Methanogenesis in the Digestive Tracts of the Tropical Millipedes Archispirostreptus gigas (Diplopoda, Spirostreptidae) and Epibolus pulchripes (Diplopoda, Pachybolidae)
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34020937
PubMed Central
PMC8276800
DOI
10.1128/aem.00614-21
PII: AEM.00614-21
Knihovny.cz E-zdroje
- Klíčová slova
- Methanobrevibacter, Methanomassiliicoccales, digestive tract, methane, methanogenesis, methanogenic community, physicochemical parameters, tropical millipedes,
- MeSH
- Bacteria genetika metabolismus MeSH
- členovci mikrobiologie MeSH
- formiáty metabolismus MeSH
- fylogeneze MeSH
- gastrointestinální trakt metabolismus MeSH
- koncentrace vodíkových iontů MeSH
- kyslík analýza MeSH
- methan metabolismus MeSH
- oxidace-redukce MeSH
- RNA ribozomální 16S genetika MeSH
- střevní mikroflóra * genetika MeSH
- vodík metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- formiáty MeSH
- formic acid MeSH Prohlížeč
- kyslík MeSH
- methan MeSH
- RNA ribozomální 16S MeSH
- vodík MeSH
Methanogens represent the final decomposition step in anaerobic degradation of organic matter, occurring in the digestive tracts of various invertebrates. However, factors determining their community structure and activity in distinct gut sections are still debated. In this study, we focused on the tropical millipede species Archispirostreptus gigas (Diplopoda, Spirostreptidae) and Epibolus pulchripes (Diplopoda, Pachybolidae), which release considerable amounts of methane. We aimed to characterize relationships between physicochemical parameters, methane production rates, and methanogen community structure in the two major gut sections, midgut and hindgut. Microsensor measurements revealed that both sections were strictly anoxic, with reducing conditions prevailing in both millipedes. Hydrogen concentration peaked in the anterior hindgut of E. pulchripes. In both species, the intestinal pH was significantly higher in the hindgut than in the midgut. An accumulation of acetate and formate in the gut indicated bacterial fermentation activities in the digestive tracts of both species. Phylogenetic analysis of 16S rRNA genes showed a prevalence of Methanobrevibacter spp. (Methanobacteriales), accompanied by a small fraction of so-far-unclassified "Methanomethylophilaceae" (Methanomassiliicoccales), in both species, which suggests that methanogenesis is mostly hydrogenotrophic. We conclude that anoxic conditions, negative redox potential, and bacterial production of hydrogen and formate promote gut colonization by methanogens. The higher activities of methanogens in the hindgut are explained by the higher pH of this compartment and their association with ciliates, which are restricted to this compartment and present an additional source of methanogenic substrates. IMPORTANCE Methane (CH4) is the second most important atmospheric greenhouse gas after CO2 and is believed to account for 17% of global warming. Methanogens are a diverse group of archaea and can be found in various anoxic habitats, including digestive tracts of plant-feeding animals. Termites, cockroaches, the larvae of scarab beetles, and millipedes are the only arthropods known to host methanogens and emit large amounts of methane. Millipedes are ranked as the third most important detritivores after termites and earthworms, and they are considered keystone species in many terrestrial ecosystems. Both methane-producing and non-methane-emitting species of millipedes have been observed, but what limits their methanogenic potential is not known. In the present study, we show that physicochemical gut conditions and the distribution of symbiotic ciliates are important factors determining CH4 emission in millipedes. We also found close similarities to other methane-emitting arthropods, which might be associated with their similar plant-feeding habits.
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Institute for Environmental Studies Charles University Prague Prague Czech Republic
Institute of Soil Biology Biology Centre CAS České Budějovice Czech Republic
SoWa Research Infrastructure Biology Centre CAS České Budějovice Czech Republic
Zobrazit více v PubMed
Howarth RW, Santoro R, Ingraffea A. 2011. Methane and the greenhouse-gas footprint of natural gas from shale formations. Clim Change 106:679–690. 10.1007/s10584-011-0061-5. DOI
Smith P, Reay D, van Amstel A. 2010. Methane and climate change. Earthscan, London, United Kingdom.
