Metastable Ni(I)-TiO2-x Photocatalysts: Self-Amplifying H2 Evolution from Plain Water without Noble Metal Co-Catalyst and Sacrificial Agent
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37984877
PubMed Central
PMC10704555
DOI
10.1021/jacs.3c08199
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Decoration of semiconductor photocatalysts with cocatalysts is generally done by a step-by-step assembly process. Here, we describe the self-assembling and self-activating nature of a photocatalytic system that forms under illumination of reduced anatase TiO2 nanoparticles in an aqueous Ni2+ solution. UV illumination creates in situ a Ni+/TiO2/Ti3+ photocatalyst that self-activates and, over time, produces H2 at a higher rate. In situ X-ray absorption spectroscopy and electron paramagnetic resonance spectroscopy show that key to self-assembly and self-activation is the light-induced formation of defects in the semiconductor, which enables the formation of monovalent nickel (Ni+) surface states. Metallic nickel states, i.e., Ni0, do not form under the dark (resting state) or under illumination (active state). Once the catalyst is assembled, the Ni+ surface states act as electron relay for electron transfer to form H2 from water, in the absence of sacrificial species or noble metal cocatalysts.
Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 Milan 20133 Italy
Dipartimento di Chimica Università degli Studi di Pavia Viale Taramelli 13 Pavia 27100 Italy
ESRF The European Synchrotron 71 Avenue des Martyrs CS40220 Grenoble Cedex 9 38043 France
Zobrazit více v PubMed
Whitesides G. M.; Grzybowski B. Self-Assembly at All Scales. Science 2002, 295, 2418–2421. 10.1126/science.1070821. PubMed DOI
Eigen M. Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 1971, 58, 465–523. 10.1007/BF00623322. PubMed DOI
Zhang J.; Nosaka Y. Mechanism of the OH Radical Generation in Photocatalysis with TiO DOI
Liu N.; Mohajernia S.; Nguyen N. T.; Hejazi S.; Plass F.; Kahnt A.; Yokosawa T.; Osvet A.; Spiecker E.; Guldi D. M.; et al. Long-Living Holes in Grey Anatase TiO DOI
Nosaka Y.; Nosaka A. Understanding Hydroxyl Radical (•OH) Generation Processes in Photocatalysis. ACS Energy Lett. 2016, 1, 356–359. 10.1021/acsenergylett.6b00174. DOI
Diesen V.; Jonsson M. Formation of H DOI
Ge M.; Cai J.; Iocozzia J.; Cao C.; Huang J.; Zhang X.; Shen J.; Wang S.; Zhang S.; Zhang K.-Q.; et al. A review of TiO DOI
Ni M.; Leung M. K. H.; Leung D. Y. C.; Sumathy K. A review and recent developments in photocatalytic water-splitting using TiO DOI
Nakata K.; Fujishima A. TiO DOI
Osterloh F. E. Inorganic Materials as Catalysts for Photochemical Splitting of Water. Chem. Mater. 2008, 20 (1), 35–54. 10.1021/cm7024203. DOI
Kudo A.; Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278. 10.1039/B800489G. PubMed DOI
Fujishima A.; Zhang X.; Tryk D. A. TiO DOI
Schneider J.; Matsuoka M.; Takeuchi M.; Zhang J.; Horiuchi Y.; Anpo M.; Bahnemann D. W. Understanding TiO PubMed DOI
