Metastable Ni(I)-TiO2-x Photocatalysts: Self-Amplifying H2 Evolution from Plain Water without Noble Metal Co-Catalyst and Sacrificial Agent
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37984877
PubMed Central
PMC10704555
DOI
10.1021/jacs.3c08199
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Decoration of semiconductor photocatalysts with cocatalysts is generally done by a step-by-step assembly process. Here, we describe the self-assembling and self-activating nature of a photocatalytic system that forms under illumination of reduced anatase TiO2 nanoparticles in an aqueous Ni2+ solution. UV illumination creates in situ a Ni+/TiO2/Ti3+ photocatalyst that self-activates and, over time, produces H2 at a higher rate. In situ X-ray absorption spectroscopy and electron paramagnetic resonance spectroscopy show that key to self-assembly and self-activation is the light-induced formation of defects in the semiconductor, which enables the formation of monovalent nickel (Ni+) surface states. Metallic nickel states, i.e., Ni0, do not form under the dark (resting state) or under illumination (active state). Once the catalyst is assembled, the Ni+ surface states act as electron relay for electron transfer to form H2 from water, in the absence of sacrificial species or noble metal cocatalysts.
Dipartimento di Chimica Università degli Studi di Milano Via Golgi 19 Milan 20133 Italy
Dipartimento di Chimica Università degli Studi di Pavia Viale Taramelli 13 Pavia 27100 Italy
ESRF The European Synchrotron 71 Avenue des Martyrs CS40220 Grenoble Cedex 9 38043 France
Zobrazit více v PubMed
Whitesides G. M.; Grzybowski B. Self-Assembly at All Scales. Science 2002, 295, 2418–2421. 10.1126/science.1070821. PubMed DOI
Eigen M. Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 1971, 58, 465–523. 10.1007/BF00623322. PubMed DOI
Zhang J.; Nosaka Y. Mechanism of the OH Radical Generation in Photocatalysis with TiO2 of Different Crystalline Types. J. Phys. Chem. C 2014, 118, 10824–10832. 10.1021/jp501214m. DOI
Liu N.; Mohajernia S.; Nguyen N. T.; Hejazi S.; Plass F.; Kahnt A.; Yokosawa T.; Osvet A.; Spiecker E.; Guldi D. M.; et al. Long-Living Holes in Grey Anatase TiO2 Enable Noble-Metal-Free and Sacrificial-Agent-Free Water Splitting. ChemSusChem 2020, 13, 4937–4944. 10.1002/cssc.202001045. DOI
Nosaka Y.; Nosaka A. Understanding Hydroxyl Radical (•OH) Generation Processes in Photocatalysis. ACS Energy Lett. 2016, 1, 356–359. 10.1021/acsenergylett.6b00174. DOI
Diesen V.; Jonsson M. Formation of H2O2 in TiO2 Photocatalysis of Oxygenated and Deoxygenated Aqueous Systems: A Probe for Photocatalytically Produced Hydroxyl Radicals. J. Phys. Chem. C 2014, 118, 10083–10087. 10.1021/jp500315u. DOI
Ge M.; Cai J.; Iocozzia J.; Cao C.; Huang J.; Zhang X.; Shen J.; Wang S.; Zhang S.; Zhang K.-Q.; et al. A review of TiO2 nanostructured catalysts for sustainable H2 generation. Int. J. Hydrogen Energy 2017, 42, 8418–8449. 10.1016/j.ijhydene.2016.12.052. DOI
Ni M.; Leung M. K. H.; Leung D. Y. C.; Sumathy K. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable and Sustainable Energy Rev. 2007, 11, 401–425. 10.1016/j.rser.2005.01.009. DOI
Nakata K.; Fujishima A. TiO2 photocatalysis: Design and applications. J. Photochem. Photobiol., C 2012, 13, 169–189. 10.1016/j.jphotochemrev.2012.06.001. DOI
Osterloh F. E. Inorganic Materials as Catalysts for Photochemical Splitting of Water. Chem. Mater. 2008, 20 (1), 35–54. 10.1021/cm7024203. DOI