Strong K, Simpson WR, Bognar K, Lindenmaier R, Roche S. 2020. Trace gases in the Arctic atmosphere, p 153–207. In Kokhanovsky A, Tomasi C (ed), Physics and chemistry of the Arctic atmosphere. Springer Polar Sciences, Cham, Switzerland.
Bižić M, Klintzsch T, Ionescu D, Hindiyeh MY, Gunthel M, Muro-Pastor AM, Eckert W, Urich T, Keppler F, Grossart HP. 2020. Aquatic and terrestrial cyanobacteria produce methane. Sci Adv 6:eaax5343. 10.1126/sciadv.aax5343. PubMed DOI PMC
Barnes RO, Goldberg ED. 1976. Methane production and consumption in anoxic marine–sediments. Geol 4:297–300. 10.1130/0091-7613(1976)4<297:MPACIA>2.0.CO;2. DOI
Breznak JA. 1982. Intestinal microbiota of termites and other xylophagous insects. Annu Rev Microbiol 36:323–343. 10.1146/annurev.mi.36.100182.001543. PubMed DOI
Brune A, Frenzel P, Cypionka H. 2000. Life at the oxic-anoxic interface: microbial activities and adaptations. FEMS Microbiol Rev 24:691–710. 10.1111/j.1574-6976.2000.tb00567.x. PubMed DOI
Cruden DL, Markovetz AJ. 1987. Microbial ecology of the cockroach gut. Annu Rev Microbiol 41:617–643. 10.1146/annurev.mi.41.100187.003153. PubMed DOI
Gaci N, Borrel G, Tottey W, O'Toole PW, Brugere JF. 2014. Archaea and the human gut: new beginning of an old story. World J Gastroenterol 20:16062–16078. 10.3748/wjg.v20.i43.16062. PubMed DOI PMC
Liesack W, Schnell S, Revsbech NP. 2000. Microbiology of flooded rice paddies. FEMS Microbiol Rev 24:625–645. 10.1111/j.1574-6976.2000.tb00563.x. PubMed DOI
Valentine DL. 2002. Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: a review. Antonie Van Leeuwenhoek 81:271–282. 10.1023/A:1020587206351. PubMed DOI
Brune A. 2019. Methanogenesis in the digestive tracts of insects and other arthropods, p 229–260. In Stams A, Sousa D (ed), Biogenesis of hydrocarbons. handbook of hydrocarbon and lipid microbiology. Springer, Cham, Switzerland.
Depkat-Jakob PS, Hunger S, Schulz K, Brown GG, Tsai SM, Drake HL. 2012. Emission of methane by Eudrilus eugeniae and other earthworms from Brazil. Appl Environ Microbiol 78:3014–3019. 10.1128/AEM.07949-11. PubMed DOI PMC
Hackstein JHP, Van Alen T. 2010. Methanogens in the gastro-intestinal tract of animals, p 115–142. In Hackstein JHP (ed), (Endo)symbiotic methanogenic archaea. Microbiology monographs, vol 19. Springer, Berlin, Germany.
Kammann C, Ratering S, Görres C-M, Guillet C, Müller C. 2017. Stimulation of methane oxidation by CH4-emitting rose chafer larvae in well-aerated grassland soil. Biol Fertil Soils 53:491–499. 10.1007/s00374-017-1199-8. DOI
Schulz K, Hunger S, Brown GG, Tsai SM, Cerri CC, Conrad R, Drake HL. 2015. Methanogenic food web in the gut contents of methane-emitting earthworm Eudrilus eugeniae from Brazil. ISME J 9:1778–1792. 10.1038/ismej.2014.262. PubMed DOI PMC
Šustr V, Chroňáková A, Semanová S, Tajovský K, Šimek M. 2014. Methane production and methanogenic Archaea in the digestive tracts of millipedes (Diplopoda). PLoS One 9:e102659. 10.1371/journal.pone.0102659. PubMed DOI PMC
Nauer PA, Hutley LB, Arndt SK. 2018. Termite mounds mitigate half of termite methane emissions. Proc Natl Acad Sci U S A 115:13306–13311. 10.1073/pnas.1809790115. PubMed DOI PMC
Brune A. 2018. Methanogens in the digestive tract of termites, p 81–101. In Hackstein JHP (ed), (Endo)symbiotic methanogenic archaea. Microbiology monographs, vol 19. Springer, Berlin, Germany.