Chen S.; Takata T.; Domen K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2017, 2, 17050. 10.1038/natrevmats.2017.50. DOI
Yoshida M.; Yamakata A.; Takanabe K.; Kubota J.; Osawa M.; Domen K. ATR-SEIRAS Investigation of the Fermi Level of Pt Cocatalyst on a GaN Photocatalyst for Hydrogen Evolution under Irradiation. J. Am. Chem. Soc. 2009, 131, 13218–13219. 10.1021/ja904991p. PubMed DOI
Maeda K.; Teramura K.; Lu D.; Saito N.; Inoue Y.; Domen K. Noble-Metal/Cr PubMed DOI
Gomes Silva C.; Juárez R.; Marino T.; Molinari R.; García H. Influence of Excitation Wavelength (UV or Visible Light) on the Photocatalytic Activity of Titania Containing Gold Nanoparticles for the Generation of Hydrogen or Oxygen from Water. J. Am. Chem. Soc. 2011, 133, 595–602. 10.1021/ja1086358. PubMed DOI
Chen X.; Shen S.; Guo L.; Mao S. S. Semiconductor-based Photocatalytic Hydrogen Generation. Chem. Rev. 2010, 110, 6503–6570. 10.1021/cr1001645. PubMed DOI
Wang Q.; Domen K. Particulate Photocatalysts for Light-Driven Water Splitting: Mechanisms, Challenges, and Design Strategies. Chem. Rev. 2020, 120, 919–985. 10.1021/acs.chemrev.9b00201. PubMed DOI
Kamat P. V.; Jin S. Semiconductor Photocatalysis: “ DOI
Schneider J.; Bahnemann D. W. Undesired Role of Sacrificial Reagents in Photocatalysis. J. Phys. Chem. Lett. 2013, 4, 3479–3483. 10.1021/jz4018199. DOI
Yuan J.; Wen J.; Zhong Y.; Li X.; Fang Y.; Zhang S.; Liu W. Enhanced photocatalytic H DOI
Zong X.; Han J.; Ma G.; Yan H.; Wu G.; Li C. Photocatalytic H DOI
Sun Z.; Zheng H.; Li J.; Du P. Extraordinarily efficient photocatalytic hydrogen evolution in water using semiconductor nanorods integrated with crystalline Ni DOI
Zong X.; Yan H.; Wu G.; Ma G.; Wen F.; Wang L.; Li C. Enhancement of Photocatalytic H PubMed DOI
Zhang X.; Fu A.; Chen X.; Liu L.; Ren L.; Tong L.; Ye J. Highly efficient Cu induced photocatalysis for visible-light hydrogen evolution. Catal. Today 2019, 335, 166–172. 10.1016/j.cattod.2018.11.002. DOI
Peng Y.; Jiang K.; Hill W.; Lu Z.; Yao H.; Wang H. Large-Scale, Low-Cost, and High-Efficiency Water-Splitting System for Clean H PubMed DOI
Spanu D.; Recchia S.; Mohajernia S.; Tomanec O.; Kment Š.; Zboril R.; Schmuki P.; Altomare M. Templated Dewetting–Alloying of NiCu Bilayers on TiO DOI
Shahvaranfard F.; Ghigna P.; Minguzzi A.; Wierzbicka E.; Schmuki P.; Altomare M. Dewetting of PtCu Nanoalloys on TiO PubMed DOI
Pinna M.; Wei A. W. W.; Spanu D.; Will J.; Yokosawa T.; Spiecker E.; Recchia S.; Schmuki P.; Altomare M. Amorphous NiCu Thin Films Sputtered on TiO DOI
Chen W.-T.; Chan A.; Sun-Waterhouse D.; Llorca J.; Idriss H.; Waterhouse G. I. N. Performance comparison of Ni/TiO DOI
Melián E. P.; Suárez M. N.; Jardiel T.; Rodríguez J. M. D.; Caballero A. C.; Araña J.; Calatayud D. G.; Díaz O. G. Influence of nickel in the hydrogen production activity of TiO DOI
Xu Y.; Xu R. Nickel-based cocatalysts for photocatalytic hydrogen production. Appl. Surf. Sci. 2015, 351, 779–793. 10.1016/j.apsusc.2015.05.171. DOI