Kudo A.; Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278. 10.1039/B800489G. PubMed DOI
Fujishima A.; Zhang X.; Tryk D. A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 2008, 63, 515–582. 10.1016/j.surfrep.2008.10.001. DOI
Schneider J.; Matsuoka M.; Takeuchi M.; Zhang J.; Horiuchi Y.; Anpo M.; Bahnemann D. W. Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chem. Rev. 2014, 114, 9919–9986. 10.1021/cr5001892. PubMed DOI
Chen S.; Takata T.; Domen K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2017, 2, 17050.10.1038/natrevmats.2017.50. DOI
Yoshida M.; Yamakata A.; Takanabe K.; Kubota J.; Osawa M.; Domen K. ATR-SEIRAS Investigation of the Fermi Level of Pt Cocatalyst on a GaN Photocatalyst for Hydrogen Evolution under Irradiation. J. Am. Chem. Soc. 2009, 131, 13218–13219. 10.1021/ja904991p. PubMed DOI
Maeda K.; Teramura K.; Lu D.; Saito N.; Inoue Y.; Domen K. Noble-Metal/Cr2O3 Core/Shell Nanoparticles as a Cocatalyst for Photocatalytic Overall Water Splitting. Angew. Chem., Int. Ed. 2006, 45, 7806–7809. 10.1002/anie.200602473. PubMed DOI
Gomes Silva C.; Juárez R.; Marino T.; Molinari R.; García H. Influence of Excitation Wavelength (UV or Visible Light) on the Photocatalytic Activity of Titania Containing Gold Nanoparticles for the Generation of Hydrogen or Oxygen from Water. J. Am. Chem. Soc. 2011, 133, 595–602. 10.1021/ja1086358. PubMed DOI
Chen X.; Shen S.; Guo L.; Mao S. S. Semiconductor-based Photocatalytic Hydrogen Generation. Chem. Rev. 2010, 110, 6503–6570. 10.1021/cr1001645. PubMed DOI
Wang Q.; Domen K. Particulate Photocatalysts for Light-Driven Water Splitting: Mechanisms, Challenges, and Design Strategies. Chem. Rev. 2020, 120, 919–985. 10.1021/acs.chemrev.9b00201. PubMed DOI
Kamat P. V.; Jin S. Semiconductor Photocatalysis: “Tell Us the Complete Story!”. ACS Energy Lett. 2018, 3, 622–623. 10.1021/acsenergylett.8b00196. DOI
Schneider J.; Bahnemann D. W. Undesired Role of Sacrificial Reagents in Photocatalysis. J. Phys. Chem. Lett. 2013, 4, 3479–3483. 10.1021/jz4018199. DOI
Yuan J.; Wen J.; Zhong Y.; Li X.; Fang Y.; Zhang S.; Liu W. Enhanced photocatalytic H2 evolution over noble-metal-free NiS cocatalyst modified CdS nanorods/g-C3N4 heterojunctions. J. Mater. Chem. A 2015, 3, 18244–18255. 10.1039/C5TA04573H. DOI
Zong X.; Han J.; Ma G.; Yan H.; Wu G.; Li C. Photocatalytic H2 Evolution on CdS Loaded with WS2 as Cocatalyst under Visible Light Irradiation. J. Phys. Chem. C 2011, 115, 12202–12208. 10.1021/jp2006777. DOI
Sun Z.; Zheng H.; Li J.; Du P. Extraordinarily efficient photocatalytic hydrogen evolution in water using semiconductor nanorods integrated with crystalline Ni2P cocatalysts. Energy Environ. Sci. 2015, 8, 2668–2676. 10.1039/C5EE01310K. DOI
Zong X.; Yan H.; Wu G.; Ma G.; Wen F.; Wang L.; Li C. Enhancement of Photocatalytic H2 Evolution on CdS by Loading MoS2 as Cocatalyst under Visible Light Irradiation. J. Am. Chem. Soc. 2008, 130, 7176–7177. 10.1021/ja8007825. PubMed DOI
Zhang X.; Fu A.; Chen X.; Liu L.; Ren L.; Tong L.; Ye J. Highly efficient Cu induced photocatalysis for visible-light hydrogen evolution. Catal. Today 2019, 335, 166–172. 10.1016/j.cattod.2018.11.002. DOI
Peng Y.; Jiang K.; Hill W.; Lu Z.; Yao H.; Wang H. Large-Scale, Low-Cost, and High-Efficiency Water-Splitting System for Clean H2 Generation. ACS Appl. Mater. Interfaces 2019, 11, 3971–3977. 10.1021/acsami.8b19251. PubMed DOI
