Enhanced Photocatalytic Paracetamol Degradation by NiCu-Modified TiO2 Nanotubes: Mechanistic Insights and Performance Evaluation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
ECCM.TT.ECCM.005
Nederlandse Organisatie voor Wetenschappelijk Onderzoek, (NWO)
DFG-grant AL2479/1-1
German Research Foundation (DFG)
ETI2018/2_Tech_11
FAU Friedrich-Alexander University
PHOTONS
University of Insubria
PubMed
39404304
PubMed Central
PMC11477857
DOI
10.3390/nano14191577
PII: nano14191577
Knihovny.cz E-zdroje
- Klíčová slova
- NiCu bimetallic catalysts, TiO2 nanotubes, emerging pollutants, green chemistry, heterojunction, paracetamol, photocatalysis, water remediation,
- Publikační typ
- časopisecké články MeSH
Anodic TiO2 nanotube arrays decorated with Ni, Cu, and NiCu alloy thin films were investigated for the first time for the photocatalytic degradation of paracetamol in water solution under UV irradiation. Metallic co-catalysts were deposited on TiO2 nanotubes using magnetron sputtering. The influence of the metal layer composition and thickness on the photocatalytic activity was systematically studied. Photocatalytic experiments showed that only Cu-rich co-catalysts provide enhanced paracetamol degradation rates, whereas Ni-modified photocatalysts exhibit no improvement compared with unmodified TiO2. The best-performing material was obtained by sputtering a 20 nm thick film of 1:1 atomic ratio NiCu alloy: this material exhibits a reaction rate more than doubled compared with pristine TiO2, enabling the complete degradation of 10 mg L-1 of paracetamol in 8 h. The superior performance of NiCu-modified systems over pure Cu-based ones is ascribed to a Ni and Cu synergistic effect. Kinetic tests using selective holes and radical scavengers unveiled, unlike prior findings in the literature, that paracetamol undergoes direct oxidation at the photocatalyst surface via valence band holes. Finally, Chemical Oxygen Demand (COD) tests and High-Resolution Mass Spectrometry (HR-MS) analysis were conducted to assess the degree of mineralization and identify intermediates. In contrast with the existing literature, we demonstrated that the mechanistic pathway involves direct oxidation by valence band holes.
Department of Science and High Technology University of Insubria Via Valleggio 11 22100 Como Italy
Dipartimento di Chimica Università Degli Studi di Milano Via Golgi 19 20133 Milan Italy
Regional Center of Advanced Technologies and Materials Šlechtitelů 27 78371 Olomouc Czech Republic
Zobrazit více v PubMed
Liyanage C., Yamada K. Impact of Population Growth on the Water Quality of Natural Water Bodies. Sustainability. 2017;9:1405. doi: 10.3390/su9081405. DOI
Morin-Crini N., Lichtfouse E., Fourmentin M., Ribeiro A.R.L., Noutsopoulos C., Mapelli F., Fenyvesi É., Vieira M.G.A., Picos-Corrales L.A., Moreno-Piraján J.C., et al. Removal of Emerging Contaminants from Wastewater Using Advanced Treatments. A Review. Environ. Chem. Lett. 2022;20:1333–1375. doi: 10.1007/s10311-021-01379-5. DOI
