Mass Transport Limitations in Plasmonic Photocatalysis
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
38991547
PubMed Central
PMC11273613
DOI
10.1021/acs.nanolett.4c01386
Knihovny.cz E-resources
- Keywords
- hot carriers, mass transport, photocatalysis, plasmonics, scanning electrochemical microscopy,
- Publication type
- Journal Article MeSH
The interpretation of mechanisms governing hot carrier reactivity on metallic nanostructures is critical, yet elusive, for advancing plasmonic photocatalysis. In this work, we explored the influence of the diffusion of molecules on the hot carrier extraction rate at the solid-liquid interface, which is of fundamental interest for increasing the efficiency of photodevices. Through a spatially defined scanning photoelectrochemical microscopy investigation, we identified a diffusion-controlled regime hindering the plasmon-driven photochemical activity of metallic nanostructures. Using low-power monochromatic illumination (<2 W cm-2), we unveiled the hidden influence of mass transport on the quantum efficiency of plasmonic photocatalysts. The availability of molecules at the solid-liquid interface directly limits the extraction of hot holes, according to their nature and energy, at the reactive spots in Au nanoislands on an ultrathin TiO2 substrate. An intriguing question arises: does the mass transport enhancement caused by thermal effects unlock the reactivity of nonthermal carriers under steady state?
See more in PubMed
Mukherjee S.; Libisch F.; Large N.; Neumann O.; Brown L. V.; Cheng J.; Lassiter J. B.; Carter E. A.; Nordlander P.; Halas N. J. Hot Electrons Do the Impossible: Plasmon-Induced Dissociation of H2 on Au. Nano Lett. 2013, 13 (1), 240–247. 10.1021/nl303940z. PubMed DOI
Zhang Y.; He S.; Guo W.; Hu Y.; Huang J.; Mulcahy J. R.; Wei W. D. Surface-Plasmon-Driven Hot Electron Photochemistry. Chem. Rev. 2018, 118 (6), 2927–2954. 10.1021/acs.chemrev.7b00430. PubMed DOI
Zhang C.; Jia F.; Li Z.; Huang X.; Lu G. Plasmon-Generated Hot Holes for Chemical Reactions. Nano Res. 2020, 13 (12), 3183–3197. 10.1007/s12274-020-3031-2. DOI
Mubeen S.; Lee J.; Singh N.; Krämer S.; Stucky G. D.; Moskovits M. An Autonomous Photosynthetic Device in Which All Charge Carriers Derive from Surface Plasmons. Nat. Nanotechnol. 2013, 8, 247–251. 10.1038/nnano.2013.18. PubMed DOI
Swaminathan S.; Rao V. G.; Bera J. K.; Chandra M. The Pivotal Role of Hot Carriers in Plasmonic Catalysis of C-N Bond Forming Reaction of Amines. Angew. Chem., Int. Ed. 2021, 60 (22), 12532–12538. 10.1002/anie.202101639. PubMed DOI
Baffou G.; Cichos F.; Quidant R. Applications and Challenges of Thermoplasmonics. Nat. Mater. 2020, 19 (9), 946–958. 10.1038/s41563-020-0740-6. PubMed DOI
Mascaretti L.; Naldoni A. Hot Electron and Thermal Effects in Plasmonic Photocatalysis. J. Appl. Phys. 2020, 128 (4), 041101.10.1063/5.0013945. DOI
Brongersma M. L.; Halas N. J.; Nordlander P. Plasmon-Induced Hot Carrier Science and Technology. Nat. Nanotechnol. 2015, 10 (1), 25–34. 10.1038/nnano.2014.311. PubMed DOI
