Metastable Ni(I)-TiO2-x Photocatalysts: Self-Amplifying H2 Evolution from Plain Water without Noble Metal Co-Catalyst and Sacrificial Agent

. 2023 Dec 06 ; 145 (48) : 26122-26132. [epub] 20231120

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37984877

Decoration of semiconductor photocatalysts with cocatalysts is generally done by a step-by-step assembly process. Here, we describe the self-assembling and self-activating nature of a photocatalytic system that forms under illumination of reduced anatase TiO2 nanoparticles in an aqueous Ni2+ solution. UV illumination creates in situ a Ni+/TiO2/Ti3+ photocatalyst that self-activates and, over time, produces H2 at a higher rate. In situ X-ray absorption spectroscopy and electron paramagnetic resonance spectroscopy show that key to self-assembly and self-activation is the light-induced formation of defects in the semiconductor, which enables the formation of monovalent nickel (Ni+) surface states. Metallic nickel states, i.e., Ni0, do not form under the dark (resting state) or under illumination (active state). Once the catalyst is assembled, the Ni+ surface states act as electron relay for electron transfer to form H2 from water, in the absence of sacrificial species or noble metal cocatalysts.

Zobrazit více v PubMed

Whitesides G. M.; Grzybowski B. Self-Assembly at All Scales. Science 2002, 295, 2418–2421. 10.1126/science.1070821. PubMed DOI

Eigen M. Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 1971, 58, 465–523. 10.1007/BF00623322. PubMed DOI

Zhang J.; Nosaka Y. Mechanism of the OH Radical Generation in Photocatalysis with TiO DOI

Liu N.; Mohajernia S.; Nguyen N. T.; Hejazi S.; Plass F.; Kahnt A.; Yokosawa T.; Osvet A.; Spiecker E.; Guldi D. M.; et al. Long-Living Holes in Grey Anatase TiO DOI

Nosaka Y.; Nosaka A. Understanding Hydroxyl Radical (•OH) Generation Processes in Photocatalysis. ACS Energy Lett. 2016, 1, 356–359. 10.1021/acsenergylett.6b00174. DOI

Diesen V.; Jonsson M. Formation of H DOI

Ge M.; Cai J.; Iocozzia J.; Cao C.; Huang J.; Zhang X.; Shen J.; Wang S.; Zhang S.; Zhang K.-Q.; et al. A review of TiO DOI

Ni M.; Leung M. K. H.; Leung D. Y. C.; Sumathy K. A review and recent developments in photocatalytic water-splitting using TiO DOI

Nakata K.; Fujishima A. TiO DOI

Osterloh F. E. Inorganic Materials as Catalysts for Photochemical Splitting of Water. Chem. Mater. 2008, 20 (1), 35–54. 10.1021/cm7024203. DOI

Kudo A.; Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278. 10.1039/B800489G. PubMed DOI

Fujishima A.; Zhang X.; Tryk D. A. TiO DOI

Schneider J.; Matsuoka M.; Takeuchi M.; Zhang J.; Horiuchi Y.; Anpo M.; Bahnemann D. W. Understanding TiO PubMed DOI

Chen S.; Takata T.; Domen K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2017, 2, 17050. 10.1038/natrevmats.2017.50. DOI

Yoshida M.; Yamakata A.; Takanabe K.; Kubota J.; Osawa M.; Domen K. ATR-SEIRAS Investigation of the Fermi Level of Pt Cocatalyst on a GaN Photocatalyst for Hydrogen Evolution under Irradiation. J. Am. Chem. Soc. 2009, 131, 13218–13219. 10.1021/ja904991p. PubMed DOI

Maeda K.; Teramura K.; Lu D.; Saito N.; Inoue Y.; Domen K. Noble-Metal/Cr PubMed DOI