Kumar M., Sridharan S., Sawarkar A.D., Shakeel A., Anerao P., Mannina G., Sharma P., Pandey A. Current Research Trends on Emerging Contaminants Pharmaceutical and Personal Care Products (PPCPs): A Comprehensive Review. Sci. Total Environ. 2023;859:160031. doi: 10.1016/j.scitotenv.2022.160031. PubMed DOI
Cizmas L., Sharma V.K., Gray C.M., McDonald T.J. Pharmaceuticals and Personal Care Products in Waters: Occurrence, Toxicity, and Risk. Environ. Chem. Lett. 2015;13:381–394. doi: 10.1007/s10311-015-0524-4. PubMed DOI PMC
Canna-Michaelidou S., Nicolaou A.-S. Evaluation of the Genotoxicity Potential (by MutatoxTM Test) of Ten Pesticides Found as Water Pollutants in Cyprus. Sci. Total Environ. 1996;193:27–35. doi: 10.1016/S0048-9697(96)05322-3. PubMed DOI
Bayabil H.K., Teshome F.T., Li Y.C. Emerging Contaminants in Soil and Water. Front. Environ. Sci. 2022;10:873499. doi: 10.3389/fenvs.2022.873499. DOI
Mishra R.K., Mentha S.S., Misra Y., Dwivedi N. Emerging Pollutants of Severe Environmental Concern in Water and Wastewater: A Comprehensive Review on Current Developments and Future Research. Water-Energy Nexus. 2023;6:74–95. doi: 10.1016/j.wen.2023.08.002. DOI
Krishnakumar S., Singh D.S.H., Godson P.S., Thanga S.G. Emerging Pollutants: Impact on Environment, Management, and Challenges. Environ. Sci. Pollut. Res. 2022;29:72309–72311. doi: 10.1007/s11356-022-22859-3. PubMed DOI
Rodriguez-Narvaez O.M., Peralta-Hernandez J.M., Goonetilleke A., Bandala E.R. Treatment Technologies for Emerging Contaminants in Water: A Review. Chem. Eng. J. 2017;323:361–380. doi: 10.1016/j.cej.2017.04.106. DOI
Lozano-Morales S.A., Morales G., López Zavala M.Á., Arce-Sarria A., Machuca-Martínez F. Photocatalytic Treatment of Paracetamol Using TiO2 Nanotubes: Effect of PH. Processes. 2019;7:319. doi: 10.3390/pr7060319. DOI
Vaiano V., Sacco O., Matarangolo M. Photocatalytic Degradation of Paracetamol under UV Irradiation Using TiO2-Graphite Composites. Catal. Today. 2018;315:230–236. doi: 10.1016/j.cattod.2018.02.002. DOI
Vieira Y., Spode J.E., Dotto G.L., Georgin J., Franco D.S.P., dos Reis G.S., Lima E.C. Paracetamol Environmental Remediation and Ecotoxicology: A Review. Environ. Chem. Lett. 2024;22:2343–2373. doi: 10.1007/s10311-024-01751-1. DOI
Lee D.-E., Kim M.-K., Danish M., Jo W.-K. State-of-the-Art Review on Photocatalysis for Efficient Wastewater Treatment: Attractive Approach in Photocatalyst Design and Parameters Affecting the Photocatalytic Degradation. Catal. Commun. 2023;183:106764. doi: 10.1016/j.catcom.2023.106764. DOI
Ahmad K., Ghatak H.R., Ahuja S.M. A Review on Photocatalytic Remediation of Environmental Pollutants and H2 Production through Water Splitting: A Sustainable Approach. Environ. Technol. Innov. 2020;19:100893. doi: 10.1016/j.eti.2020.100893. DOI
Garrido I., Flores P., Hellín P., Vela N., Navarro S., Fenoll J. Solar Reclamation of Agro-Wastewater Polluted with Eight Pesticides by Heterogeneous Photocatalysis Using a Modular Facility. A Case Study. Chemosphere. 2020;249:126156. doi: 10.1016/j.chemosphere.2020.126156. PubMed DOI
AlSalhi M.S., Devanesan S., Asemi N.N., Aldawsari M. Construction of SnO2/CuO/RGO Nanocomposites for Photocatalytic Degradation of Organic Pollutants and Antibacterial Applications. Environ. Res. 2023;222:115370. doi: 10.1016/j.envres.2023.115370. PubMed DOI