David JF. 2014. The role of litter-feeding macroarthropods in decomposition processes: a reappraisal of common views. Soil Biol Biochem 76:109–118. 10.1016/j.soilbio.2014.05.009. DOI
Taylor EC. 1982. Role of aerobic microbial populations in cellulose digestion by desert millipedes. Appl Environ Microbiol 44:281–291. 10.1128/AEM.44.2.281-291.1982. PubMed DOI PMC
Baker BJ, De Anda V, Seitz KW, Dombrowski N, Santoro AE, Lloyd KG. 2020. Diversity, ecology and evolution of Archaea. Nat Microbiol 5:887–900. 10.1038/s41564-020-0715-z. PubMed DOI
Conrad R. 2020. Importance of hydrogenotrophic, aceticlastic and methylotrophic methanogenesis for methane production in terrestrial, aquatic and other anoxic environments: a mini review. Pedosphere 30:25–39. 10.1016/S1002-0160(18)60052-9. DOI
Breznak JA, Kane MD. 1990. Microbial H2/CO2 acetogenesis in animal guts: nature and nutritional significance. FEMS Microbiol Lett 87:309–313. 10.1111/j.1574-6968.1990.tb04929.x. PubMed DOI
Leschine SB. 1995. Cellulose degradation in anaerobic environments. Annu Rev Microbiol 49:399–426. 10.1146/annurev.mi.49.100195.002151. PubMed DOI
Hackstein JHP, Stumm CK. 1994. Methane production in terrestrial arthropods. Proc Natl Acad Sci U S A 91:5441–5445. 10.1073/pnas.91.12.5441. PubMed DOI PMC
Šustr V, Šimek M. 2009. Methane release from millipedes and other soil invertebrates in Central Europe. Soil Biol Biochem 41:1684–1688. 10.1016/j.soilbio.2009.05.007. DOI
Hopkin SP, Read HJ. 1992. The biology of millipedes. Oxford University Press, Oxford, United Kingdom.
Nunez FS, Crawford CS. 1977. Anatomy and histology of alimentary tract of desert millipede Orthoporus ornatus (Girard) (Diplopoda Spirostreptidae). J Morphol 151:121–130. 10.1002/jmor.1051510107. PubMed DOI
Rost-Roszkowska MM, Kszuk-Jendrysik M, Marchewka A, Poprawa I. 2018. Fine structure of the midgut epithelium in the millipede Telodeinopus aoutii (Myriapoda, Diplopoda) with special emphasis on epithelial regeneration. Protoplasma 255:43–55. 10.1007/s00709-017-1131-y. PubMed DOI
Sosinka A, Rost-Roszkowska MM, Vilimova J, Tajovský K, Kszuk-Jendrysik M, Chajec L, Sonakowska L, Kaminska K, Hyra M, Poprawa I. 2014. The ultrastructure of the midgut epithelium in millipedes (Myriapoda, Diplopoda). Arthropod Struct Dev 43:477–492. 10.1016/j.asd.2014.06.005. PubMed DOI
Gijzen HJ, Broers CAM, Barugahare M, Stumm CK. 1991. Methanogenic bacteria as endosymbionts of the ciliate Nyctotherus ovalis in the cockroach hindgut. Appl Environ Microbiol 57:1630–1634. 10.1128/AEM.57.6.1630-1634.1991. PubMed DOI PMC
Hackstein JHP, Van Alen T, Rosenberg J. 2006. Methane production by terrestrial arthropods, p 155–180. In König H, Varma A (ed), Intestinal microorganisms of termites and other invertebrates. Springer, Berlin, Germany.