Tian Y.; Tatsuma T. Mechanisms and Applications of Plasmon-Induced Charge Separation at TiO2 Films Loaded with Gold Nanoparticles. J. Am. Chem. Soc. 2005, 127 (20), 7632–7637. 10.1021/ja042192u. PubMed DOI
Kontoleta E.; Tsoukala A.; Askes S. H. C.; Zoethout E.; Oksenberg E.; Agrawal H.; Garnett E. C. Using Hot Electrons and Hot Holes for Simultaneous Cocatalyst Deposition on Plasmonic Nanostructures. ACS Appl. Mater. Interfaces 2020, 12 (32), 35986–35994. 10.1021/acsami.0c04941. PubMed DOI PMC
Wang S.; Gao Y.; Miao S.; Liu T.; Mu L.; Li R.; Fan F.; Li C. Positioning the Water Oxidation Reaction Sites in Plasmonic Photocatalysts. J. Am. Chem. Soc. 2017, 139 (34), 11771–11778. 10.1021/jacs.7b04470. PubMed DOI
Zhu H.; Xie H.; Yang Y.; Wang K.; Zhao F.; Ye W.; Ni W. Mapping Hot Electron Response of Individual Gold Nanocrystals on a TiO2 Photoanode. Nano Lett. 2020, 20 (4), 2423–2431. 10.1021/acs.nanolett.9b05125. PubMed DOI
Lee H.; Lee H.; Park J. Y. Direct Imaging of Surface Plasmon-Driven Hot Electron Flux on the Au Nanoprism/TiO2. Nano Lett. 2019, 19 (2), 891–896. 10.1021/acs.nanolett.8b04119. PubMed DOI
Cortés E.; Xie W.; Cambiasso J.; Jermyn A. S.; Sundararaman R.; Narang P.; Schlücker S.; Maier S. A. Plasmonic Hot Electron Transport Drives Nano-Localized Chemistry. Nat. Commun. 2017, 8, 14880.10.1038/ncomms14880. PubMed DOI PMC
Tatsuma T.; Nishi H. Plasmonic Hole Ejection Involved in Plasmon-Induced Charge Separation. Nanoscale Horiz. 2020, 5 (4), 597–606. 10.1039/C9NH00649D. PubMed DOI
Ogata R.; Nishi H.; Ishida T.; Tatsuma T. Visualization of Nano-Localized and Delocalized Oxidation Sites for Plasmon-Induced Charge Separation. Nanoscale 2021, 13 (2), 681–684. 10.1039/D0NR08552A. PubMed DOI
Hong F.; Wang S.; Zhang J.; Zhang B.; Sun K.; Huang J.; Qiao B.; Ta N.; Li M.; Li D.; Huang W.; Haruta M.; Li C. Blocking the Non-Selective Sites through Surface Plasmon-Induced Deposition of Metal Oxide on Au/TiO2 for CO-PROX Reaction. Chem. Catal. 2021, 1 (2), 456–466. 10.1016/j.checat.2021.04.003. DOI
Aizpurua J.; Ashfold M.; Baletto F.; Baumberg J.; Christopher P.; Cortes E.; de Nijs B.; Diaz Fernandez Y.; Gargiulo J.; Gawinkowski S.; Halas N.; Hamans R.; Jankiewicz B.; Khurgin J.; Kumar P. V.; Liu J.; Maier S.; Maurer R. J.; Mount A; Mueller N. S.; Oulton R.; Parente M.; Park J. Y.; Polanyi J.; Quiroz J.; Rejman S.; Schlucker S.; Schultz Z.; Sivan Y.; Tagliabue G.; Thangamuthu M.; Torrente-Murciano L.; Xiao X.; Zayats A.; Zhan C. Dynamics of Hot Electron Generation in Metallic Nanostructures: General Discussion. Faraday Discuss. 2019, 214 (0), 123–146. 10.1039/C9FD90011J. PubMed DOI
Cortés E.; Besteiro L. V.; Alabastri A.; Baldi A.; Tagliabue G.; Demetriadou A.; Narang P. Challenges in Plasmonic Catalysis. ACS Nano 2020, 14 (12), 16202–16219. 10.1021/acsnano.0c08773. PubMed DOI
Zhou X.; Gossage Z. T.; Simpson B. H.; Hui J.; Barton Z. J.; Rodríguez-López J. Electrochemical Imaging of Photoanodic Water Oxidation Enhancements on TiO2 Thin Films Modified by Subsurface Aluminum Nanodimers. ACS Nano 2016, 10 (10), 9346–9352. 10.1021/acsnano.6b04004. PubMed DOI