Gomes Silva C.; Juárez R.; Marino T.; Molinari R.; García H. Influence of Excitation Wavelength (UV or Visible Light) on the Photocatalytic Activity of Titania Containing Gold Nanoparticles for the Generation of Hydrogen or Oxygen from Water. J. Am. Chem. Soc. 2011, 133, 595–602. 10.1021/ja1086358. PubMed DOI

Chen X.; Shen S.; Guo L.; Mao S. S. Semiconductor-based Photocatalytic Hydrogen Generation. Chem. Rev. 2010, 110, 6503–6570. 10.1021/cr1001645. PubMed DOI

Wang Q.; Domen K. Particulate Photocatalysts for Light-Driven Water Splitting: Mechanisms, Challenges, and Design Strategies. Chem. Rev. 2020, 120, 919–985. 10.1021/acs.chemrev.9b00201. PubMed DOI

Kamat P. V.; Jin S. Semiconductor Photocatalysis: “ DOI

Schneider J.; Bahnemann D. W. Undesired Role of Sacrificial Reagents in Photocatalysis. J. Phys. Chem. Lett. 2013, 4, 3479–3483. 10.1021/jz4018199. DOI

Yuan J.; Wen J.; Zhong Y.; Li X.; Fang Y.; Zhang S.; Liu W. Enhanced photocatalytic H DOI

Zong X.; Han J.; Ma G.; Yan H.; Wu G.; Li C. Photocatalytic H DOI

Sun Z.; Zheng H.; Li J.; Du P. Extraordinarily efficient photocatalytic hydrogen evolution in water using semiconductor nanorods integrated with crystalline Ni DOI

Zong X.; Yan H.; Wu G.; Ma G.; Wen F.; Wang L.; Li C. Enhancement of Photocatalytic H PubMed DOI

Zhang X.; Fu A.; Chen X.; Liu L.; Ren L.; Tong L.; Ye J. Highly efficient Cu induced photocatalysis for visible-light hydrogen evolution. Catal. Today 2019, 335, 166–172. 10.1016/j.cattod.2018.11.002. DOI

Peng Y.; Jiang K.; Hill W.; Lu Z.; Yao H.; Wang H. Large-Scale, Low-Cost, and High-Efficiency Water-Splitting System for Clean H PubMed DOI

Spanu D.; Recchia S.; Mohajernia S.; Tomanec O.; Kment Š.; Zboril R.; Schmuki P.; Altomare M. Templated Dewetting–Alloying of NiCu Bilayers on TiO DOI

Shahvaranfard F.; Ghigna P.; Minguzzi A.; Wierzbicka E.; Schmuki P.; Altomare M. Dewetting of PtCu Nanoalloys on TiO PubMed DOI

Pinna M.; Wei A. W. W.; Spanu D.; Will J.; Yokosawa T.; Spiecker E.; Recchia S.; Schmuki P.; Altomare M. Amorphous NiCu Thin Films Sputtered on TiO DOI

Chen W.-T.; Chan A.; Sun-Waterhouse D.; Llorca J.; Idriss H.; Waterhouse G. I. N. Performance comparison of Ni/TiO DOI

Melián E. P.; Suárez M. N.; Jardiel T.; Rodríguez J. M. D.; Caballero A. C.; Araña J.; Calatayud D. G.; Díaz O. G. Influence of nickel in the hydrogen production activity of TiO DOI

Xu Y.; Xu R. Nickel-based cocatalysts for photocatalytic hydrogen production. Appl. Surf. Sci. 2015, 351, 779–793. 10.1016/j.apsusc.2015.05.171. DOI

Chen W.-T.; Chan A.; Sun-Waterhouse D.; Moriga T.; Idriss H.; Waterhouse G. I. N. Ni/TiO DOI

Wang J.; Mao S.; Liu Z.; Wei Z.; Wang H.; Chen Y.; Wang Y. Dominating Role of Ni PubMed DOI

Townsend T. K.; Browning N. D.; Osterloh F. E. Overall photocatalytic water splitting with NiO DOI