Chen W.-T.; Chan A.; Sun-Waterhouse D.; Moriga T.; Idriss H.; Waterhouse G. I. N. Ni/TiO DOI
Wang J.; Mao S.; Liu Z.; Wei Z.; Wang H.; Chen Y.; Wang Y. Dominating Role of Ni PubMed DOI
Townsend T. K.; Browning N. D.; Osterloh F. E. Overall photocatalytic water splitting with NiO DOI
Wang W.; Liu S.; Nie L.; Cheng B.; Yu J. Enhanced photocatalytic H PubMed DOI
Forouzan F.; Richards T. C.; Bard A. J. Photoinduced Reaction at TiO DOI
Spanu D.; Minguzzi A.; Recchia S.; Shahvardanfard F.; Tomanec O.; Zboril R.; Schmuki P.; Ghigna P.; Altomare M. An Operando X-ray Absorption Spectroscopy Study of a NiCu–TiO DOI
Han K.; Kreuger T.; Mei B.; Mul G. Transient Behavior of Ni@NiO PubMed DOI PMC
Nosaka Y.; Nosaka A. Y. Generation and Detection of Reactive Oxygen Species in Photocatalysis. Chem. Rev. 2017, 117, 11302–11336. 10.1021/acs.chemrev.7b00161. PubMed DOI
Kiwi J.; Graetzel M. Optimization of conditions for photochemical water cleavage. Aqueous platinum/TiO DOI
Kiwi J.; Graetzel M. Specific analysis of surface-bound peroxides formed during photoinduced water cleavage in titanium dioxide-based microheterogeneous systems. J. Mol. Catal. 1987, 39, 63–70. 10.1016/0304-5102(87)80047-0. DOI
Munuera G.; Espinós J. P.; Fernández A.; Malet P.; González-Elipe A. R. TiO DOI
Siahrostami S.; Li G.-L.; Viswanathan V.; Nørskov J. K. One- or Two-Electron Water Oxidation, Hydroxyl Radical, or H PubMed DOI
Liu N.; Zhou X.; Nguyen N. T.; Peters K.; Zoller F.; Hwang I.; Schneider C.; Miehlich M. E.; Freitag D.; Meyer K.; et al. Black Magic in Gray Titania: Noble-Metal-Free Photocatalytic H PubMed DOI
Qin S.; Badura Z.; Denisov N.; Tomanec O.; Mohajernia S.; Liu N.; Kment S.; Zoppellaro G.; Schmuki P. Self-assembly of a Ni(I)-photocatalyst for plain water splitting without sacrificial agents. Electrochem. Commun. 2021, 122, 106909. 10.1016/j.elecom.2020.106909. DOI
Chen X.; Liu L.; Yu P. Y.; Mao S. S. Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals. Science 2011, 331, 746–750. 10.1126/science.1200448. PubMed DOI
Chen X.; Liu L.; Huang F. Black titanium dioxide (TiO PubMed DOI
Liu N.; Schneider C.; Freitag D.; Hartmann M.; Venkatesan U.; Müller J.; Spiecker E.; Schmuki P. Black TiO PubMed DOI
Naldoni A.; Altomare M.; Zoppellaro G.; Liu N.; Kment Š; Zbořil R.; Schmuki P. Photocatalysis with Reduced TiO PubMed DOI PMC
Wierzbicka E.; Altomare M.; Wu M.; Liu N.; Yokosawa T.; Fehn D.; Qin S.; Meyer K.; Unruh T.; Spiecker E.; et al. Reduced grey brookite for noble metal free photocatalytic H DOI
Will J.; Wierzbicka E.; Wu M.; Götz K.; Yokosawa T.; Liu N.; Tesler A. B.; Stiller M.; Unruh T.; Altomare M.; et al. Hydrogenated anatase TiO DOI
Qin S.; Kim H.; Denisov N.; Fehn D.; Schmidt J.; Meyer K.; Schmuki P. Grey facet-controlled anatase nanosheets for photocatalytic H DOI
