization and condensation. Bioresour Technol 59(2–3):121–127. https://doi.org/10.1016/S0960-8524(96)00168-X

Verstraete W, Top E (1999) Soil clean-up: lessons to remember. Int Biodeterior Biodegradation 43:147–153. https://doi.org/10.1016/S0964-8305(99)00043-8 DOI

Waliszewska B, Mleczek M, Zborowska M, Goliński P, Rutkowski P, Szentner K (2019) Changes in the chemical composition and the structure of cellulose and lignin in elm wood exposed to various forms of arsenic. Cellulose 26(10):6303–6315. https://doi.org/10.1007/s10570-019-02511-z DOI

Wu D, Wei Z, Mohamed TA, Zheng G, Qu F, Wang F, Zhao Y, Song C (2022) Lignocellulose biomass bioconversion during composting: mechanism of action of lignocellulase, pretreatment methods and future perspectives. Chemosphere 286:131635. https://doi.org/10.1016/j.chemosphere.2021.131635 PubMed DOI

Xie Y, Yasuda S, Wu H, Liu H (2000) Analysis of the structure of lignin carbohydrate complexes by the specific C-13 tracer method. J Wood Sci 46:130–136. https://doi.org/10.1007/BF00777359 DOI

Xu C, Su X, Wang J, Zhang F, Shen G, Yuan Y, Yan L, Tang H, Song F, Wang W (2021) Characteristics and functional bacteria in a microbial consortium for rice straw lignin-degrading. Bioresour Technol 331:125066. https://doi.org/10.1016/j.biortech.2021.125066 PubMed DOI

Yaqoob AA, Sekeri SH, Othman MBH, Ibrahim MNM, Feizi ZH (2021) Thermal degradation and kinetics stability studies of oil palm (Elaeis Guineensis) biomass-derived lignin nanoparticle and its application as an emulsifying agent. Arab J Chem 14(6):103182. https://doi.org/10.1016/j.arabjc.2021.103182 DOI

Zang X, Liu M, Fan Y, Xu J, Xu X, Li H (2018) The structural and functional contributions of β-glucosidase-producing microbial communities to cellulose degradation in composting. Biotechnol Biofuel 1(1):1–3. https://doi.org/10.1186/s13068-018-1045-8 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...