Lemke T, van Alen T, Hackstein JHP, Brune A. 2001. Cross-epithelial hydrogen transfer from the midgut compartment drives methanogenesis in the hindgut of cockroaches. Appl Environ Microbiol 67:4657–4661. 10.1128/AEM.67.10.4657-4661.2001. PubMed DOI PMC
Tokura M, Ohkuma M, Kudo T. 2000. Molecular phylogeny of methanogens associated with flagellated protists in the gut and with the gut epithelium of termites. FEMS Microbiol Ecol 33:233–240. 10.1111/j.1574-6941.2000.tb00745.x. PubMed DOI
Wrede C, Dreier A, Kokoschka S, Hoppert M. 2012. Archaea in symbioses. Archaea 10.1155/2012/596846. PubMed DOI PMC
van Hoek AHAM, van Alen TA, Sprakel VSI, Leunissen JAM, Brigge T, Vogels GD, Hackstein JHP. 2000. Multiple acquisition of methanogenic archaeal symbionts by anaerobic ciliates. Mol Biol Evol 17:251–258. 10.1093/oxfordjournals.molbev.a026304. PubMed DOI
Paul K, Nonoh JO, Mikulski L, Brune A. 2012. “Methanoplasmatales,” Thermoplasmatales-related archaea in termite guts and other environments, are the seventh order of methanogens. Appl Environ Microbiol 78:8245–8253. 10.1128/AEM.02193-12. PubMed DOI PMC
Lang K, Schuldes J, Klingl A, Poehlein A, Daniel R, Brune A. 2015. New mode of energy metabolism in the seventh order of methanogens as revealed by comparative genome analysis of “Candidatus Methanoplasma termitum.” Appl Environ Microbiol 81:1338–1352. 10.1128/AEM.03389-14. PubMed DOI PMC
Bauer E, Lampert N, Mikaelyan A, Köhler T, Maekawa K, Brune A. 2015. Physicochemical conditions, metabolites and community structure of the bacterial microbiota in the gut of wood-feeding cockroaches (Blaberidae: Panesthiinae). FEMS Microbiol Ecol 91:1–14. 10.1093/femsec/fiu028. PubMed DOI
Lemke T, Stingl U, Egert M, Friedrich MW, Brune A. 2003. Physicochemical conditions and microbial activities in the highly alkaline gut of the humus-feeding larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae). Appl Environ Microbiol 69:6650–6658. 10.1128/aem.69.11.6650-6658.2003. PubMed DOI PMC
Deevong P, Hattori S, Yamada A, Trakulnaleamsai S, Ohkuma M, Noparatnaraporn N, Kudo T. 2004. Isolation and detection of methanogens from the gut of higher termites. Microb Environ 19:221–226. 10.1264/jsme2.19.221. DOI
Schauer C, Thompson C, Brune A. 2014. Pyrotag sequencing of the gut microbiota of the cockroach Shelfordella lateralis reveals a highly dynamic core but only limited effects of diet on community structure. PLoS One 9:e85861. 10.1371/journal.pone.0085861. PubMed DOI PMC
Brauman A, Kane MD, Labat M, Breznak JA. 1992. Genesis of acetate and methane by gut bacteria of nutritionally diverse termites. Science 257:1384–1387. 10.1126/science.257.5075.1384. PubMed DOI
Sugimoto A, Inoue T, Tayasu I, Miller L, Takeichi S, Abe T. 1998. Methane and hydrogen production in a termite-symbiont system. Ecol Res 13:241–257. 10.1046/j.1440-1703.1998.00262.x. DOI
Wheeler GS, Tokoro M, Scheffrahn RH, Su NY. 1996. Comparative respiration and methane production rates in nearctic termites. J Insect Physiol 42:799–806. 10.1016/0022-1910(96)00002-9. DOI
Ebert A, Brune A. 1997. Hydrogen concentration profiles at the oxic-anoxic interface: a microsensor study of the hindgut of the wood-feeding lower termite Reticulitermes flavipes (Kollar). Appl Environ Microbiol 63:4039–4046. 10.1128/AEM.63.10.4039-4046.1997. PubMed DOI PMC
Schmitt-Wagner D, Brune A. 1999. Hydrogen profiles and localization of methanogenic activities in the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp.). Appl Environ Microbiol 65:4490–4496. 10.1128/AEM.65.10.4490-4496.1999. PubMed DOI PMC