Wang W.; Liu S.; Nie L.; Cheng B.; Yu J. Enhanced photocatalytic H PubMed DOI

Forouzan F.; Richards T. C.; Bard A. J. Photoinduced Reaction at TiO DOI

Spanu D.; Minguzzi A.; Recchia S.; Shahvardanfard F.; Tomanec O.; Zboril R.; Schmuki P.; Ghigna P.; Altomare M. An Operando X-ray Absorption Spectroscopy Study of a NiCu–TiO DOI

Han K.; Kreuger T.; Mei B.; Mul G. Transient Behavior of Ni@NiO PubMed DOI PMC

Nosaka Y.; Nosaka A. Y. Generation and Detection of Reactive Oxygen Species in Photocatalysis. Chem. Rev. 2017, 117, 11302–11336. 10.1021/acs.chemrev.7b00161. PubMed DOI

Kiwi J.; Graetzel M. Optimization of conditions for photochemical water cleavage. Aqueous platinum/TiO DOI

Kiwi J.; Graetzel M. Specific analysis of surface-bound peroxides formed during photoinduced water cleavage in titanium dioxide-based microheterogeneous systems. J. Mol. Catal. 1987, 39, 63–70. 10.1016/0304-5102(87)80047-0. DOI

Munuera G.; Espinós J. P.; Fernández A.; Malet P.; González-Elipe A. R. TiO DOI

Siahrostami S.; Li G.-L.; Viswanathan V.; Nørskov J. K. One- or Two-Electron Water Oxidation, Hydroxyl Radical, or H PubMed DOI

Liu N.; Zhou X.; Nguyen N. T.; Peters K.; Zoller F.; Hwang I.; Schneider C.; Miehlich M. E.; Freitag D.; Meyer K.; et al. Black Magic in Gray Titania: Noble-Metal-Free Photocatalytic H PubMed DOI

Qin S.; Badura Z.; Denisov N.; Tomanec O.; Mohajernia S.; Liu N.; Kment S.; Zoppellaro G.; Schmuki P. Self-assembly of a Ni(I)-photocatalyst for plain water splitting without sacrificial agents. Electrochem. Commun. 2021, 122, 106909. 10.1016/j.elecom.2020.106909. DOI

Chen X.; Liu L.; Yu P. Y.; Mao S. S. Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals. Science 2011, 331, 746–750. 10.1126/science.1200448. PubMed DOI

Chen X.; Liu L.; Huang F. Black titanium dioxide (TiO PubMed DOI

Liu N.; Schneider C.; Freitag D.; Hartmann M.; Venkatesan U.; Müller J.; Spiecker E.; Schmuki P. Black TiO PubMed DOI

Naldoni A.; Altomare M.; Zoppellaro G.; Liu N.; Kment Š; Zbořil R.; Schmuki P. Photocatalysis with Reduced TiO PubMed DOI PMC

Wierzbicka E.; Altomare M.; Wu M.; Liu N.; Yokosawa T.; Fehn D.; Qin S.; Meyer K.; Unruh T.; Spiecker E.; et al. Reduced grey brookite for noble metal free photocatalytic H DOI

Will J.; Wierzbicka E.; Wu M.; Götz K.; Yokosawa T.; Liu N.; Tesler A. B.; Stiller M.; Unruh T.; Altomare M.; et al. Hydrogenated anatase TiO DOI

Qin S.; Kim H.; Denisov N.; Fehn D.; Schmidt J.; Meyer K.; Schmuki P. Grey facet-controlled anatase nanosheets for photocatalytic H DOI

Liu N.; Schneider C.; Freitag D.; Venkatesan U.; Marthala V. R. R.; Hartmann M.; Winter B.; Spiecker E.; Osvet A.; Zolnhofer E. M.; et al. Hydrogenated Anatase: Strong Photocatalytic Dihydrogen Evolution without the Use of a Co-Catalyst. Angew. Chem., Int. Ed. 2014, 53, 14201–14205. 10.1002/anie.201408493. PubMed DOI