Spanu D.; Recchia S.; Mohajernia S.; Tomanec O.; Kment Š.; Zboril R.; Schmuki P.; Altomare M. Templated Dewetting–Alloying of NiCu Bilayers on TiO2 Nanotubes Enables Efficient Noble-Metal-Free Photocatalytic H2 Evolution. ACS Catal. 2018, 8, 5298–5305. 10.1021/acscatal.8b01190. DOI
Shahvaranfard F.; Ghigna P.; Minguzzi A.; Wierzbicka E.; Schmuki P.; Altomare M. Dewetting of PtCu Nanoalloys on TiO2 Nanocavities Provides a Synergistic Photocatalytic Enhancement for Efficient H2 Evolution. ACS Appl. Mater. Interfaces 2020, 12, 38211–38221. 10.1021/acsami.0c10968. PubMed DOI
Pinna M.; Wei A. W. W.; Spanu D.; Will J.; Yokosawa T.; Spiecker E.; Recchia S.; Schmuki P.; Altomare M. Amorphous NiCu Thin Films Sputtered on TiO2 Nanotube Arrays: A Noble-Metal Free Photocatalyst for Hydrogen Evolution. ChemCatChem 2022, 14, e20220105210.1002/cctc.202201052. DOI
Chen W.-T.; Chan A.; Sun-Waterhouse D.; Llorca J.; Idriss H.; Waterhouse G. I. N. Performance comparison of Ni/TiO2 and Au/TiO2 photocatalysts for H2 production in different alcohol-water mixtures. J. Catal. 2018, 367, 27–42. 10.1016/j.jcat.2018.08.015. DOI
Melián E. P.; Suárez M. N.; Jardiel T.; Rodríguez J. M. D.; Caballero A. C.; Araña J.; Calatayud D. G.; Díaz O. G. Influence of nickel in the hydrogen production activity of TiO2. Appl. Catal., B 2014, 152–153, 192–201. 10.1016/j.apcatb.2014.01.039. DOI
Xu Y.; Xu R. Nickel-based cocatalysts for photocatalytic hydrogen production. Appl. Surf. Sci. 2015, 351, 779–793. 10.1016/j.apsusc.2015.05.171. DOI
Chen W.-T.; Chan A.; Sun-Waterhouse D.; Moriga T.; Idriss H.; Waterhouse G. I. N. Ni/TiO2: A promising low-cost photocatalytic system for solar H2 production from ethanol–water mixtures. J. Catal. 2015, 326, 43–53. 10.1016/j.jcat.2015.03.008. DOI
Wang J.; Mao S.; Liu Z.; Wei Z.; Wang H.; Chen Y.; Wang Y. Dominating Role of Ni0 on the Interface of Ni/NiO for Enhanced Hydrogen Evolution Reaction. ACS Appl. Mater. Interfaces 2017, 9, 7139–7147. 10.1021/acsami.6b15377. PubMed DOI
Townsend T. K.; Browning N. D.; Osterloh F. E. Overall photocatalytic water splitting with NiOx–SrTiO3 – a revised mechanism. Energy Environ. Sci. 2012, 5, 9543–9550. 10.1039/c2ee22665k. DOI
Wang W.; Liu S.; Nie L.; Cheng B.; Yu J. Enhanced photocatalytic H2-production activity of TiO2 using Ni(NO3)2 as an additive. Phys. Chem. Chem. Phys. 2013, 15, 12033–12039. 10.1039/C2CP43628K. PubMed DOI
Forouzan F.; Richards T. C.; Bard A. J. Photoinduced Reaction at TiO2 Particles. Photodeposition from NiII Solutions with Oxalate. J. Chem. Phys. 1996, 100, 18123–18127. 10.1021/jp953241f. DOI
Spanu D.; Minguzzi A.; Recchia S.; Shahvardanfard F.; Tomanec O.; Zboril R.; Schmuki P.; Ghigna P.; Altomare M. An Operando X-ray Absorption Spectroscopy Study of a NiCu–TiO2 Photocatalyst for H2 Evolution. ACS Catal. 2020, 10, 8293–8302. 10.1021/acscatal.0c01373. DOI
Han K.; Kreuger T.; Mei B.; Mul G. Transient Behavior of Ni@NiOx Functionalized SrTiO3 in Overall Water Splitting. ACS Catal. 2017, 7, 1610–1614. 10.1021/acscatal.6b03662. PubMed DOI PMC
Nosaka Y.; Nosaka A. Y. Generation and Detection of Reactive Oxygen Species in Photocatalysis. Chem. Rev. 2017, 117, 11302–11336. 10.1021/acs.chemrev.7b00161. PubMed DOI
Kiwi J.; Graetzel M. Optimization of conditions for photochemical water cleavage. Aqueous platinum/TiO2 (anatase) dispersions under ultraviolet light. J. Chem. Phys. 1984, 88, 1302–1307. 10.1021/j150651a012. DOI
