Interfacial States in Au/Reduced TiO2 Plasmonic Photocatalysts Quench Hot-Carrier Photoactivity
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37609381
PubMed Central
PMC10441571
DOI
10.1021/acs.jpcc.3c04176
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Understanding the interface of plasmonic nanostructures is essential for improving the performance of photocatalysts. Surface defects in semiconductors modify the dynamics of charge carriers, which are not well understood yet. Here, we take advantage of scanning photoelectrochemical microscopy (SPECM) as a fast and effective tool for detecting the impact of surface defects on the photoactivity of plasmonic hybrid nanostructures. We evidenced a significant photoactivity activation of TiO2 ultrathin films under visible light upon mild reduction treatment. Through Au nanoparticle (NP) arrays deposited on different reduced TiO2 films, the plasmonic photoactivity mapping revealed the effect of interfacial defects on hot charge carriers, which quenched the plasmonic activity by (i) increasing the recombination rate between hot charge carriers and (ii) leaking electrons (injected and generated in TiO2) into the Au NPs. Our results show that the catalyst's photoactivity depends on the concentration of surface defects and the population distribution of Au NPs. The present study unlocks the fast and simple detection of the surface engineering effect on the photocatalytic activity of plasmonic semiconductor systems.
Zobrazit více v PubMed
Ciamician G. The Photochemistry of the Future. Science 1912, 36 (926), 385–394. 10.1126/science.36.926.385. PubMed DOI
Crabtree G. W.; Lewis N. S.; et al. Solar Energy Conversion. AIP Conf. Proc. 2008, 1044 (1), 309–321. 10.1063/1.2993729. DOI
Kubacka A.; Fernández-García M.; Colón G. Advanced Nanoarchitectures for Solar Photocatalytic Applications. Chem. Rev. 2012, 112 (3), 1555–1614. 10.1021/cr100454n. PubMed DOI
Xiao F.-X.; Miao J.; Tao H. B.; Hung S.-F.; Wang H.-Y.; Yang H. B.; Chen J.; Chen R.; Liu B. One-Dimensional Hybrid Nanostructures for Heterogeneous Photocatalysis and Photoelectrocatalysis. Small 2015, 11 (18), 2115–2131. 10.1002/smll.201402420. PubMed DOI
Jiang R.; Li B.; Fang C.; Wang J. Metal/Semiconductor Hybrid Nanostructures for Plasmon-Enhanced Applications. Adv. Mater. 2014, 26 (31), 5274–5309. 10.1002/adma.201400203. PubMed DOI
Gomathi Devi L.; Kavitha R. A Review on Plasmonic Metal-TiO2 Composite for Generation, Trapping, Storing and Dynamic Vectorial Transfer of Photogenerated Electrons across the Schottky Junction in a Photocatalytic System. Appl. Surf. Sci. 2016, 360, 601–622. 10.1016/j.apsusc.2015.11.016. DOI
Naldoni A.; Altomare M.; Zoppellaro G.; Liu N.; Kment Š.; Zbořil R.; Schmuki P. Photocatalysis with Reduced TiO 2 : From Black TiO 2 to Cocatalyst- Free Hydrogen Production. ACS Catal. 2019, 9 (1), 345–364. 10.1021/acscatal.8b04068. PubMed DOI PMC