Mohajernia S.; Andryskova P.; Zoppellaro G.; Hejazi S.; Kment S.; Zboril R.; Schmidt J.; Schmuki P. Influence of Ti DOI

Qin S.; Denisov N.; Zhou X.; Zdražil L.; Fehn D.; Hwang I.; Bruns M.; Kim H.; Meyer K.; Schmuki P. Critical factors for photoelectrochemical and photocatalytic H DOI

Wierzbicka E.; Zhou X.; Denisov N.; Yoo J.; Fehn D.; Liu N.; Meyer K.; Schmuki P. Self-Enhancing H PubMed DOI

Lo W. J.; Chung Y. W.; Somorjai G. A. Electron spectroscopy studies of the chemisorption of O DOI

Millet M.-M.; Algara-Siller G.; Wrabetz S.; Mazheika A.; Girgsdies F.; Teschner D.; Seitz F.; Tarasov A.; Levchenko S. V.; Schlögl R.; et al. Ni Single Atom Catalysts for CO PubMed DOI PMC

Wang A.; Li J.; Zhang T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81. 10.1038/s41570-018-0010-1. DOI

Gao C.; Low J.; Long R.; Kong T.; Zhu J.; Xiong Y. Heterogeneous Single-Atom Photocatalysts: Fundamentals and Applications. Chem. Rev. 2020, 120, 12175–12216. 10.1021/acs.chemrev.9b00840. PubMed DOI

Moulder J. F.; Stickle W. F.; Sobol P. E.; Bomben K. D.. Handbook of X-ray Photoelectron Spectroscopy; Perkin Elmer Corp.,: Eden Prairie/USA, 1992.

Grosvenor A. P.; Biesinger M. C.; Smart R. S. C.; McIntyre N. S. New interpretations of XPS spectra of nickel metal and oxides. Surf. Sci. 2006, 600, 1771–1779. 10.1016/j.susc.2006.01.041. DOI

Biesinger M. C.; Payne B. P.; Lau L. W. M.; Gerson A.; Smart R. S. C. X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems. Surf. Interface Anal. 2009, 41, 324–332. 10.1002/sia.3026. DOI

Dubey P.; Kaurav N.; Devan R. S.; Okram G. S.; Kuo Y. K. The effect of stoichiometry on the structural, thermal and electronic properties of thermally decomposed nickel oxide. RSC Adv. 2018, 8, 5882–5890. 10.1039/C8RA00157J. PubMed DOI PMC

Nesbitt H. W.; Legrand D.; Bancroft G. M. Interpretation of Ni2p XPS spectra of Ni conductors and Ni insulators. Phys. Chem. Miner. 2000, 27, 357–366. 10.1007/s002690050265. DOI

Abba F.; De Santis G.; Fabbrizzi L.; Licchelli M.; Manotti Lanfredi A. M.; Pallavicini P.; Poggi A.; Ugozzoli F. Nickel(II) Complexes of Azacyclams: Oxidation and Reduction Behavior and Catalytic Effects in the Electroreduction of Carbon Dioxide. Inorg. Chem. 1994, 33, 1366–1375. 10.1021/ic00085a026. DOI

Di Casa M.; Fabbrizzi L.; Licchelli M.; Poggi A.; Sacchi D.; Zema M. A novel fluorescence redox switch based on the formal Ni DOI

Lovecchio F. V.; Gore E. S.; Busch D. H. Oxidation and reduction behavior of macrocyclic complexes of nickel. Electrochemical and electron spin resonance studies. J. Am. Chem. Soc. 1974, 96, 3109–3118. 10.1021/ja00817a016. DOI

Bad’ura Z.; Naldoni A.; Qin S.; Bakandritsos A.; Kment Š.; Schmuki P.; Zoppellaro G. Light-Induced Migration of Spin Defects in TiO PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...