Enhanced Photocatalytic Paracetamol Degradation by NiCu-Modified TiO2 Nanotubes: Mechanistic Insights and Performance Evaluation

. 2024 Sep 29 ; 14 (19) : . [epub] 20240929

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39404304

Grantová podpora
ECCM.TT.ECCM.005 Nederlandse Organisatie voor Wetenschappelijk Onderzoek, (NWO)
DFG-grant AL2479/1-1 German Research Foundation (DFG)
ETI2018/2_Tech_11 FAU Friedrich-Alexander University
PHOTONS University of Insubria

Anodic TiO2 nanotube arrays decorated with Ni, Cu, and NiCu alloy thin films were investigated for the first time for the photocatalytic degradation of paracetamol in water solution under UV irradiation. Metallic co-catalysts were deposited on TiO2 nanotubes using magnetron sputtering. The influence of the metal layer composition and thickness on the photocatalytic activity was systematically studied. Photocatalytic experiments showed that only Cu-rich co-catalysts provide enhanced paracetamol degradation rates, whereas Ni-modified photocatalysts exhibit no improvement compared with unmodified TiO2. The best-performing material was obtained by sputtering a 20 nm thick film of 1:1 atomic ratio NiCu alloy: this material exhibits a reaction rate more than doubled compared with pristine TiO2, enabling the complete degradation of 10 mg L-1 of paracetamol in 8 h. The superior performance of NiCu-modified systems over pure Cu-based ones is ascribed to a Ni and Cu synergistic effect. Kinetic tests using selective holes and radical scavengers unveiled, unlike prior findings in the literature, that paracetamol undergoes direct oxidation at the photocatalyst surface via valence band holes. Finally, Chemical Oxygen Demand (COD) tests and High-Resolution Mass Spectrometry (HR-MS) analysis were conducted to assess the degree of mineralization and identify intermediates. In contrast with the existing literature, we demonstrated that the mechanistic pathway involves direct oxidation by valence band holes.

Zobrazit více v PubMed

Liyanage C., Yamada K. Impact of Population Growth on the Water Quality of Natural Water Bodies. Sustainability. 2017;9:1405. doi: 10.3390/su9081405. DOI

Morin-Crini N., Lichtfouse E., Fourmentin M., Ribeiro A.R.L., Noutsopoulos C., Mapelli F., Fenyvesi É., Vieira M.G.A., Picos-Corrales L.A., Moreno-Piraján J.C., et al. Removal of Emerging Contaminants from Wastewater Using Advanced Treatments. A Review. Environ. Chem. Lett. 2022;20:1333–1375. doi: 10.1007/s10311-021-01379-5. DOI

Kumar M., Sridharan S., Sawarkar A.D., Shakeel A., Anerao P., Mannina G., Sharma P., Pandey A. Current Research Trends on Emerging Contaminants Pharmaceutical and Personal Care Products (PPCPs): A Comprehensive Review. Sci. Total Environ. 2023;859:160031. doi: 10.1016/j.scitotenv.2022.160031. PubMed DOI

Cizmas L., Sharma V.K., Gray C.M., McDonald T.J. Pharmaceuticals and Personal Care Products in Waters: Occurrence, Toxicity, and Risk. Environ. Chem. Lett. 2015;13:381–394. doi: 10.1007/s10311-015-0524-4. PubMed DOI PMC

Canna-Michaelidou S., Nicolaou A.-S. Evaluation of the Genotoxicity Potential (by MutatoxTM Test) of Ten Pesticides Found as Water Pollutants in Cyprus. Sci. Total Environ. 1996;193:27–35. doi: 10.1016/S0048-9697(96)05322-3. PubMed DOI

Bayabil H.K., Teshome F.T., Li Y.C. Emerging Contaminants in Soil and Water. Front. Environ. Sci. 2022;10:873499. doi: 10.3389/fenvs.2022.873499. DOI

Mishra R.K., Mentha S.S., Misra Y., Dwivedi N. Emerging Pollutants of Severe Environmental Concern in Water and Wastewater: A Comprehensive Review on Current Developments and Future Research. Water-Energy Nexus. 2023;6:74–95. doi: 10.1016/j.wen.2023.08.002. DOI