Wang Z.; Xiao M.; You J.; Liu G.; Wang L. Defect Engineering in Photocatalysts and Photoelectrodes: From Small to Big. Acc. Mater. Res. 2022, 3 (11), 1127–1136. 10.1021/accountsmr.1c00201. DOI
Ratchford D. C.; Dunkelberger A. D.; Vurgaftman I.; Owrutsky J. C.; Pehrsson P. E. Quantification of Efficient Plasmonic Hot-Electron Injection in Gold Nanoparticle-TiO2 Films. Nano Lett. 2017, 17 (10), 6047–6055. 10.1021/acs.nanolett.7b02366. PubMed DOI
Bak T.; Nowotny J.; Nowotny M. K.; Sheppard L. R. Defect Chemistry of Titanium Dioxide. Application of Defect Engineering in Processing of TiO2-Based Photocatalysts. J. Phys. Chem. C 2008, 112, 5275–5300. 10.1021/jp077275m. DOI
Lin L.; Feng X.; Lan D.; Chen Y.; Zhong Q.; Liu C.; Cheng Y.; Qi R.; Ge J.; Yu C.; et al. Coupling Effect of Au Nanoparticles with the Oxygen Vacancies of TiO2–x for Enhanced Charge Transfer. J. Phys. Chem. C 2020, 124 (43), 23823–23831. 10.1021/acs.jpcc.0c09011. DOI
Li H.; Wang S.; Hong F.; Gao Y.; Zeng B.; Haider R. S.; Fan F.; Huang J.; Li C. Effects of the Interfacial Defects in Au/ TiO2 on Plasmon-Induced Water Oxidation. J. Chem. Phys. 2020, 152 (19), 19470210.1063/5.0008382. PubMed DOI
Chen X.; Liu L.; Yu P. Y.; Mao S. S. Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals. Science 2011, 331 (6018), 746–750. 10.1126/science.1200448. PubMed DOI
Xue J.; Zhu X.; Zhang Y.; Wang W.; Xie W.; Zhou J.; Bao J.; Luo Y.; Gao X.; Wang Y.; et al. Nature of Conduction Band Tailing in Hydrogenated Titanium Dioxide for Photocatalytic Hydrogen Evolution. ChemCatChem. 2016, 8 (12), 2010–2014. 10.1002/cctc.201600237. DOI
Naldoni A.; Fabbri F.; Altomare M.; Marelli M.; Psaro R.; Selli E.; Salviati G.; Dal Santo V. The Critical Role of Intragap States in the Energy Transfer from Gold Nanoparticles to TiO2. Phys. Chem. Chem. Phys. 2015, 17 (7), 4864–4869. 10.1039/C4CP05775A. PubMed DOI
Mubeen S.; Lee J.; Singh N.; Krämer S.; Stucky G. D.; Moskovits M. An Autonomous Photosynthetic Device in Which All Charge Carriers Derive from Surface Plasmons. Nat. Nanotechnol. 2013, 8, 247–251. 10.1038/nnano.2013.18. PubMed DOI
Kamimura J.; Bogdanoff P.; Ramsteiner M.; Corfdir P.; Feix F.; Geelhaar L.; Riechert H. P-Type Doping of GaN Nanowires Characterized by Photoelectrochemical Measurements. Nano Lett. 2017, 17 (3), 1529–1537. 10.1021/acs.nanolett.6b04560. PubMed DOI
Lee H.; Lee H.; Park J. Y. Direct Imaging of Surface Plasmon-Driven Hot Electron Flux on the Au Nanoprism/TiO2. Nano Lett. 2019, 19 (2), 891–896. 10.1021/acs.nanolett.8b04119. PubMed DOI
Huang Y.; Yu Y.; Yu Y.; Zhang B. Oxygen Vacancy Engineering in Photocatalysis. Sol. RRL 2020, 4 (8), 200003710.1002/solr.202000037. DOI
Mascaretti L.; Russo V.; Zoppellaro G.; Lucotti A.; Casari C. S.; Kment Š.; Naldoni A.; Li Bassi A. Excitation Wavelength- and Medium-Dependent Photoluminescence of Reduced Nanostructured TiO2 Films. J. Phys. Chem. C 2019, 123 (17), 11292–11303. 10.1021/acs.jpcc.9b01727. DOI