Verma M., Haritash A.K. Photocatalytic Degradation of Amoxicillin in Pharmaceutical Wastewater: A Potential Tool to Manage Residual Antibiotics. Environ. Technol. Innov. 2020;20:101072. doi: 10.1016/j.eti.2020.101072. DOI
Paździor K., Bilińska L., Ledakowicz S. A Review of the Existing and Emerging Technologies in the Combination of AOPs and Biological Processes in Industrial Textile Wastewater Treatment. Chem. Eng. J. 2019;376:120597. doi: 10.1016/j.cej.2018.12.057. DOI
Moctezuma E., Leyva E., Aguilar C.A., Luna R.A., Montalvo C. Photocatalytic Degradation of Paracetamol: Intermediates and Total Reaction Mechanism. J. Hazard. Mater. 2012;243:130–138. doi: 10.1016/j.jhazmat.2012.10.010. PubMed DOI
Liu H., Wang C., Wang G. Photocatalytic Advanced Oxidation Processes for Water Treatment: Recent Advances and Perspective. Chem. Asian J. 2020;15:3239–3253. doi: 10.1002/asia.202000895. PubMed DOI
Nidheesh P.V., Trellu C., Vargas H.O., Mousset E., Ganiyu S.O., Oturan M.A. Electro-Fenton Process in Combination with Other Advanced Oxidation Processes: Challenges and Opportunities. Curr. Opin. Electrochem. 2023;37:101171. doi: 10.1016/j.coelec.2022.101171. DOI
Yacouba Z.A., Mendret J., Lesage G., Zaviska F., Brosillon S. Removal of Organic Micropollutants from Domestic Wastewater: The Effect of Ozone-Based Advanced Oxidation Process on Nanofiltration. J. Water Process Eng. 2021;39:101869. doi: 10.1016/j.jwpe.2020.101869. DOI
Wang B., Wang Y. A Comprehensive Review on Persulfate Activation Treatment of Wastewater. Sci. Total Environ. 2022;831:154906. doi: 10.1016/j.scitotenv.2022.154906. PubMed DOI
Guo Q., Zhou C., Ma Z., Yang X. Fundamentals of TiO2 Photocatalysis: Concepts, Mechanisms, and Challenges. Adv. Mater. 2019;31:e1901997. doi: 10.1002/adma.201901997. PubMed DOI
Roy P., Berger S., Schmuki P. TiO2 Nanotubes: Synthesis and Applications. Angew. Chem.-Int. Ed. 2011;50:2904–2939. doi: 10.1002/anie.201001374. PubMed DOI
Ji L., Spanu D., Denisov N., Recchia S., Schmuki P., Altomare M. A Dewetted-Dealloyed Nanoporous Pt Co-Catalyst Formed on TiO 2 Nanotube Arrays Leads to Strongly Enhanced Photocatalytic H 2 Production. Chem. Asian J. 2020;15:301–309. doi: 10.1002/asia.201901545. PubMed DOI PMC
Spanu D., Recchia S., Mohajernia S., Schmuki P., Altomare M. Site-Selective Pt Dewetting on WO3-Coated TiO2 Nanotube Arrays: An Electron Transfer Cascade-Based H2 Evolution Photocatalyst. Appl. Catal. B. 2018;237:198–205. doi: 10.1016/j.apcatb.2018.05.061. DOI
Pinna M., Binda G., Altomare M., Marelli M., Dossi C., Monticelli D., Spanu D., Recchia S. Biochar Nanoparticles over Tio2 Nanotube Arrays: A Green Co-Catalyst to Boost the Photocatalytic Degradation of Organic Pollutants. Catalysts. 2021;11:1048. doi: 10.3390/catal11091048. DOI
Upadhyaya A., Rincón G. Visible-Light-Active Noble-Metal Photocatalysts for Water Disinfection: A Review. J. Water Resour. Prot. 2019;11:1207–1232. doi: 10.4236/jwarp.2019.1110070. DOI
Loddo V., Bellardita M., Camera-Roda G., Parrino F., Palmisano L. Current Trends and Future Developments on (Bio-) Membranes. Elsevier; Amsterdam, The Netherlands: 2018. Heterogeneous Photocatalysis; pp. 1–43.