Krishnakumar S., Singh D.S.H., Godson P.S., Thanga S.G. Emerging Pollutants: Impact on Environment, Management, and Challenges. Environ. Sci. Pollut. Res. 2022;29:72309–72311. doi: 10.1007/s11356-022-22859-3. PubMed DOI

Rodriguez-Narvaez O.M., Peralta-Hernandez J.M., Goonetilleke A., Bandala E.R. Treatment Technologies for Emerging Contaminants in Water: A Review. Chem. Eng. J. 2017;323:361–380. doi: 10.1016/j.cej.2017.04.106. DOI

Lozano-Morales S.A., Morales G., López Zavala M.Á., Arce-Sarria A., Machuca-Martínez F. Photocatalytic Treatment of Paracetamol Using TiO2 Nanotubes: Effect of PH. Processes. 2019;7:319. doi: 10.3390/pr7060319. DOI

Vaiano V., Sacco O., Matarangolo M. Photocatalytic Degradation of Paracetamol under UV Irradiation Using TiO2-Graphite Composites. Catal. Today. 2018;315:230–236. doi: 10.1016/j.cattod.2018.02.002. DOI

Vieira Y., Spode J.E., Dotto G.L., Georgin J., Franco D.S.P., dos Reis G.S., Lima E.C. Paracetamol Environmental Remediation and Ecotoxicology: A Review. Environ. Chem. Lett. 2024;22:2343–2373. doi: 10.1007/s10311-024-01751-1. DOI

Lee D.-E., Kim M.-K., Danish M., Jo W.-K. State-of-the-Art Review on Photocatalysis for Efficient Wastewater Treatment: Attractive Approach in Photocatalyst Design and Parameters Affecting the Photocatalytic Degradation. Catal. Commun. 2023;183:106764. doi: 10.1016/j.catcom.2023.106764. DOI

Ahmad K., Ghatak H.R., Ahuja S.M. A Review on Photocatalytic Remediation of Environmental Pollutants and H2 Production through Water Splitting: A Sustainable Approach. Environ. Technol. Innov. 2020;19:100893. doi: 10.1016/j.eti.2020.100893. DOI

Garrido I., Flores P., Hellín P., Vela N., Navarro S., Fenoll J. Solar Reclamation of Agro-Wastewater Polluted with Eight Pesticides by Heterogeneous Photocatalysis Using a Modular Facility. A Case Study. Chemosphere. 2020;249:126156. doi: 10.1016/j.chemosphere.2020.126156. PubMed DOI

AlSalhi M.S., Devanesan S., Asemi N.N., Aldawsari M. Construction of SnO2/CuO/RGO Nanocomposites for Photocatalytic Degradation of Organic Pollutants and Antibacterial Applications. Environ. Res. 2023;222:115370. doi: 10.1016/j.envres.2023.115370. PubMed DOI

Verma M., Haritash A.K. Photocatalytic Degradation of Amoxicillin in Pharmaceutical Wastewater: A Potential Tool to Manage Residual Antibiotics. Environ. Technol. Innov. 2020;20:101072. doi: 10.1016/j.eti.2020.101072. DOI

Paździor K., Bilińska L., Ledakowicz S. A Review of the Existing and Emerging Technologies in the Combination of AOPs and Biological Processes in Industrial Textile Wastewater Treatment. Chem. Eng. J. 2019;376:120597. doi: 10.1016/j.cej.2018.12.057. DOI

Moctezuma E., Leyva E., Aguilar C.A., Luna R.A., Montalvo C. Photocatalytic Degradation of Paracetamol: Intermediates and Total Reaction Mechanism. J. Hazard. Mater. 2012;243:130–138. doi: 10.1016/j.jhazmat.2012.10.010. PubMed DOI

Liu H., Wang C., Wang G. Photocatalytic Advanced Oxidation Processes for Water Treatment: Recent Advances and Perspective. Chem. Asian J. 2020;15:3239–3253. doi: 10.1002/asia.202000895. PubMed DOI