Yu Y.; Sundaresan V.; Willets K. A. Hot Carriers versus Thermal Effects: Resolving the Enhancement Mechanisms for Plasmon-Mediated Photoelectrochemical Reactions. J. Phys. Chem. C 2018, 122 (9), 5040–5048. 10.1021/acs.jpcc.7b12080. DOI
Schorr N. B.; Counihan M. J.; Bhargava R.; Rodríguez-López J. Impact of Plasmonic Photothermal Effects on the Reactivity of Au Nanoparticle Modified Graphene Electrodes Visualized Using Scanning Electrochemical Microscopy. Anal. Chem. 2020, 92 (5), 3666–3673. 10.1021/acs.analchem.9b04754. PubMed DOI
Yu Y.; Wijesekara K. D.; Xi X.; Willets K. A. Quantifying Wavelength-Dependent Plasmonic Hot Carrier Energy Distributions at Metal/Semiconductor Interfaces. ACS Nano 2019, 13 (3), 3629–3637. 10.1021/acsnano.9b00219. PubMed DOI
Henrotte O.; Santiago E. Y.; Movsesyan A.; Mascaretti L.; Afshar M.; Minguzzi A.; Vertova A.; Wang Z. M.; Zboril R.; Kment S.; Govorov A. O.; Naldoni A. Local Photochemical Nanoscopy of Hot-Carrier-Driven Catalytic Reactions Using Plasmonic Nanosystems. ACS Nano 2023, 17 (12), 11427–11438. 10.1021/acsnano.3c01009. PubMed DOI
Kiani F.; Bowman A. R.; Sabzehparvar M.; Karaman C. O.; Sundararaman R.; Tagliabue G. Transport and Interfacial Injection of D-Band Hot Holes Control Plasmonic Chemistry. ACS Energy Lett. 2023, 8, 4242–4250. 10.1021/acsenergylett.3c01505. PubMed DOI PMC
Henrotte O.; Kment Š.; Naldoni A. Interfacial States in Au/Reduced TiO2 Plasmonic Photocatalysts Quench Hot-Carrier Photoactivity. J. Phys. Chem. C 2023, 127 (32), 15861–15870. 10.1021/acs.jpcc.3c04176. PubMed DOI PMC
Bard A. J.; Fan F. R. F.; Kwak J.; Lev O. SCANNING ELECTROCHEMICAL MICROSCOPY - INTRODUCTION AND PRINCIPLES. Anal. Chem. 1989, 61 (2), 132–138. 10.1021/ac00177a011. DOI
Sun P.; Mirkin M. V. Electrochemistry of Individual Molecules in Zeptoliter Volumes. J. Am. Chem. Soc. 2008, 130 (26), 8241–8250. 10.1021/ja711088j. PubMed DOI
Yu Y.; Sun T.; Mirkin M. V. Scanning Electrochemical Microscopy of Single Spherical Nanoparticles: Theory and Particle Size Evaluation. Anal. Chem. 2015, 87 (14), 7446–7453. 10.1021/acs.analchem.5b01690. PubMed DOI
Kwak J.; Bard A. J. Scanning Electrochemical Microscopy. Theory of the Feedback Mode. Anal. Chem. 1989, 61 (11), 1221–1227. 10.1021/ac00186a009. DOI
Amphlett J. L.; Denuault G. Scanning Electrochemical Microscopy (SECM): An Investigation of the Effects of Tip Geometry on Amperometric Tip Response. J. Phys. Chem. B 1998, 102 (49), 9946–9951. 10.1021/jp982829u. DOI
Eloul S.; Compton R. G. General Model of Hindered Diffusion. J. Phys. Chem. Lett. 2016, 7 (21), 4317–4321. 10.1021/acs.jpclett.6b02275. PubMed DOI
Rodríguez O.; Denuault G. The Influence of the Oxygen Reduction Reaction (ORR) on Pt Oxide Electrochemistry. ChemElectroChem. 2021, 8 (18), 3525–3532. 10.1002/celc.202100710. DOI
Eckhard K.; Chen X.; Turcu F.; Schuhmann W. Redox Competition Mode of Scanning Electrochemical Microscopy (RC-SECM) for Visualisation of Local Catalytic Activity. Phys. Chem. Chem. Phys. 2006, 8 (45), 5359–5365. 10.1039/b609511a. PubMed DOI