Abdullah S. A.; Sahdan M. Z.; Nafarizal N.; Saim H.; Bakri A. S.; Rohaida C. H. C.; Adriyanto F.; Sari Y. Photoluminescence Study of Trap-State Defect on TiO2 Thin Films at Different Substrate Temperature via RF Magnetron Sputtering. J. Phys. Conf. Ser. 2018, 995 (1), 01206710.1088/1742-6596/995/1/012067. DOI
Fu B.; Wu W.; Gan L.; Zhang Z. Bulk/Surface Defects Engineered TiO2 Nanotube Photonic Crystals Coupled with Plasmonic Gold Nanoparticles for Effective in Vivo Near-Infrared Light Photoelectrochemical Detection. Anal. Chem. 2019, 91 (22), 14611–14617. 10.1021/acs.analchem.9b03733. PubMed DOI
Ingram D. B.; Linic S. Water Splitting on Composite Plasmonic-Metal/Semiconductor Photoelectrodes : Evidence for Selective Plasmon-Induced Formation of Charge Carriers near the Semiconductor Surface. J. Am. Chem. Soc. 2011, 133, 5202–5205. 10.1021/ja200086g. PubMed DOI
Kumaravel V.; Mathew S.; Bartlett J.; Pillai S. C. Photocatalytic Hydrogen Production Using Metal Doped TiO2: A Review of Recent Advances. Appl. Catal., B 2019, 244, 1021–1064. 10.1016/j.apcatb.2018.11.080. DOI
Wang S.; Gao Y.; Miao S.; Liu T.; Mu L.; Li R.; Fan F.; Li C. Positioning the Water Oxidation Reaction Sites in Plasmonic Photocatalysts. J. Am. Chem. Soc. 2017, 139 (34), 11771–11778. 10.1021/jacs.7b04470. PubMed DOI
Yu Y.; Wijesekara K. D.; Xi X.; Willets K. A. Quantifying Wavelength-Dependent Plasmonic Hot Carrier Energy Distributions at Metal/Semiconductor Interfaces. ACS Nano 2019, 13 (3), 3629–3637. 10.1021/acsnano.9b00219. PubMed DOI
Zhu H.; Xie H.; Yang Y.; Wang K.; Zhao F.; Ye W.; Ni W. Mapping Hot Electron Response of Individual Gold Nanocrystals on a TiO2 Photoanode. Nano Lett. 2020, 20 (4), 2423–2431. 10.1021/acs.nanolett.9b05125. PubMed DOI
Tian Y.; Tatsuma T. Mechanisms and Applications of Plasmon-Induced Charge Separation at TiO2 Films Loaded with Gold Nanoparticles. J. Am. Chem. Soc. 2005, 127 (20), 7632–7637. 10.1021/ja042192u. PubMed DOI
Henrotte O.; Santiago E. Y.; Movsesyan A.; Mascaretti L.; Afshar M.; Minguzzi A.; Vertova A.; Wang Z. M.; Zboril R.; Kment S.; et al. Local Photochemical Nanoscopy of Hot-Carrier-Driven Catalytic Reactions Using Plasmonic Nanosystems. ACS Nano 2023, 17 (12), 11427–11438. 10.1021/acsnano.3c01009. PubMed DOI
Zou X.; Vadell R. B.; Liu Y.; Mendalz A.; Drillet M.; Sá J. Photophysical Study of Electron and Hole Trapping in TiO2 and TiO2/Au Nanoparticles through a Selective Electron Injection. J. Phys. Chem. C 2022, 126 (50), 21467–21475. 10.1021/acs.jpcc.2c07021. DOI
Lefrou C.; Cornut R. Analytical Expressions for Quantitative Scanning Electrochemical Microscopy (SECM). ChemPhysChem 2010, 11 (3), 547–556. 10.1002/cphc.200900600. PubMed DOI
Henrotte O.; Boudet A.; Limani N.; Bergonzo P.; Zribi B.; Scorsone E.; Jousselme B.; Cornut R. Steady-State Electrocatalytic Activity Evaluation with the Redox Competition Mode of Scanning Electrochemical Microscopy : A Gold Probe and a Boron-Doped Diamond Substrate. ChemElectroChem. 2020, 7, 4633–4640. 10.1002/celc.202001088. DOI
Baur J. E.19 - Diffusion Coefficients. In Handbook of Electrochemistry; Zoski C. G., Ed.; Elsevier: Amsterdam, 2007; pp 829–848.
