Compositional cubes: a new concept for multi-factorial compositions
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35971537
PubMed Central
PMC9366844
DOI
10.1007/s00362-022-01350-8
PII: 1350
Knihovny.cz E-zdroje
- Klíčová slova
- Analysis of independence, Compositional data, Coordinate representation, Orthogonal decomposition,
- Publikační typ
- časopisecké články MeSH
Compositional data are commonly known as multivariate observations carrying relative information. Even though the case of vector or even two-factorial compositional data (compositional tables) is already well described in the literature, there is still a need for a comprehensive approach to the analysis of multi-factorial relative-valued data. Therefore, this contribution builds around the current knowledge about compositional data a general theoretical framework for k-factorial compositional data. As a main finding it turns out that, similar to the case of compositional tables, also the multi-factorial structures can be orthogonally decomposed into an independent and several interactive parts and, moreover, a coordinate representation allowing for their separate analysis by standard analytical methods can be constructed. For the sake of simplicity, these features are explained in detail for the case of three-factorial compositions (compositional cubes), followed by an outline covering the general case. The three-dimensional structure is analyzed in depth in two practical examples, dealing with systems of spatial and time dependent compositional cubes. The methodology is implemented in the R package robCompositions.
Zobrazit více v PubMed
Agresti A. Categorical data analysis. 2. New York: Wiley; 2002.
Aitchison J. The statistical analysis of compositional data (with discussion) J R Stat Soc Ser B (Stat Methodol) 1982;44(2):139–177.
Aitchison J. The statistical analysis of compositional data. London: Chapman and Hall; 1986.
Billheimer D, Guttorp P, Fagan WF. Statistical interpretation of species composition. J Am Stat Assoc. 2015;96(456):1205–1214. doi: 10.1198/016214501753381850. DOI
Chavent M, Kuentz-Simonet V, Labenne A, et al. Clustgeo: an r package for hierarchical clustering with spatial constraints. Comput Stat. 2018;33:1799–1822. doi: 10.1007/s00180-018-0791-1. DOI
Coenders G, Martín-Fernández JA, Ferrer-Rosell B. When relative and absolute information matter: compositional predictor with a total in generalized linear models. Stat Model. 2017;17(6):494–512. doi: 10.1177/1471082X17710398. DOI
de Sousa J, Hron K, Fačevicová K, et al. Robust principal component analysis for compositional tables. J Appl Stat. 2021;48(2):214–233. doi: 10.1080/02664763.2020.1722078. PubMed DOI PMC
Eaton ML. Multivariate statistics. A vector space approach. New York: Wiley; 1983.
Egozcue JJ, Pawlowsky-Glahn V. Groups of parts and their balances in compositional data analysis. Math Geol. 2005;37:795–828. doi: 10.1007/s11004-005-7381-9. DOI
Egozcue JJ, Pawlowsky-Glahn V, Mateu-Figueras G, et al. Isometric logratio transformations for compositional data analysis. Math Geol. 2003;35(3):279–300. doi: 10.1023/A:1023818214614. DOI
Egozcue JJ, Díaz-Barrero JL, Pawlowsky-Glahn V (2008) Compositional analysis of bivariate discrete probabilities. In: Daunis-i Estadela J, Martín-Fernández JA (eds) Proceedings of CODAWORK’08, The 3rd compositional data analysis workshop, University of Girona, Spain
Egozcue JJ, Pawlowsky-Glahn V, Templ M, et al. Independence in contingency tables using simplicial geometry. Commun Stat. 2015;44(18):3978–3996. doi: 10.1080/03610926.2013.824980. DOI
Fačevicová K, Hron K, Todorov V, et al. Logratio approach to statistical analysis of DOI
Fačevicová K, Hron K, Todorov V, et al. Compositional tables analysis in coordinates. Scand J Stat. 2016;43:962–977. doi: 10.1111/sjos.12223. DOI
Fačevicová K, Hron K, Todorov V, et al. General approach to coordinate representation of compositional tables. Scand J Stat. 2018;45(4):879–899. doi: 10.1111/sjos.12326. DOI
Fačevicová K, Kynčlová P, Macků K. Geographically weighted regression analysis for two-factorial compositional data. In: Filzmoser P, Hron K, Martín-Fernández JA, Palarea-Albaladejo J, editors. Advances in compositional data analysis. Cham: Springer; 2021. pp. 103–124.
Filzmoser P, Hron K, Templ M. Applied compositional data analysis. Cham: Springer; 2018.
Heiler G, Hanbury A, Filzmoser P (2020a) The impact of covid-19 on relative changes in aggregated mobility using mobile-phone data. arXiv: 2009.03798
Heiler G, Reisch T, Hurt J, et al (2020b) Country-wide mobility changes observed using mobile phone data during covid-19 pandemic. In: 2020 IEEE international conference on big data (big data). IEEE Computer Society, Los Alamitos, CA, USA, pp 3123–3132, 10.1109/BigData50022.2020.9378374
Pawlowsky-Glahn V, Egozcue JJ. Geometric approach to statistical analysis on the simplex. Stochast Environ Res Risk Assess (SERRA) 2001;15(5):384–398. doi: 10.1007/s004770100077. DOI
Pawlowsky-Glahn V, Egozcue JJ, Tolosana-Delgado R. Modeling and analysis of compositional data. Chichester: Wiley; 2015.
Templ M, Hron K, Filzmoser P. robCompositions: an R-package for robust statistical analysis of compositional data. In: Pawlowsky-Glahn V, Buccianti A, editors. Compositional data analysis: theory and applications. Chichester: Wiley; 2011. pp. 341–355.