Henrotte O.; Boudet A.; Limani N.; Bergonzo P.; Zribi B.; Scorsone E.; Jousselme B.; Cornut R. Steady-State Electrocatalytic Activity Evaluation with the Redox Competition Mode of Scanning Electrochemical Microscopy: A Gold Probe and a Boron-Doped Diamond Substrate. ChemElectroChem. 2020, 7, 4633–4640. 10.1002/celc.202001088. DOI
Martin R. D.; Unwin P. R. Theory and Experiment for the Substrate Generation Tip Collection Mode of the Scanning Electrochemical Microscope: Application as an Approach for Measuring the Diffusion Coefficient Ratio of a Redox Couple. Anal. Chem. 1998, 70 (2), 276–284. 10.1021/ac970681p. DOI
Sánchez-Sánchez C. M.; Rodríguez-López J.; Bard A. J. Scanning Electrochemical Microscopy. 60. Quantitative Calibration of the SECM Substrate Generation/Tip Collection Mode and Its Use for the Study of the Oxygen Reduction Mechanism. Anal. Chem. 2008, 80 (9), 3254–3260. 10.1021/ac702453n. PubMed DOI
El-Sayed M. A. Some Interesting Properties of Metals Confined in Time and Nanometer Space of Different Shapes. Acc. Chem. Res. 2001, 34 (4), 257–264. 10.1021/ar960016n. PubMed DOI
Kang M.; Park S.-G.; Jeong K.-H. Repeated Solid-State Dewetting of Thin Gold Films for Nanogap-Rich Plasmonic Nanoislands. Sci. Rep. 2015, 5 (1), 14790.10.1038/srep14790. PubMed DOI PMC
Cornut R.; Lefrou C. A Unified New Analytical Approximation for Negative Feedback Currents with a Microdisk SECM Tip. J. Electroanal. Chem. 2007, 608 (1), 59–66. 10.1016/j.jelechem.2007.05.007. DOI
Scanlon D. O.; Dunnill C. W.; Buckeridge J.; Shevlin S. A.; Logsdail A. J.; Woodley S. M.; Catlow C. R. A.; Powell M. J.; Palgrave R. G.; Parkin I. P.; Watson G. W.; Keal T. W.; Sherwood P.; Walsh A.; Sokol A. A. Band Alignment of Rutile and Anatase TiO2. Nat. Mater. 2013, 12 (9), 798–801. 10.1038/nmat3697. PubMed DOI
Santiago E. Y.; Besteiro L. V.; Kong X.; Correa-duarte M. A.; Wang Z.; Govorov A. O. Efficiency of Hot-Electron Generation in Plasmonic Nanocrystals with Complex Shapes: Surface-Induced Scattering, Hot Spots, and Interband Transitions. ACS Photonics 2020, 7, 2807–2824. 10.1021/acsphotonics.0c01065. DOI
Brown A. M.; Sundararaman R.; Narang P.; Goddard W. A.; Atwater H. A. Nonradiative Plasmon Decay and Hot Carrier Dynamics: Effects of Phonons, Surfaces, and Geometry. ACS Nano 2016, 10, 957–966. 10.1021/acsnano.5b06199. PubMed DOI
Khurgin J. B. Fundamental Limits of Hot Carrier Injection from Metal in Nanoplasmonics. Nanophotonics 2020, 9 (2), 453–471. 10.1515/nanoph-2019-0396. DOI
Oleinick A. I.; Battistel D.; Daniele S.; Svir I.; Amatore C. Simple and Clear Evidence for Positive Feedback Limitation by Bipolar Behavior during Scanning Electrochemical Microscopy of Unbiased Conductors. Anal. Chem. 2011, 83 (12), 4887–4893. 10.1021/ac2006075. PubMed DOI
Mao Z.; Vang H.; Garcia A.; Tohti A.; Stokes B. J.; Nguyen S. C. Carrier Diffusion—The Main Contribution to Size-Dependent Photocatalytic Activity of Colloidal Gold Nanoparticles. ACS Catal. 2019, 9 (5), 4211–4217. 10.1021/acscatal.9b00390. DOI
Jain P. K.; Lee K. S.; El-Sayed I. H.; El-Sayed M. A. Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine. J. Phys. Chem. B 2006, 110 (14), 7238–7248. 10.1021/jp057170o. PubMed DOI