Park J., Lam S.S., Park Y.K., Kim B.J., An K.H., Jung S.C. Fabrication of Ni/TiO2 Visible Light Responsive Photocatalyst for Decomposition of Oxytetracycline. Environ. Res. 2023;216:114657. doi: 10.1016/j.envres.2022.114657. PubMed DOI
Altomare M., Qin S., Saveleva V.A., Badura Z., Tomanec O., Mazare A., Zoppellaro G., Vertova A., Taglietti A., Minguzzi A., et al. Metastable Ni(I)-TiO2−x Photocatalysts: Self-Amplifying H 2 Evolution from Plain Water without Noble Metal Co-Catalyst and Sacrificial Agent. J. Am. Chem. Soc. 2023;145:26122–26132. doi: 10.1021/jacs.3c08199. PubMed DOI PMC
Chen W., Wang Y., Liu S., Gao L., Mao L., Fan Z., Shangguan W., Jiang Z. Non-Noble Metal Cu as a Cocatalyst on TiO2 Nanorod for Highly Efficient Photocatalytic Hydrogen Production. Appl. Surf. Sci. 2018;445:527–534. doi: 10.1016/j.apsusc.2018.03.209. DOI
Khazaee Z., Mahjoub A.R., Cheshme Khavar A.H. One-Pot Synthesis of CuBi Bimetallic Alloy Nanosheets-Supported Functionalized Multiwalled Carbon Nanotubes as Efficient Photocatalyst for Oxidation of Fluoroquinolones. Appl. Catal. B. 2021;297:120480. doi: 10.1016/j.apcatb.2021.120480. DOI
Spanu D., Minguzzi A., Recchia S., Shahvardanfard F., Tomanec O., Zboril R., Schmuki P., Ghigna P., Altomare M. An Operando X-Ray Absorption Spectroscopy Study of a NiCu-TiO2 Photocatalyst for H2 Evolution. ACS Catal. 2020;10:8293–8302. doi: 10.1021/acscatal.0c01373. DOI
Pinna M., Wei A.W.W., Spanu D., Will J., Yokosawa T., Spiecker E., Recchia S., Schmuki P., Altomare M. Amorphous NiCu Thin Films Sputtered on TiO2 Nanotube Arrays: A Noble-Metal Free Photocatalyst for Hydrogen Evolution. ChemCatChem. 2022;14:e202201052. doi: 10.1002/cctc.202201052. DOI
Cadenhead D.A., Wagner N.J. Low-Temperature Hydrogen Adsorption on Copper-Nickel Alloys. J. Phys. Chem. 1968;72:2775–2781. doi: 10.1021/j100854a015. DOI
Ishii R., Matsumura K., Sakai A., Sakata T. Work Function of Binary Alloys. Appl. Surf. Sci. 2001;169–170:658–661. doi: 10.1016/S0169-4332(00)00807-2. DOI
Eastman D.E. Photoelectric Work Functions of Transition, Rare-Earth, and Noble Metals. Phys. Rev. B. 1970;2:1–2. doi: 10.1103/PhysRevB.2.1. DOI
Djebbari C., Zouaoui E., Ammouchi N., Nakib C., Zouied D., Dob K. Degradation of Malachite Green Using Heterogeneous Nanophotocatalysts (NiO/TiO2, CuO/TiO2) under Solar and Microwave Irradiation. SN Appl. Sci. 2021;3:255. doi: 10.1007/s42452-021-04266-4. DOI
Monticelli D., Castelletti A., Civati D., Recchia S., Dossi C. How to Efficiently Produce Ultrapure Acids. Int. J. Anal. Chem. 2019;2019:5180610. doi: 10.1155/2019/5180610. PubMed DOI PMC
Ye Y., Feng Y., Bruning H., Yntema D., Rijnaarts H.H.M. Photocatalytic Degradation of Metoprolol by TiO2 Nanotube Arrays and UV-LED: Effects of Catalyst Properties, Operational Parameters, Commonly Present Water Constituents, and Photo-Induced Reactive Species. Appl. Catal. B. 2018;220:171–181. doi: 10.1016/j.apcatb.2017.08.040. DOI
Trenczek-Zajac A., Synowiec M., Zakrzewska K., Zazakowny K., Kowalski K., Dziedzic A., Radecka M. Scavenger-Supported Photocatalytic Evidence of an Extended Type I Electronic Structure of the TiO2@Fe2O3 Interface. ACS Appl. Mater. Interfaces. 2022;14:38255–38269. doi: 10.1021/acsami.2c06404. PubMed DOI PMC
Cha G., Schmuki P., Altomare M. Anodic TiO2 Nanotube Membranes: Site-Selective Pt-Activation and Photocatalytic H2 Evolution. Electrochim. Acta. 2017;258:302–310. doi: 10.1016/j.electacta.2017.11.030. DOI