Nidheesh P.V., Trellu C., Vargas H.O., Mousset E., Ganiyu S.O., Oturan M.A. Electro-Fenton Process in Combination with Other Advanced Oxidation Processes: Challenges and Opportunities. Curr. Opin. Electrochem. 2023;37:101171. doi: 10.1016/j.coelec.2022.101171. DOI

Yacouba Z.A., Mendret J., Lesage G., Zaviska F., Brosillon S. Removal of Organic Micropollutants from Domestic Wastewater: The Effect of Ozone-Based Advanced Oxidation Process on Nanofiltration. J. Water Process Eng. 2021;39:101869. doi: 10.1016/j.jwpe.2020.101869. DOI

Wang B., Wang Y. A Comprehensive Review on Persulfate Activation Treatment of Wastewater. Sci. Total Environ. 2022;831:154906. doi: 10.1016/j.scitotenv.2022.154906. PubMed DOI

Guo Q., Zhou C., Ma Z., Yang X. Fundamentals of TiO2 Photocatalysis: Concepts, Mechanisms, and Challenges. Adv. Mater. 2019;31:e1901997. doi: 10.1002/adma.201901997. PubMed DOI

Roy P., Berger S., Schmuki P. TiO2 Nanotubes: Synthesis and Applications. Angew. Chem.-Int. Ed. 2011;50:2904–2939. doi: 10.1002/anie.201001374. PubMed DOI

Ji L., Spanu D., Denisov N., Recchia S., Schmuki P., Altomare M. A Dewetted-Dealloyed Nanoporous Pt Co-Catalyst Formed on TiO 2 Nanotube Arrays Leads to Strongly Enhanced Photocatalytic H 2 Production. Chem. Asian J. 2020;15:301–309. doi: 10.1002/asia.201901545. PubMed DOI PMC

Spanu D., Recchia S., Mohajernia S., Schmuki P., Altomare M. Site-Selective Pt Dewetting on WO3-Coated TiO2 Nanotube Arrays: An Electron Transfer Cascade-Based H2 Evolution Photocatalyst. Appl. Catal. B. 2018;237:198–205. doi: 10.1016/j.apcatb.2018.05.061. DOI

Pinna M., Binda G., Altomare M., Marelli M., Dossi C., Monticelli D., Spanu D., Recchia S. Biochar Nanoparticles over Tio2 Nanotube Arrays: A Green Co-Catalyst to Boost the Photocatalytic Degradation of Organic Pollutants. Catalysts. 2021;11:1048. doi: 10.3390/catal11091048. DOI

Upadhyaya A., Rincón G. Visible-Light-Active Noble-Metal Photocatalysts for Water Disinfection: A Review. J. Water Resour. Prot. 2019;11:1207–1232. doi: 10.4236/jwarp.2019.1110070. DOI

Loddo V., Bellardita M., Camera-Roda G., Parrino F., Palmisano L. Current Trends and Future Developments on (Bio-) Membranes. Elsevier; Amsterdam, The Netherlands: 2018. Heterogeneous Photocatalysis; pp. 1–43.

Park J., Lam S.S., Park Y.K., Kim B.J., An K.H., Jung S.C. Fabrication of Ni/TiO2 Visible Light Responsive Photocatalyst for Decomposition of Oxytetracycline. Environ. Res. 2023;216:114657. doi: 10.1016/j.envres.2022.114657. PubMed DOI

Altomare M., Qin S., Saveleva V.A., Badura Z., Tomanec O., Mazare A., Zoppellaro G., Vertova A., Taglietti A., Minguzzi A., et al. Metastable Ni(I)-TiO2−x Photocatalysts: Self-Amplifying H 2 Evolution from Plain Water without Noble Metal Co-Catalyst and Sacrificial Agent. J. Am. Chem. Soc. 2023;145:26122–26132. doi: 10.1021/jacs.3c08199. PubMed DOI PMC

Chen W., Wang Y., Liu S., Gao L., Mao L., Fan Z., Shangguan W., Jiang Z. Non-Noble Metal Cu as a Cocatalyst on TiO2 Nanorod for Highly Efficient Photocatalytic Hydrogen Production. Appl. Surf. Sci. 2018;445:527–534. doi: 10.1016/j.apsusc.2018.03.209. DOI

