Efficient screening of potential cellulases and hemicellulases produced by Bosea sp. FBZP-16 using the combination of enzyme assays and genome analysis

. 2017 Feb ; 33 (2) : 29. [epub] 20170105

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28058637
Odkazy

PubMed 28058637
DOI 10.1007/s11274-016-2198-x
PII: 10.1007/s11274-016-2198-x
Knihovny.cz E-zdroje

Identification of bacteria that produce carbohydrolytic enzymes is extremely important given the increased demand for these enzymes in many industries. Twenty lignocellulose-degrading bacterial isolates from Algerian compost and different soils were screened for their potential to produce different enzymes involved in biomass deconstruction. Based on 16S rRNA gene sequencing, the isolates belonged to Proteobacteria and Actinobacteria. Differences among species were reflected both as the presence/absence of enzymes or at the level of enzyme activity. Among the most active species, Bosea sp. FBZP-16 demonstrated cellulolytic activity on both amorphous cellulose (CMC) and complex lignocellulose (wheat straw) and was selected for whole-genomic sequencing. The genome sequencing revealed the presence of a complex enzymatic machinery required for organic matter decomposition. Analysis of the enzyme-encoding genes indicated that multiple genes for endoglucanase, xylanase, β-glucosidase and β-mannosidase are present in the genome with enzyme activities displayed by the bacterium, while other enzymes, such as certain cellobiohydrolases, were not detected at the genomic level. This indicates that a combination of functional screening of bacterial cultures with the use of genome-derived information is important for the prediction of potential enzyme production. These results provide insight into their possible exploitation for the production of fuels and chemicals derived from plant biomass.

Zobrazit více v PubMed

Syst Appl Microbiol. 2014 Feb;37(1):60-7 PubMed

J Biotechnol. 2006 Sep 1;125(2):198-209 PubMed

Mol Biol Evol. 1987 Jul;4(4):406-25 PubMed

Sci Rep. 2015 Feb 10;5:8365 PubMed

Nature. 1964 May 30;202:928-9 PubMed

Nucleic Acids Res. 2012 Jul;40(Web Server issue):W445-51 PubMed

J Gen Microbiol. 1965 Feb;38:251-61 PubMed

Nucleic Acids Res. 2014 Jan;42(Database issue):D206-14 PubMed

Biotechnol Biofuels. 2014 Dec 13;7(1):175 PubMed

Enzyme Res. 2012;2012:793708 PubMed

Mol Biol Evol. 2013 Dec;30(12):2725-9 PubMed

Appl Microbiol Biotechnol. 2014 Feb;98(4):1531-7 PubMed

ISME J. 2011 Aug;5(8):1323-31 PubMed

J Chem Technol Biotechnol. 2015 Mar;90(3):573-581 PubMed

Braz J Microbiol. 2014 Aug 29;45(2):743-56 PubMed

Int J Syst Evol Microbiol. 2014 Feb;64(Pt 2):352-6 PubMed

BMC Genomics. 2008 Feb 08;9:75 PubMed

Sci Rep. 2016 Apr 29;6:25279 PubMed

Microbiology. 2006 Dec;152(Pt 12):3613-22 PubMed

PLoS One. 2014 Dec 02;9(12):e114138 PubMed

Int J Biol Sci. 2009 Jul 29;5(5):500-16 PubMed

J Mol Evol. 1980 Dec;16(2):111-20 PubMed

Enzyme Microb Technol. 2015 Sep;77:38-45 PubMed

Biotechnol Biofuels. 2013 Aug 10;6(1):115 PubMed

PLoS One. 2014 Feb 13;9(2):e89108 PubMed

Front Bioeng Biotechnol. 2015 Jun 16;3:84 PubMed

FEMS Microbiol Rev. 2008 May;32(3):501-21 PubMed

Proc Natl Acad Sci U S A. 2004 Jul 27;101(30):11030-5 PubMed

Enzyme Microb Technol. 2014 Jan 10;54:1-7 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...