Kiwi J.; Graetzel M. Specific analysis of surface-bound peroxides formed during photoinduced water cleavage in titanium dioxide-based microheterogeneous systems. J. Mol. Catal. 1987, 39, 63–70. 10.1016/0304-5102(87)80047-0. DOI
Munuera G.; Espinós J. P.; Fernández A.; Malet P.; González-Elipe A. R. TiO2 corrosion during water photocleavage using Rh/TiO2 suspensions. J. Chem. Soc., Faraday Trans. 1990, 86, 3441–3445. 10.1039/FT9908603441. DOI
Siahrostami S.; Li G.-L.; Viswanathan V.; Nørskov J. K. One- or Two-Electron Water Oxidation, Hydroxyl Radical, or H2O2 Evolution. J. Phys. Chem. Lett. 2017, 8, 1157–1160. 10.1021/acs.jpclett.6b02924. PubMed DOI
Liu N.; Zhou X.; Nguyen N. T.; Peters K.; Zoller F.; Hwang I.; Schneider C.; Miehlich M. E.; Freitag D.; Meyer K.; et al. Black Magic in Gray Titania: Noble-Metal-Free Photocatalytic H2 Evolution from Hydrogenated Anatase. ChemSusChem 2017, 10, 62–67. 10.1002/cssc.201601264. PubMed DOI
Qin S.; Badura Z.; Denisov N.; Tomanec O.; Mohajernia S.; Liu N.; Kment S.; Zoppellaro G.; Schmuki P. Self-assembly of a Ni(I)-photocatalyst for plain water splitting without sacrificial agents. Electrochem. Commun. 2021, 122, 106909.10.1016/j.elecom.2020.106909. DOI
Chen X.; Liu L.; Yu P. Y.; Mao S. S. Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals. Science 2011, 331, 746–750. 10.1126/science.1200448. PubMed DOI
Chen X.; Liu L.; Huang F. Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 2015, 44, 1861–1885. 10.1039/C4CS00330F. PubMed DOI
Liu N.; Schneider C.; Freitag D.; Hartmann M.; Venkatesan U.; Müller J.; Spiecker E.; Schmuki P. Black TiO2 Nanotubes: Cocatalyst-Free Open-Circuit Hydrogen Generation. Nano Lett. 2014, 14, 3309–3313. 10.1021/nl500710j. PubMed DOI
Naldoni A.; Altomare M.; Zoppellaro G.; Liu N.; Kment Š; Zbořil R.; Schmuki P. Photocatalysis with Reduced TiO2: From Black TiO2 to Cocatalyst-Free Hydrogen Production. ACS Catal. 2019, 9, 345–364. 10.1021/acscatal.8b04068. PubMed DOI PMC
Wierzbicka E.; Altomare M.; Wu M.; Liu N.; Yokosawa T.; Fehn D.; Qin S.; Meyer K.; Unruh T.; Spiecker E.; et al. Reduced grey brookite for noble metal free photocatalytic H2 evolution. J. Mater. Chem. A 2021, 9, 1168–1179. 10.1039/D0TA09066B. DOI
Will J.; Wierzbicka E.; Wu M.; Götz K.; Yokosawa T.; Liu N.; Tesler A. B.; Stiller M.; Unruh T.; Altomare M.; et al. Hydrogenated anatase TiO2 single crystals: Defects formation and structural changes as microscopic origin of co-catalyst free photocatalytic H2 evolution activity. J. Mater. Chem. A 2021, 9, 24932–24942. 10.1039/D1TA04809K. DOI
Qin S.; Kim H.; Denisov N.; Fehn D.; Schmidt J.; Meyer K.; Schmuki P. Grey facet-controlled anatase nanosheets for photocatalytic H2 evolution without co-catalyst. J. Phys.: Energy 2021, 3, 034003.10.1088/2515-7655/abd5a8. DOI
Liu N.; Schneider C.; Freitag D.; Venkatesan U.; Marthala V. R. R.; Hartmann M.; Winter B.; Spiecker E.; Osvet A.; Zolnhofer E. M.; et al. Hydrogenated Anatase: Strong Photocatalytic Dihydrogen Evolution without the Use of a Co-Catalyst. Angew. Chem., Int. Ed. 2014, 53, 14201–14205. 10.1002/anie.201408493. PubMed DOI
Mohajernia S.; Andryskova P.; Zoppellaro G.; Hejazi S.; Kment S.; Zboril R.; Schmidt J.; Schmuki P. Influence of Ti3+ defect-type on heterogeneous photocatalytic H2 evolution activity of TiO2. J. Mater. Chem. A 2020, 8, 1432–1442. 10.1039/C9TA10855F. DOI