Khazaee Z., Mahjoub A.R., Cheshme Khavar A.H. One-Pot Synthesis of CuBi Bimetallic Alloy Nanosheets-Supported Functionalized Multiwalled Carbon Nanotubes as Efficient Photocatalyst for Oxidation of Fluoroquinolones. Appl. Catal. B. 2021;297:120480. doi: 10.1016/j.apcatb.2021.120480. DOI

Spanu D., Minguzzi A., Recchia S., Shahvardanfard F., Tomanec O., Zboril R., Schmuki P., Ghigna P., Altomare M. An Operando X-Ray Absorption Spectroscopy Study of a NiCu-TiO2 Photocatalyst for H2 Evolution. ACS Catal. 2020;10:8293–8302. doi: 10.1021/acscatal.0c01373. DOI

Pinna M., Wei A.W.W., Spanu D., Will J., Yokosawa T., Spiecker E., Recchia S., Schmuki P., Altomare M. Amorphous NiCu Thin Films Sputtered on TiO2 Nanotube Arrays: A Noble-Metal Free Photocatalyst for Hydrogen Evolution. ChemCatChem. 2022;14:e202201052. doi: 10.1002/cctc.202201052. DOI

Cadenhead D.A., Wagner N.J. Low-Temperature Hydrogen Adsorption on Copper-Nickel Alloys. J. Phys. Chem. 1968;72:2775–2781. doi: 10.1021/j100854a015. DOI

Ishii R., Matsumura K., Sakai A., Sakata T. Work Function of Binary Alloys. Appl. Surf. Sci. 2001;169–170:658–661. doi: 10.1016/S0169-4332(00)00807-2. DOI

Eastman D.E. Photoelectric Work Functions of Transition, Rare-Earth, and Noble Metals. Phys. Rev. B. 1970;2:1–2. doi: 10.1103/PhysRevB.2.1. DOI

Djebbari C., Zouaoui E., Ammouchi N., Nakib C., Zouied D., Dob K. Degradation of Malachite Green Using Heterogeneous Nanophotocatalysts (NiO/TiO2, CuO/TiO2) under Solar and Microwave Irradiation. SN Appl. Sci. 2021;3:255. doi: 10.1007/s42452-021-04266-4. DOI

Monticelli D., Castelletti A., Civati D., Recchia S., Dossi C. How to Efficiently Produce Ultrapure Acids. Int. J. Anal. Chem. 2019;2019:5180610. doi: 10.1155/2019/5180610. PubMed DOI PMC

Ye Y., Feng Y., Bruning H., Yntema D., Rijnaarts H.H.M. Photocatalytic Degradation of Metoprolol by TiO2 Nanotube Arrays and UV-LED: Effects of Catalyst Properties, Operational Parameters, Commonly Present Water Constituents, and Photo-Induced Reactive Species. Appl. Catal. B. 2018;220:171–181. doi: 10.1016/j.apcatb.2017.08.040. DOI

Trenczek-Zajac A., Synowiec M., Zakrzewska K., Zazakowny K., Kowalski K., Dziedzic A., Radecka M. Scavenger-Supported Photocatalytic Evidence of an Extended Type I Electronic Structure of the TiO2@Fe2O3 Interface. ACS Appl. Mater. Interfaces. 2022;14:38255–38269. doi: 10.1021/acsami.2c06404. PubMed DOI PMC

Cha G., Schmuki P., Altomare M. Anodic TiO2 Nanotube Membranes: Site-Selective Pt-Activation and Photocatalytic H2 Evolution. Electrochim. Acta. 2017;258:302–310. doi: 10.1016/j.electacta.2017.11.030. DOI

Nagaraj G., Brundha D., Chandraleka C., Arulpriya M., Kowsalya V., Sangavi S., Jayalakshmi R., Tamilarasu S., Murugan R. Facile Synthesis of Improved Anatase TiO2 Nanoparticles for Enhanced Solar-Light Driven Photocatalyst. SN Appl. Sci. 2020;2:734. doi: 10.1007/s42452-020-2554-1. DOI

