Spatial mapping of metals in tissue-sections using combination of mass-spectrometry and histology through image registration
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28071735
PubMed Central
PMC5223221
DOI
10.1038/srep40169
PII: srep40169
Knihovny.cz E-zdroje
- MeSH
- histologické techniky metody MeSH
- hmotnostní spektrometrie metody MeSH
- měď analýza MeSH
- melanom patologie MeSH
- modely nemocí na zvířatech MeSH
- pilotní projekty MeSH
- počítačové zpracování obrazu metody MeSH
- prasata MeSH
- zinek analýza MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- měď MeSH
- zinek MeSH
We describe a new procedure for the parallel mapping of selected metals in histologically characterized tissue samples. Mapping is achieved via image registration of digital data obtained from two neighbouring cryosections by scanning the first as a histological sample and subjecting the second to laser ablation inductively coupled plasma mass spectrometry. This computer supported procedure enables determination of the distribution and content of metals of interest directly in the chosen histological zones and represents a substantial improvement over the standard approach, which determines these values in tissue homogenates or whole tissue sections. The potential of the described procedure was demonstrated in a pilot study that analysed Zn and Cu levels in successive development stages of pig melanoma tissue using MeLiM (Melanoma-bearing-Libechov-Minipig) model. We anticipate that the procedure could be useful for a complex understanding of the role that the spatial distribution of metals plays within tissues affected by pathological states including cancer.
Central European Institute of Technology Masaryk University Kamenice 5 CZ 625 00 Brno Czech Republic
Zobrazit více v PubMed
Formigari A., Gregianin E. & Irato P. The effect of zinc and the role of p53 in copper-induced cellular stress responses. J Appl Toxicol 33, 527–536 (2013). PubMed
McCord M. C. & Aizenman E. The role of intracellular zinc release in aging, oxidative stress, and Alzheimer’s disease. Front Aging Neurosci 6, 1–16 (2014). PubMed PMC
Prasad A. S.. Zinc: role in immunity, oxidative stress and chronic inflammation. Curr Opin Clin Nutr Metab Care 12, 646–652 (2009). PubMed
Gumulec J. et al.. Serum and Tissue Zinc in Epithelial Malignancies: A Meta-Analysis. PLoS One 9, 1–11 (2014). PubMed PMC
Planska D., Burocziova M., Strnadel J. & Horak V. Immunohistochemical Analysis of Collagen IV and Laminin Expression in Spontaneous Melanoma Regression in the Melanoma-Bearing Libechov Minipig. Acta Histochem Cytochem 48, 15–26 (2015). PubMed PMC
Horak V., Fortyn K., Hruban V. & Klaudy J. Hereditary melanoblastoma in miniature pigs and its successful therapy by devitalization technique. Cell Mol Biol 45, 1119–1129 (1999). PubMed
Geffrotin C. et al.. Opposite regulation of tenascin-C and tenascin-X in MeLiM swine heritable cutaneous malignant melanoma. Biochim Biophys Acta-Gen Subj 1524, 196–202 (2000). PubMed
Borovansky J. et al.. Biochemical characterization of a new melanoma model the minipig MeLiM strain. Melanoma Res 13, 543–548 (2003). PubMed
Vincent-Naulleau S. et al.. Clinical and histopathological characterization of cutaneous melanomas in the melanoblastoma-bearing Libechov minipig model. Pigm Cell Res 17, 24–35 (2004). PubMed
Vaculovic T. et al.. Influence of laser ablation parameters on trueness of imaging. Appl Surf Sci 351, 296–302 (2015).
Becker J. S. et al.. Imaging of copper, zinc, and other elements in thin section of human brain samples (Hippocampus) by laser ablation inductively coupled plasma mass spectrometry. Anal Chem 77, 3208–3216 (2005). PubMed
Becker J. S. et al.. Bioimaging of metals by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Mass Spectrom Rev 29, 156–175 (2010). PubMed
Latkoczy C., Muller Y., Schmutz P. & Gunther D. Quantitative element mapping of Mg alloys by laser ablation ICP-MS and EPMA. Appl Surf Sci 252, 127–132 (2005).