Torres L. M.; Gil A. F.; Galicia L.; González I. Understanding the Difference between Inner- and Outer-Sphere Mechanisms: An Electrochemical Experiment. J. Chem. Educ. 1996, 73 (8), 808.10.1021/ed073p808. DOI
Bard A. J.; Faulkner L. R.. Electrochemical Methods: Fundamentals and Applications; Wiley: New York, 2001; pp 178–184.
Schorr N. B.; Counihan M. J.; Bhargava R.; Rodríguez-López J. Impact of Plasmonic Photothermal Effects on the Reactivity of Au Nanoparticle Modified Graphene Electrodes Visualized Using Scanning Electrochemical Microscopy. Anal. Chem. 2020, 92 (5), 3666–3673. 10.1021/acs.analchem.9b04754. PubMed DOI
Yu Y.; Sundaresan V.; Willets K. A. Hot Carriers versus Thermal Effects: Resolving the Enhancement Mechanisms for Plasmon-Mediated Photoelectrochemical Reactions. J. Phys. Chem. C 2018, 122 (9), 5040–5048. 10.1021/acs.jpcc.7b12080. DOI
Zhou X.; Gossage Z. T.; Simpson B. H.; Hui J.; Barton Z. J.; Rodriguez-Lopez J. Electrochemical Imaging of Photoanodic Water Oxidation Enhancements on TiO2 Thin Films Modified by Subsurface Aluminum Nanodimers. ACS Nano 2016, 10, 9346–9352. 10.1021/acsnano.6b04004. PubMed DOI
Holub M.; Adobes-Vidal M.; Frutiger A.; Gschwend P. M.; Pratsinis S. E.; Momotenko D. Single-Nanoparticle Thermometry with a Nanopipette. ACS Nano 2020, 14, 7358–7369. 10.1021/acsnano.0c02798. PubMed DOI
Yu X.; Kim B.; Kim Y. K. Highly Enhanced Photoactivity of Anatase TiO2 Nanocrystals by Controlled Hydrogenation-Induced Surface Defects. ACS Catal. 2013, 3 (11), 2479–2486. 10.1021/cs4005776. DOI
Naldoni A.; Allieta M.; Santangelo S.; Marelli M.; Fabbri F.; Cappelli S.; Bianchi C. L.; Psaro R.; Dal Santo V. Effect of Nature and Location of Defects on Bandgap Narrowing in Black TiO 2 Nanoparticles. J. Am. Chem. Soc. 2012, 134 (18), 7600–7603. 10.1021/ja3012676. PubMed DOI
Khan M. M.; Ansari S. A.; Pradhan D.; Ansari M. O.; Han D. H.; Lee J.; Cho M. H. Band Gap Engineered TiO2 Nanoparticles for Visible Light Induced Photoelectrochemical and Photocatalytic Studies. J. Mater. Chem. A 2014, 2 (3), 637–644. 10.1039/C3TA14052K. DOI
Hejazi S. M. H.; Shahrezaei M.; Błoński P.; Allieta M.; Sheverdyaeva P. M.; Moras P.; Bad'ura Z.; Kalytchuk S.; Mohammadi E.; Zbořil R.; et al. Defect Engineering over Anisotropic Brookite toward Substrate-Specific Photo-Oxidation of Alcohols. Chem. Catal. 2022, 2 (5), 1177–1190. 10.1016/j.checat.2022.03.015. DOI
Leshuk T.; Parviz R.; Everett P.; Krishnakumar H.; Varin R. A.; Gu F. Photocatalytic Activity of Hydrogenated TiO2. ACS Appl. Mater. Interfaces 2013, 5 (6), 1892–1895. 10.1021/am302903n. PubMed DOI
Mondal S.; Basak D. Defect Controlled Tuning of the Ratio of Ultraviolet to Visible Light Emission in TiO2 Thin Films. J. Lumin. 2016, 179, 480–486. 10.1016/j.jlumin.2016.07.046. DOI