Boonchuduang T., Bootchanont A., Klysubun W., Amonpattaratkit P., Khamkongkaeo A., Puncreobutr C., Yimnirun R., Lohwongwatana B. Formation of Alpha-Case Layer During Investment Casting of Pure Ti and Ti-6Al-4V Using Comparative XRD and EXAFS Investigation. Metall. Mater. Trans. A. 2020;51:586–596. doi: 10.1007/s11661-019-05541-1. DOI

Rodríguez-Salinas J., Hernández M.B., Cruz L.G., Martínez-Romero O., Ulloa-Castillo N.A., Elías-Zúñiga A. Enhancing Electrical and Thermal Properties of Al6061 Parts by Electrophoresis Deposition of Multi-Walled Carbon Nanotubes. Coatings. 2020;10:656. doi: 10.3390/coatings10070656. DOI

Ali A., Chiang Y.W., Santos R.M. X-Ray Diffraction Techniques for Mineral Characterization: A Review for Engineers of the Fundamentals, Applications, and Research Directions. Minerals. 2022;12:205. doi: 10.3390/min12020205. DOI

Biesinger M.C., Lau L.W.M., Gerson A.R., Smart R.S.C. Resolving Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides and Hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010;257:887–898. doi: 10.1016/j.apsusc.2010.07.086. DOI

Loch D.A.L., Gonzalvo Y.A., Ehiasarian A.P. Plasma Analysis of Inductively Coupled Impulse Sputtering of Cu, Ti and Ni. Plasma Sources Sci. Technol. 2017;26:065012. doi: 10.1088/1361-6595/aa6f79. DOI

Shimatsu T., Mollema R.H., Monsma D., Keim E.G., Lodder J.C. Metal Bonding during Sputter Film Deposition. J. Vac. Sci. Technol. A Vac. Surf. Film. 1998;16:2125–2131. doi: 10.1116/1.581319. DOI

Su J., Wang Z., Ma J., Tang B., Lang X., Jiang M., He Z. Selective Bias Deposition of CuO Thin Film on Unpolished Si Wafer. Mater. Res. Express. 2020;7:026402. doi: 10.1088/2053-1591/ab6d2c. DOI

Su J., Zhang J., Liu Y., Jiang M., Zhou L. Parameter-Dependent Oxidation of Physically Sputtered Cu and the Related Fabrication of Cu-Based Semiconductor Films with Metallic Resistivity. Sci. China Mater. 2016;59:144–150. doi: 10.1007/s40843-016-0125-y. DOI

Biesinger M.C., Payne B.P., Grosvenor A.P., Lau L.W.M., Gerson A.R., Smart R.S.C. Resolving Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides and Hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011;257:2717–2730. doi: 10.1016/j.apsusc.2010.10.051. DOI

Etzkorn F.A. Green Chemistry: Principles and Case Studies. The Royal Society of Chemistry; London, UK: 2019. Standard Reduction Potentials by Value; pp. 418–420.

Wang Z., Lin R., Huo Y., Li H., Wang L. Formation, Detection, and Function of Oxygen Vacancy in Metal Oxides for Solar Energy Conversion. Adv. Funct. Mater. 2022;32:2109503. doi: 10.1002/adfm.202109503. DOI

Pan C., Shen H., Liu G., Zhang X., Liu X., Liu H., Xu P., Chen W., Tian Y., Deng H., et al. CuO/TiO2 Nanobelt with Oxygen Vacancies for Visible-Light-Driven Photocatalytic Bacterial Inactivation. ACS Appl. Nano Mater. 2022;5:10980–10990. doi: 10.1021/acsanm.2c02226. DOI

Jubu P.R., Yam F.K., Igba V.M., Beh K.P. Tauc-Plot Scale and Extrapolation Effect on Bandgap Estimation from UV–Vis–NIR Data – A Case Study of β-Ga2O3. J. Solid State Chem. 2020;290:121576. doi: 10.1016/j.jssc.2020.121576. DOI

Escobedo-Morales A., Ruiz-López I.I., Ruiz-Peralta M.d., Tepech-Carrillo L., Sánchez-Cantú M., Moreno-Orea J.E. Automated Method for the Determination of the Band Gap Energy of Pure and Mixed Powder Samples Using Diffuse Reflectance Spectroscopy. Heliyon. 2019;5:e01505. doi: 10.1016/j.heliyon.2019.e01505. PubMed DOI PMC