Halicz L. & Gunther D. Quantitative analysis of silicates using LA-ICP-MS with liquid calibration. J Anal At Spectrom 19, 1539–1545 (2004).
van Elteren J. T., Tennent N. H. & Selih V. S.. Multi-element quantification of ancient/historic glasses by laser ablation inductively coupled plasma mass spectrometry using sum normalization calibration. Anal Chim Acta 644, 1–9 (2009). PubMed
Crain J. S. & Gallimore D. L.. Inductively coupled plasma-mass spectrometry of synthetic elements - TC-99. Appl Spectrosc 46, 547–549 (1992).
Frick D. A. & Gunther D. Fundamental studies on the ablation behaviour of carbon in LA-ICP-MS with respect to the suitability as internal standard. J Anal At Spectrom 27, 1294–1303 (2012).
Riesop D., Hirner A. V., Rusch P. & Bankfalvi A. Zinc distribution within breast cancer tissue: A possible marker for histological grading? J Cancer Res Clin Oncol 141, 1321–1331 (2015). PubMed PMC
Zitova B. & Flusser J. Image registration methods: a survey. Image Vis Comput 21, 977–1000 (2003).
Preparata F. P. & Shamos M. I.. Computational Geometry Springer-Verlag (2012).
Corvi M. & Nicchiotti G. Multiresolution image registration I E E E, Computer Soc Press (1995).
Pinheiro J. C. & Bates M. D.. Mixed-effects models in S and S-PLUS. Springer (2006).
Bates D., Machler M., Bolker B. M. & Walker S. C.. Fitting Linear Mixed-Effects Models Using lme4. J Stat Softw 67, 1–48 (2015).
Thai H. T. et al.. A comparison of bootstrap approaches for estimating uncertainty of parameters in linear mixed-effects models. Pharm Stat 12, 129–140 (2013). PubMed
Dunn O. J.. Multiple comparisons among means. J Am Stat Assoc 56, 52–64 (1961).
Fisher G. L., Spitler L. E., McNeill K. L. & Rosenblatt L. S.. Serum copper and zinc levels in melanoma patients. Cancer 47, 1838–1844 (1981). PubMed
Ros-Bullon M. R., Sanchez-Pedreno S. & Martinez-Liarte J. H.. Serum zinc levels are increased in melanoma patients. Melanoma Res 8, 273–277 (1998). PubMed
Gorodetsky R., Sheskin J. & Weinreb A. Iron, copper, and zinc concentrations in normal skin and in various nonmalignant and malignant lesions. Int J Dermatol 25, 440–445 (1986). PubMed
Manga P. et al.. A role for tyrosinase-related protein 1 in 4-tert-butyl phenol-induced toxicity in melanocytes - Implications for vitiligo. Am J Pathol 169, 1652–1662 (2006). PubMed PMC
Garcia-Borron J. C. & Sanchez M. C. O. Biosynthesis of Melanins Wiley-V C H Verlag Gmbh (2011).
Yamaguchi Y., Brenner M. & Hearing V. J.. The regulation of skin pigmentation. J Biol Chem 282, 27557–27561 (2007). PubMed
Zalewska M., Trefon J. & Milnerowicz H. The role of metallothionein interactions with other proteins. Proteomics 14, 1343–1356 (2014). PubMed
Weinlich G. et al.. Comparison of metallothionein-overexpression with sentinel lymph node biopsy as prognostic factors in melanoma. J Eur Acad Dermatol Venereol 21, 669–677 (2007). PubMed
Weinlich G. & Zelger B. Metallothionein overexpression, a highly significant prognostic factor in thin melanoma. Histopathology 51, 280–283 (2007). PubMed
McRae R., Bagchi P., Sumalekshmy S. & Fahrni C. J.. In Situ Imaging of Metals in Cells and Tissues. Chem Rev 109, 4780–4827 (2009). PubMed PMC
Melanoma-Bearing Libechov Minipig (MeLiM): The Unique Swine Model of Hereditary Metastatic Melanoma
MALDI MSI of MeLiM melanoma: Searching for differences in protein profiles