Abdullah S. A.; Sahdan M. Z.; Nayan N.; Embong Z.; Hak C. R. C.; Adriyanto F. Neutron Beam Interaction with Rutile TiO2 Single Crystal (1 1 1): Raman and XPS Study on Ti3+-Oxygen Vacancy Formation. Mater. Lett. 2020, 263, 12714310.1016/j.matlet.2019.127143. DOI
Wang C.-C.; Chou P.-H. Effects of Various Hydrogenated Treatments on Formation and Photocatalytic Activity of Black TiO2 Nanowire Arrays. Nanotechnology 2016, 27 (32), 32540110.1088/0957-4484/27/32/325401. PubMed DOI
Orlando F.; Artiglia L.; Yang H.; Kong X.; Roy K.; Waldner A.; Chen S.; Bartels-Rausch T.; Ammann M. Disordered Adsorbed Water Layers on TiO2 Nanoparticles under Subsaturated Humidity Conditions at 235 K. J. Phys. Chem. Lett. 2019, 10 (23), 7433–7438. 10.1021/acs.jpclett.9b02779. PubMed DOI
He M.; Ji J.; Liu B.; Huang H. Reduced TiO2 with Tunable Oxygen Vacancies for Catalytic Oxidation of Formaldehyde at Room Temperature. Appl. Surf. Sci. 2019, 473, 934–942. 10.1016/j.apsusc.2018.12.212. DOI
Frankcombe T. J.; Liu Y. Interpretation of Oxygen 1s X-Ray Photoelectron Spectroscopy of ZnO. Chem. Mater. 2023, 35, 5468.10.1021/acs.chemmater.3c00801. DOI
Scanlon D. O.; Dunnill C. W.; Buckeridge J.; Shevlin S. A.; Logsdail A. J.; Woodley S. M.; Catlow C. R. A.; Powell M. J.; Palgrave R. G.; Parkin I. P.; et al. Band Alignment of Rutile and Anatase TiO2. Nat. Mater. 2013, 12 (9), 798–801. 10.1038/nmat3697. PubMed DOI
Chang L.; Besteiro L. V.; Sun J.; Santiago E. Y.; Gray S. K.; Wang Z.; Govorov A. O. Electronic Structure of the Plasmons in Metal Nanocrystals: Fundamental Limitations for the Energy Efficiency of Hot Electron Generation. ACS Energy Lett. 2019, 4 (10), 2552–2568. 10.1021/acsenergylett.9b01617. DOI
Khurgin J. B. Hot Carriers Generated by Plasmons: Where Are They Generated and Where Do They Go from There?. Faraday Discuss. 2019, 214 (0), 35–58. 10.1039/C8FD00200B. PubMed DOI
Geonmonond R. S.; da Silva A. G. M.; Rodrigues T. S.; de Freitas I. C.; Ando R. A.; Alves T. V.; Camargo P. H. C. Addressing the Effects of Size-Dependent Absorption, Scattering, and Near-Field Enhancements in Plasmonic Catalysis. ChemCatChem. 2018, 10 (16), 3447–3452. 10.1002/cctc.201800691. DOI
Santiago E. Y.; Besteiro L. V.; Kong X.; Correa-duarte M. A.; Wang Z.; Govorov A. O. Efficiency of Hot-Electron Generation in Plasmonic Nanocrystals with Complex Shapes: Surface-Induced Scattering, Hot Spots, and Interband Transitions. ACS Photonics 2020, 7, 2807–2824. 10.1021/acsphotonics.0c01065. DOI
Link S.; El-Sayed M. A. Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles. J. Phys. Chem. B 1999, 103 (21), 4212–4217. 10.1021/jp984796o. DOI
Jain P. K.; Lee K. S.; El-Sayed I. H.; El-Sayed M. A. Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine. J. Phys. Chem. B 2006, 110 (14), 7238–7248. 10.1021/jp057170o. PubMed DOI
Mass Transport Limitations in Plasmonic Photocatalysis