Dai J., Zhu Y., Tahini H.A., Lin Q., Chen Y., Guan D., Zhou C., Hu Z., Lin H.-J., Chan T.-S., et al. Single-Phase Perovskite Oxide with Super-Exchange Induced Atomic-Scale Synergistic Active Centers Enables Ultrafast Hydrogen Evolution. Nat. Commun. 2020;11:5657. doi: 10.1038/s41467-020-19433-1. PubMed DOI PMC

Aguilar C.A., de la Cruz A., Montalvo C., Ruiz-Marín A., Oros-Ruiz S., Figueroa-Ramírez S.J., Abatal M., Anguebes F., Córdova-Quiroz V. Effect of Kinetics on the Photocatalytic Degradation of Acetaminophen and the Distribution of Major Intermediate with Anatase-Ag Synthesized by Sol Gel under Visible Irradiation. Front. Environ. Sci. 2022;10:943776. doi: 10.3389/fenvs.2022.943776. DOI

Akşit D., Soylu S.P.G. Photocatalytic Degradation of Paracetamol by Semiconductor Oxides under UV and Sunlight Illumination. Turk. J. Chem. 2022;46:1866–1874. doi: 10.55730/1300-0527.3486. PubMed DOI PMC

Eskandarloo H., Badiei A., Haug C. Enhanced Photocatalytic Degradation of an Azo Textile Dye by Using TiO2/NiO Coupled Nanoparticles: Optimization of Synthesis and Operational Key Factors. Mater. Sci. Semicond. Process. 2014;27:240–253. doi: 10.1016/j.mssp.2014.06.029. DOI

Mannaa M.A., Qasim K.F., Alshorifi F.T., El-Bahy S.M., Salama R.S. Role of NiO Nanoparticles in Enhancing Structure Properties of TiO2and Its Applications in Photodegradation and Hydrogen Evolution. ACS Omega. 2021;6:30386–30400. doi: 10.1021/acsomega.1c03693. PubMed DOI PMC

Singha B., Ray K. Density Functional Theory Insights on Photocatalytic Ability of CuO/TiO2 and CuO/ZnO. Mater. Today Proc. 2023;72:451–458. doi: 10.1016/j.matpr.2022.08.313. DOI

Pansri S., Supruangnet R., Nakajima H., Rattanasuporn S., Noothongkaew S. Band Offset Determination of P-NiO/n-TiO2 Heterojunctions for Applications in High-Performance UV Photodetectors. J. Mater. Sci. 2020;55:4332–4344. doi: 10.1007/s10853-019-04305-x. DOI

Santos H.L.S., Corradini P.G., Andrade M.A.S., Mascaro L.H. CuO/NiOx Thin Film–Based Photocathodes for Photoelectrochemical Water Splitting. J. Solid. State Electrochem. 2020;24:1899–1908. doi: 10.1007/s10008-020-04513-5. DOI

Weldekirstos H.D., Habtewold B., Kabtamu D.M. Surfactant-Assisted Synthesis of NiO-ZnO and NiO-CuO Nanocomposites for Enhanced Photocatalytic Degradation of Methylene Blue Under UV Light Irradiation. Front. Mater. 2022;9:832439. doi: 10.3389/fmats.2022.832439. DOI

Yang L., Yu L.E., Ray M.B. Degradation of Paracetamol in Aqueous Solutions by TiO2 Photocatalysis. Water Res. 2008;42:3480–3488. doi: 10.1016/j.watres.2008.04.023. PubMed DOI

Yang L., Yu L.E., Ray M.B. Photocatalytic Oxidation of Paracetamol: Dominant Reactants, Intermediates, and Reaction Mechanisms. Environ. Sci. Technol. 2009;43:460–465. doi: 10.1021/es8020099. PubMed DOI

Jallouli N., Elghniji K., Trabelsi H., Ksibi M. Photocatalytic Degradation of Paracetamol on TiO2 Nanoparticles and TiO2/Cellulosic Fiber under UV and Sunlight Irradiation. Arab. J. Chem. 2017;10:S3640–S3645. doi: 10.1016/j.arabjc.2014.03.014. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...