Nagaraj G., Brundha D., Chandraleka C., Arulpriya M., Kowsalya V., Sangavi S., Jayalakshmi R., Tamilarasu S., Murugan R. Facile Synthesis of Improved Anatase TiO2 Nanoparticles for Enhanced Solar-Light Driven Photocatalyst. SN Appl. Sci. 2020;2:734. doi: 10.1007/s42452-020-2554-1. DOI
Boonchuduang T., Bootchanont A., Klysubun W., Amonpattaratkit P., Khamkongkaeo A., Puncreobutr C., Yimnirun R., Lohwongwatana B. Formation of Alpha-Case Layer During Investment Casting of Pure Ti and Ti-6Al-4V Using Comparative XRD and EXAFS Investigation. Metall. Mater. Trans. A. 2020;51:586–596. doi: 10.1007/s11661-019-05541-1. DOI
Rodríguez-Salinas J., Hernández M.B., Cruz L.G., Martínez-Romero O., Ulloa-Castillo N.A., Elías-Zúñiga A. Enhancing Electrical and Thermal Properties of Al6061 Parts by Electrophoresis Deposition of Multi-Walled Carbon Nanotubes. Coatings. 2020;10:656. doi: 10.3390/coatings10070656. DOI
Ali A., Chiang Y.W., Santos R.M. X-Ray Diffraction Techniques for Mineral Characterization: A Review for Engineers of the Fundamentals, Applications, and Research Directions. Minerals. 2022;12:205. doi: 10.3390/min12020205. DOI
Biesinger M.C., Lau L.W.M., Gerson A.R., Smart R.S.C. Resolving Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides and Hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010;257:887–898. doi: 10.1016/j.apsusc.2010.07.086. DOI
Loch D.A.L., Gonzalvo Y.A., Ehiasarian A.P. Plasma Analysis of Inductively Coupled Impulse Sputtering of Cu, Ti and Ni. Plasma Sources Sci. Technol. 2017;26:065012. doi: 10.1088/1361-6595/aa6f79. DOI
Shimatsu T., Mollema R.H., Monsma D., Keim E.G., Lodder J.C. Metal Bonding during Sputter Film Deposition. J. Vac. Sci. Technol. A Vac. Surf. Film. 1998;16:2125–2131. doi: 10.1116/1.581319. DOI
Su J., Wang Z., Ma J., Tang B., Lang X., Jiang M., He Z. Selective Bias Deposition of CuO Thin Film on Unpolished Si Wafer. Mater. Res. Express. 2020;7:026402. doi: 10.1088/2053-1591/ab6d2c. DOI
Su J., Zhang J., Liu Y., Jiang M., Zhou L. Parameter-Dependent Oxidation of Physically Sputtered Cu and the Related Fabrication of Cu-Based Semiconductor Films with Metallic Resistivity. Sci. China Mater. 2016;59:144–150. doi: 10.1007/s40843-016-0125-y. DOI
Biesinger M.C., Payne B.P., Grosvenor A.P., Lau L.W.M., Gerson A.R., Smart R.S.C. Resolving Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides and Hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011;257:2717–2730. doi: 10.1016/j.apsusc.2010.10.051. DOI
Etzkorn F.A. Green Chemistry: Principles and Case Studies. The Royal Society of Chemistry; London, UK: 2019. Standard Reduction Potentials by Value; pp. 418–420.
Wang Z., Lin R., Huo Y., Li H., Wang L. Formation, Detection, and Function of Oxygen Vacancy in Metal Oxides for Solar Energy Conversion. Adv. Funct. Mater. 2022;32:2109503. doi: 10.1002/adfm.202109503. DOI
Pan C., Shen H., Liu G., Zhang X., Liu X., Liu H., Xu P., Chen W., Tian Y., Deng H., et al. CuO/TiO2 Nanobelt with Oxygen Vacancies for Visible-Light-Driven Photocatalytic Bacterial Inactivation. ACS Appl. Nano Mater. 2022;5:10980–10990. doi: 10.1021/acsanm.2c02226. DOI
Jubu P.R., Yam F.K., Igba V.M., Beh K.P. Tauc-Plot Scale and Extrapolation Effect on Bandgap Estimation from UV–Vis–NIR Data – A Case Study of β-Ga2O3. J. Solid State Chem. 2020;290:121576. doi: 10.1016/j.jssc.2020.121576. DOI