Brune A, Emerson D, Breznak JA. 1995. The termite gut microflora as an oxygen sink: microelectrode determination of oxygen and pH gradients in guts of lower and higher termites. Appl Environ Microbiol 61:2681–2687. 10.1128/AEM.61.7.2681-2687.1995. PubMed DOI PMC
Schauer C, Thompson CL, Brune A. 2012. The bacterial community in the gut of the cockroach Shelfordella lateralis reflects the close evolutionary relatedness of cockroaches and termites. Appl Environ Microbiol 78:2758–2767. 10.1128/AEM.07788-11. PubMed DOI PMC
Cazemier AE, Hackstein JHP, Op den Camp HJM, Rosenberg J, van der Drift C. 1997. Bacteria in the intestinal tract of different species of arthropods. Microb Ecol 33:189–197. 10.1007/s002489900021. PubMed DOI
Kappler A, Brune A. 1999. Influence of gut alkalinity and oxygen status on mobilization and size-class distribution of humic acids in the hindgut of soil-feeding termites. Appl Soil Ecol 13:219–229. 10.1016/S0929-1393(99)00035-9. DOI
Nardi JB, Bee CM, Taylor SJ. 2016. Compartmentalization of microbial communities that inhabit the hindguts of millipedes. Arthropod Struct Dev 45:462–474. 10.1016/j.asd.2016.08.007. PubMed DOI
Conrad R. 2007. Microbial ecology of methanogens and methanotrophs. Adv Agron 96:1–63. 10.1016/S0065-2113(07)96005-8. DOI
Wang ZP, Delaune RD, Masscheleyn PH, Patrick WH. 1993. Soil redox and pH effects on methane production in a fooded rice soil. Soil Sci Soc Am J 57:382–385. 10.2136/sssaj1993.03615995005700020016x. DOI
Bayon C. 1980. Volatile fatty acids and methane production in relation to anaerobic carbohydrate fermentation in Oryctes nasicornis larvae (Coleoptera, Scarabaeidae). J Insect Physiol 26:819–828. 10.1016/0022-1910(80)90098-0. DOI
Bignell DE. 1984. Direct potentiometric determination of redox potentials of the gut contents in the termites Zootermopsis nevadensis and Cubitermes severus and in three other arthropods. J Insect Physiol 30:169–174. 10.1016/0022-1910(84)90122-7. DOI
Egert M, Stingl U, Bruun LD, Pommerenke B, Brune A, Friedrich MW. 2005. Structure and topology of microbial communities in the major gut compartments of Melolontha melolontha larvae (Coleoptera: Scarabaeidae). Appl Environ Microbiol 71:4556–4566. 10.1128/AEM.71.8.4556-4566.2005. PubMed DOI PMC
Šustr V, Stingl U, Brune A. 2014. Microprofiles of oxygen, redox potential, and pH, and microbial fermentation products in the highly alkaline gut of the saprophagous larva of Penthetria holosericea (Diptera: Bibionidae). J Insect Physiol 67:64–69. 10.1016/j.jinsphys.2014.06.007. PubMed DOI
Zimmer M, Brune A. 2005. Physiological properties of the gut lumen of terrestrial isopods (Isopoda: Oniscidea): adaptive to digesting lignocellulose? J Comp Physiol B 175:275–283. 10.1007/s00360-005-0482-4. PubMed DOI
Brune A, Kühl M. 1996. pH profiles of the extremely alkaline hindguts of soil-feeding termites (Isoptera: Termitidae) determined with microelectrodes. J Insect Physiol 42:1121–1127. 10.1016/S0022-1910(96)00036-4. DOI
Terra WR, Ferreira C. 1994. Insect digestive enzymes: properties, compartmentalization and function. Comp Biochem Phys B 109:1–62. 10.1016/0305-0491(94)90141-4. DOI
van Kessel JAS, Russell JB. 1996. The effect of pH on ruminal methanogenesis. FEMS Microb Ecol 20:205–210. 10.1016/0168-6496(96)00030-X. DOI
Cazemier AE, Op den Camp HJM, Hackstein JHP, Vogels GD. 1997. Fibre digestion in arthropods. Comp Biochem Phys A 118:101–109. 10.1016/S0300-9629(96)00443-4. DOI
Kane MD. 1997. Microbial fermentation in insect guts, p 231–265. In Mackie RI, White BA (ed), Gastrointestinal microbiology. Chapman & Hall microbiology series. Springer, Boston, MA.