Liu N.; Schneider C.; Freitag D.; Venkatesan U.; Marthala V. R. R.; Hartmann M.; Winter B.; Spiecker E.; Osvet A.; Zolnhofer E. M.; et al. Hydrogenated Anatase: Strong Photocatalytic Dihydrogen Evolution without the Use of a Co-Catalyst. Angew. Chem., Int. Ed. 2014, 53, 14201–14205. 10.1002/anie.201408493. PubMed DOI
Mohajernia S.; Andryskova P.; Zoppellaro G.; Hejazi S.; Kment S.; Zboril R.; Schmidt J.; Schmuki P. Influence of Ti DOI
Qin S.; Denisov N.; Zhou X.; Zdražil L.; Fehn D.; Hwang I.; Bruns M.; Kim H.; Meyer K.; Schmuki P. Critical factors for photoelectrochemical and photocatalytic H DOI
Wierzbicka E.; Zhou X.; Denisov N.; Yoo J.; Fehn D.; Liu N.; Meyer K.; Schmuki P. Self-Enhancing H PubMed DOI
Lo W. J.; Chung Y. W.; Somorjai G. A. Electron spectroscopy studies of the chemisorption of O DOI
Millet M.-M.; Algara-Siller G.; Wrabetz S.; Mazheika A.; Girgsdies F.; Teschner D.; Seitz F.; Tarasov A.; Levchenko S. V.; Schlögl R.; et al. Ni Single Atom Catalysts for CO PubMed DOI PMC
Wang A.; Li J.; Zhang T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81. 10.1038/s41570-018-0010-1. DOI
Gao C.; Low J.; Long R.; Kong T.; Zhu J.; Xiong Y. Heterogeneous Single-Atom Photocatalysts: Fundamentals and Applications. Chem. Rev. 2020, 120, 12175–12216. 10.1021/acs.chemrev.9b00840. PubMed DOI
Moulder J. F.; Stickle W. F.; Sobol P. E.; Bomben K. D.. Handbook of X-ray Photoelectron Spectroscopy; Perkin Elmer Corp.,: Eden Prairie/USA, 1992.
Grosvenor A. P.; Biesinger M. C.; Smart R. S. C.; McIntyre N. S. New interpretations of XPS spectra of nickel metal and oxides. Surf. Sci. 2006, 600, 1771–1779. 10.1016/j.susc.2006.01.041. DOI
Biesinger M. C.; Payne B. P.; Lau L. W. M.; Gerson A.; Smart R. S. C. X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems. Surf. Interface Anal. 2009, 41, 324–332. 10.1002/sia.3026. DOI
Dubey P.; Kaurav N.; Devan R. S.; Okram G. S.; Kuo Y. K. The effect of stoichiometry on the structural, thermal and electronic properties of thermally decomposed nickel oxide. RSC Adv. 2018, 8, 5882–5890. 10.1039/C8RA00157J. PubMed DOI PMC
Nesbitt H. W.; Legrand D.; Bancroft G. M. Interpretation of Ni2p XPS spectra of Ni conductors and Ni insulators. Phys. Chem. Miner. 2000, 27, 357–366. 10.1007/s002690050265. DOI
Abba F.; De Santis G.; Fabbrizzi L.; Licchelli M.; Manotti Lanfredi A. M.; Pallavicini P.; Poggi A.; Ugozzoli F. Nickel(II) Complexes of Azacyclams: Oxidation and Reduction Behavior and Catalytic Effects in the Electroreduction of Carbon Dioxide. Inorg. Chem. 1994, 33, 1366–1375. 10.1021/ic00085a026. DOI
Di Casa M.; Fabbrizzi L.; Licchelli M.; Poggi A.; Sacchi D.; Zema M. A novel fluorescence redox switch based on the formal Ni DOI
Lovecchio F. V.; Gore E. S.; Busch D. H. Oxidation and reduction behavior of macrocyclic complexes of nickel. Electrochemical and electron spin resonance studies. J. Am. Chem. Soc. 1974, 96, 3109–3118. 10.1021/ja00817a016. DOI
Bad’ura Z.; Naldoni A.; Qin S.; Bakandritsos A.; Kment Š.; Schmuki P.; Zoppellaro G. Light-Induced Migration of Spin Defects in TiO PubMed DOI
Single Atom Cocatalysts in Photocatalysis