Escobedo-Morales A., Ruiz-López I.I., Ruiz-Peralta M.d., Tepech-Carrillo L., Sánchez-Cantú M., Moreno-Orea J.E. Automated Method for the Determination of the Band Gap Energy of Pure and Mixed Powder Samples Using Diffuse Reflectance Spectroscopy. Heliyon. 2019;5:e01505. doi: 10.1016/j.heliyon.2019.e01505. PubMed DOI PMC
Dai J., Zhu Y., Tahini H.A., Lin Q., Chen Y., Guan D., Zhou C., Hu Z., Lin H.-J., Chan T.-S., et al. Single-Phase Perovskite Oxide with Super-Exchange Induced Atomic-Scale Synergistic Active Centers Enables Ultrafast Hydrogen Evolution. Nat. Commun. 2020;11:5657. doi: 10.1038/s41467-020-19433-1. PubMed DOI PMC
Aguilar C.A., de la Cruz A., Montalvo C., Ruiz-Marín A., Oros-Ruiz S., Figueroa-Ramírez S.J., Abatal M., Anguebes F., Córdova-Quiroz V. Effect of Kinetics on the Photocatalytic Degradation of Acetaminophen and the Distribution of Major Intermediate with Anatase-Ag Synthesized by Sol Gel under Visible Irradiation. Front. Environ. Sci. 2022;10:943776. doi: 10.3389/fenvs.2022.943776. DOI
Akşit D., Soylu S.P.G. Photocatalytic Degradation of Paracetamol by Semiconductor Oxides under UV and Sunlight Illumination. Turk. J. Chem. 2022;46:1866–1874. doi: 10.55730/1300-0527.3486. PubMed DOI PMC
Eskandarloo H., Badiei A., Haug C. Enhanced Photocatalytic Degradation of an Azo Textile Dye by Using TiO2/NiO Coupled Nanoparticles: Optimization of Synthesis and Operational Key Factors. Mater. Sci. Semicond. Process. 2014;27:240–253. doi: 10.1016/j.mssp.2014.06.029. DOI
Mannaa M.A., Qasim K.F., Alshorifi F.T., El-Bahy S.M., Salama R.S. Role of NiO Nanoparticles in Enhancing Structure Properties of TiO2and Its Applications in Photodegradation and Hydrogen Evolution. ACS Omega. 2021;6:30386–30400. doi: 10.1021/acsomega.1c03693. PubMed DOI PMC
Singha B., Ray K. Density Functional Theory Insights on Photocatalytic Ability of CuO/TiO2 and CuO/ZnO. Mater. Today Proc. 2023;72:451–458. doi: 10.1016/j.matpr.2022.08.313. DOI
Pansri S., Supruangnet R., Nakajima H., Rattanasuporn S., Noothongkaew S. Band Offset Determination of P-NiO/n-TiO2 Heterojunctions for Applications in High-Performance UV Photodetectors. J. Mater. Sci. 2020;55:4332–4344. doi: 10.1007/s10853-019-04305-x. DOI
Santos H.L.S., Corradini P.G., Andrade M.A.S., Mascaro L.H. CuO/NiOx Thin Film–Based Photocathodes for Photoelectrochemical Water Splitting. J. Solid. State Electrochem. 2020;24:1899–1908. doi: 10.1007/s10008-020-04513-5. DOI
Weldekirstos H.D., Habtewold B., Kabtamu D.M. Surfactant-Assisted Synthesis of NiO-ZnO and NiO-CuO Nanocomposites for Enhanced Photocatalytic Degradation of Methylene Blue Under UV Light Irradiation. Front. Mater. 2022;9:832439. doi: 10.3389/fmats.2022.832439. DOI
Yang L., Yu L.E., Ray M.B. Degradation of Paracetamol in Aqueous Solutions by TiO2 Photocatalysis. Water Res. 2008;42:3480–3488. doi: 10.1016/j.watres.2008.04.023. PubMed DOI
Yang L., Yu L.E., Ray M.B. Photocatalytic Oxidation of Paracetamol: Dominant Reactants, Intermediates, and Reaction Mechanisms. Environ. Sci. Technol. 2009;43:460–465. doi: 10.1021/es8020099. PubMed DOI
Jallouli N., Elghniji K., Trabelsi H., Ksibi M. Photocatalytic Degradation of Paracetamol on TiO2 Nanoparticles and TiO2/Cellulosic Fiber under UV and Sunlight Irradiation. Arab. J. Chem. 2017;10:S3640–S3645. doi: 10.1016/j.arabjc.2014.03.014. DOI