Odelson DA, Breznak JA. 1983. Volatile fatty acid production by the hindgut microbiota of xylophagous termites. Appl Environ Microbiol 45:1602–1613. 10.1128/AEM.45.5.1602-1613.1983. PubMed DOI PMC
Tholen A, Brune A. 1999. Localization and in situ activities of homoacetogenic bacteria in the highly compartmentalized hindgut of soil-feeding higher termites (Cubitermes spp.). Appl Environ Microbiol 65:4497–4505. 10.1128/AEM.65.10.4497-4505.1999. PubMed DOI PMC
Tokuda G, Tsuboi Y, Kihara K, Saitou S, Moriya S, Lo N, Kikuchi J. 2014. Metabolomic profiling of 13C-labelled cellulose digestion in a lower termite: insights into gut symbiont function. Proc R Soc Lond B Biol Sci 281:20140990. 10.1098/rspb.2014.0990. PubMed DOI PMC
Hunt DJ. 2002. The African Carnoyidae (Nematoda: Rhigonematida). 4. Abirovulva insolita gen. n., sp. n., parasite of Coromus thomsoni (Polydesmida: Oxydesmidae) from Ivory Coast. Nematology 4:429–439. 10.1163/156854102760199268. DOI
Kitagami Y, Kanzaki N, Matsuda Y. 2019. First report of segmented filamentous bacteria associated with Rhigonema sp. (Nematoda: Rhigonematidae) dwelling in hindgut of Riukiaria sp. (Diplopoda: Xystodesmidae). Helminthologia 56:219–228. 10.2478/helm-2019-0018. PubMed DOI PMC
Köhler P, Bachmann R. 1980. Mechanisms of respiration and phosphorylation in Ascaris muscle mitochondria. Mol Biochem Parasitol 1:75–90. 10.1016/0166-6851(80)90002-X. PubMed DOI
Müller M, Mentel M, van Hellemond JJ, Henze K, Woehle C, Gould SB, Yu RY, van der Giezen M, Tielens AG, Martin WF. 2012. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol Mol Biol Rev 76:444–495. 10.1128/MMBR.05024-11. PubMed DOI PMC
Leadbetter JR, Breznak JA. 1996. Physiological ecology of Methanobrevibacter cuticularis sp nov and Methanobrevibacter curvatus sp nov, isolated from the hindgut of the termite Reticulitermes flavipes. Appl Environ Microbiol 62:3620–3631. 10.1128/AEM.62.10.3620-3631.1996. PubMed DOI PMC
Gijzen HJ, Barugahare M. 1992. Contribution of anaerobic protozoa and methanogens to hindgut metabolic activities of the American cockroach, Periplenata americana. Appl Environ Microbiol 58:2565–2570. 10.1128/AEM.58.8.2565-2570.1992. PubMed DOI PMC
Inoue J, Saita K, Kudo T, Ui S, Ohkuma M. 2007. Hydrogen production by termite gut protists: characterization of iron hydrogenases of Parabasalian symbionts of the termite Coptotermes formosanus. Eukaryot Cell 6:1925–1932. 10.1128/EC.00251-07. PubMed DOI PMC
Odelson DA, Breznak JA. 1985. Nutrition and growth characteristics of Trichomitopsis termopsidis, a cellulolytic protozoan from termites. Appl Environ Microbiol 49:614–621. 10.1128/AEM.49.3.614-621.1985. PubMed DOI PMC
Schmitt-Wagner D, Friedrich MW, Wagner B, Brune A. 2003. Phylogenetic diversity, abundance, and axial distribution of bacteria in the intestinal tract of two soil-feeding termites (Cubitermes spp.). Appl Environ Microbiol 69:6007–6017. 10.1128/aem.69.10.6007-6017.2003. PubMed DOI PMC
Köhler T, Dietrich C, Scheffrahn RH, Brune A. 2012. High-resolution analysis of gut environment and bacterial microbiota reveals functional compartmentation of the gut in wood-feeding higher termites (Nasutitermes spp.). Appl Environ Microbiol 78:4691–4701. 10.1128/AEM.00683-12. PubMed DOI PMC
Hackstein JH. 2010. Anaerobic ciliates and their methanogenic endosymbionts, p 13–23. In Hackstein JHP (ed), (Endo)symbiotic methanogenic archaea. Microbiology monographs, vol 19. Springer, Berlin, Germany.