Qin S.; Denisov N.; Zhou X.; Zdražil L.; Fehn D.; Hwang I.; Bruns M.; Kim H.; Meyer K.; Schmuki P. Critical factors for photoelectrochemical and photocatalytic H2 evolution from gray anatase (001) nanosheets. J. Phys.: Energy 2022, 4, 044004.10.1088/2515-7655/ac8ed3. DOI
Wierzbicka E.; Zhou X.; Denisov N.; Yoo J.; Fehn D.; Liu N.; Meyer K.; Schmuki P. Self-Enhancing H2 Evolution from TiO2 Nanostructures under Illumination. ChemSusChem 2019, 12, 1900–1905. 10.1002/cssc.201900192. PubMed DOI
Lo W. J.; Chung Y. W.; Somorjai G. A. Electron spectroscopy studies of the chemisorption of O2, H2 and H2O on the TiO2(100) surfaces with varied stoichiometry: Evidence for the photogeneration of Ti+3 and for its importance in chemisorption. Surf. Sci. 1978, 71, 199–219. 10.1016/0039-6028(78)90328-X. DOI
Millet M.-M.; Algara-Siller G.; Wrabetz S.; Mazheika A.; Girgsdies F.; Teschner D.; Seitz F.; Tarasov A.; Levchenko S. V.; Schlögl R.; et al. Ni Single Atom Catalysts for CO2 Activation. J. Am. Chem. Soc. 2019, 141, 2451–2461. 10.1021/jacs.8b11729. PubMed DOI PMC
Wang A.; Li J.; Zhang T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81. 10.1038/s41570-018-0010-1. DOI
Gao C.; Low J.; Long R.; Kong T.; Zhu J.; Xiong Y. Heterogeneous Single-Atom Photocatalysts: Fundamentals and Applications. Chem. Rev. 2020, 120, 12175–12216. 10.1021/acs.chemrev.9b00840. PubMed DOI
Moulder J. F.; Stickle W. F.; Sobol P. E.; Bomben K. D.. Handbook of X-ray Photoelectron Spectroscopy; Perkin Elmer Corp.,: Eden Prairie/USA, 1992.
Grosvenor A. P.; Biesinger M. C.; Smart R. S. C.; McIntyre N. S. New interpretations of XPS spectra of nickel metal and oxides. Surf. Sci. 2006, 600, 1771–1779. 10.1016/j.susc.2006.01.041. DOI
Biesinger M. C.; Payne B. P.; Lau L. W. M.; Gerson A.; Smart R. S. C. X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems. Surf. Interface Anal. 2009, 41, 324–332. 10.1002/sia.3026. DOI
Dubey P.; Kaurav N.; Devan R. S.; Okram G. S.; Kuo Y. K. The effect of stoichiometry on the structural, thermal and electronic properties of thermally decomposed nickel oxide. RSC Adv. 2018, 8, 5882–5890. 10.1039/C8RA00157J. PubMed DOI PMC
Nesbitt H. W.; Legrand D.; Bancroft G. M. Interpretation of Ni2p XPS spectra of Ni conductors and Ni insulators. Phys. Chem. Miner. 2000, 27, 357–366. 10.1007/s002690050265. DOI
Abba F.; De Santis G.; Fabbrizzi L.; Licchelli M.; Manotti Lanfredi A. M.; Pallavicini P.; Poggi A.; Ugozzoli F. Nickel(II) Complexes of Azacyclams: Oxidation and Reduction Behavior and Catalytic Effects in the Electroreduction of Carbon Dioxide. Inorg. Chem. 1994, 33, 1366–1375. 10.1021/ic00085a026. DOI
Di Casa M.; Fabbrizzi L.; Licchelli M.; Poggi A.; Sacchi D.; Zema M. A novel fluorescence redox switch based on the formal NiII/NiI couple. J. Chem. Soc., Dalton Trans. 2001, 1671–1675. 10.1039/b101310f. DOI
Lovecchio F. V.; Gore E. S.; Busch D. H. Oxidation and reduction behavior of macrocyclic complexes of nickel. Electrochemical and electron spin resonance studies. J. Am. Chem. Soc. 1974, 96, 3109–3118. 10.1021/ja00817a016. DOI
Bad’ura Z.; Naldoni A.; Qin S.; Bakandritsos A.; Kment Š.; Schmuki P.; Zoppellaro G. Light-Induced Migration of Spin Defects in TiO2 Nanosystems and their Contribution to the H2 Evolution Catalysis from Water. ChemSusChem 2021, 14, 4408–4414. 10.1002/cssc.202101218. PubMed DOI
Single Atom Cocatalysts in Photocatalysis