Sprenger WW, van Belzen MC, Rosenberg J, Hackstein JHP, Keltjens JT. 2000. Methanomicrococcus blatticola gen. nov., sp. nov., a methanol- and methylamine-reducing methanogen from the hindgut of the cockroach Periplaneta americana. Int J Syst Evol Microbiol 50:1989–1999. 10.1099/00207713-50-6-1989. PubMed DOI
Sprenger WW, Hackstein JHP, Keltjens JT. 2005. The energy metabolism of Methanomicrococcus blatticola: physiological and biochemical aspects. Antonie Van Leeuwenhoek 87:289–299. 10.1007/s10482-004-5941-5. PubMed DOI
Sprenger WW, Hackstein JHP, Keltjens JT. 2007. The competitive success of Methanomicrococcus blatticola, a dominant methylotrophic methanogen in the cockroach hindgut, is supported by high substrate affinities and favorable thermodynamics. Microbiol Ecol 60:266–275. 10.1111/j.1574-6941.2007.00287.x. PubMed DOI
Egert M, Wagner B, Lemke T, Brune A, Friedrich MW. 2003. Microbial community structure in midgut and hindgut of the humus-feeding larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae). Appl Environ Microbiol 69:6659–6668. 10.1128/aem.69.11.6659-6668.2003. PubMed DOI PMC
Hara K, Shinzato N, Seo M, Oshima T, Yamagishi A. 2002. Phylogenetic analysis of symbiotic archaea lving in the gut of xylophagous cockroaches. Microb Environ 17:185–190. 10.1264/jsme2.17.185. DOI
Zeikus JG, Henning DL. 1975. Methanobacterium arbophilicum sp. nov. an obligate anaerobe isolated from wetwood of living trees. Antonie Van Leeuwenhoek 41:543–552. 10.1007/BF02565096. PubMed DOI
Leadbetter JR, Crosby LD, Breznak JA. 1998. Methanobrevibacter filiformis sp. nov., a filamentous methanogen from termite hindguts. Arch Microbiol 169:287–292. 10.1007/s002030050574. PubMed DOI
Söllinger A, Schwab C, Weinmaier T, Loy A, Tveit AT, Schleper C, Urich T. 2016. Phylogenetic and genomic analysis of Methanomassiliicoccales in wetlands and animal intestinal tracts reveals clade-specific habitat preferences. FEMS Microbiol Ecol 92:fiv149. 10.1093/femsec/fiv149. PubMed DOI
Söllinger A, Urich T. 2019. Methylotrophic methanogens everywhere: physiology and ecology of novel players in global methane cycling. Biochem Soc Trans 47:1895–1907. 10.1042/BST20180565. PubMed DOI
Launay H, Hansen CM, Almdal K. 2007. Hansen solubility parameters for a carbon fiber/epoxy composite. Carbon 45:2859–2865. 10.1016/j.carbon.2007.10.011. DOI
Revsbech NP, Jorgensen BB. 1986. Microelectrodes: their use in microbial ecology. Adv Microb Ecol 9:293–352. 10.1007/978-1-4757-0611-6_7. DOI
Lane DJ. 1991. 16S/23S rRNA sequencing, p 115–175. In Stackebrandt E, Goodfellow M (ed), Nucleic acid techniques in bacterial systematics. John Wiley & Sons, New York, NY.
Lueders T, Friedrich M. 2000. Archaeal population dynamics during sequential reduction processes in rice field soil. Appl Environ Microbiol 66:2732–2742. 10.1128/aem.66.7.2732-2742.2000. PubMed DOI PMC
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. 10.1093/nar/gks1219. PubMed DOI PMC
Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar Buchner A, Lai T, Steppi S, Jobb G, Förster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, König A, Liss T, Lüssmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH. 2004. ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371. 10.1093/nar/gkh293. PubMed DOI PMC
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274. 10.1093/molbev/msu300. PubMed DOI PMC
Kalyaanamoorthy S, Minh BQ, Wong T, von Haeseler A, Jermiin LS. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14:587–589. 10.1038/nmeth.4285. PubMed DOI PMC
Lemoine F, Domelevo Entfellner JB, Wilkinson E, Correia D, Dávila Felipe M, De Oliveira T, Gascuel O. 2018. Renewing Felsenstein's phylogenetic bootstrap in the era of big data. Nature 556:452–456. 10.1038/s41586-018-0043-0. PubMed DOI PMC
Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. 2018. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol 35:518–522. 10.1093/molbev/msx281. PubMed DOI PMC
De novo metatranscriptomic exploration of gene function in the millipede holobiont