Acute Increases in Intracellular Zinc Lead to an Increased Lysosomal and Mitochondrial Autophagy and Subsequent Cell Demise in Malignant Melanoma

. 2021 Jan 11 ; 22 (2) : . [epub] 20210111

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33440911

Grantová podpora
PROGRESS Q40/01 Charles University

Changes in zinc content and dysregulated zinc homeostatic mechanisms have been recognized in several solid malignancies such as prostate cancer, breast cancer, or pancreatic cancer. Moreover, it has been shown that zinc serum and/or tissue levels are altered in melanoma with varying effects on melanoma development and biology. This study was conducted to explore the effects of acute increases of intracellular zinc in a set of melanoma tissue explants obtained from clinical samples. Measurements of their zinc content showed an extant heterogeneity in total and free intracellular zinc pools associated with varying biological behavior of individual cells, e.g., autophagy levels and propensity to cell death. Use of zinc pyrithione elevated intracellular zinc in a short time frame which resulted in marked changes in mitochondrial activity and lysosomes. These alterations were accompanied by significantly enhanced autophagy flux and subsequent cell demise in the absence of typical apoptotic cell death markers. The present results show for the first time that acutely increased intracellular zinc in melanoma cells specifically enhances their autophagic activity via mitochondria and lysosomes which leads to autophagic cell death. While biologically relevant, this discovery may contribute to our understanding and exploration of zinc in relation to autophagy as a means of controlling melanoma growth and survival.

Zobrazit více v PubMed

Gray-Schopfer V., Wellbrock C., Marais R. Melanoma biology and new targeted therapy. Nature. 2007;445:851–857. doi: 10.1038/nature05661. PubMed DOI

Wilmott J.S., Johansson P.A., Newell F., Waddell N., Ferguson P., Quek C., Patch A.M., Nones K., Shang P., Pritchard A.L., et al. Whole genome sequencing of melanomas in adolescent and young adults reveals distinct mutation landscapes and the potential role of germline variants in disease susceptibility. Int. J. Cancer. 2019;144:1049–1060. doi: 10.1002/ijc.31791. PubMed DOI

Hodis E., Watson I.R., Kryukov G.V., Arold S.T., Imielinski M., Theurillat J.P., Nickerson E., Auclair D., Li L., Place C., et al. A landscape of driver mutations in melanoma. Cell. 2012;150:251–263. doi: 10.1016/j.cell.2012.06.024. PubMed DOI PMC

Demirsoy S., Martin S., Maes H., Agostinis P. Adapt, Recycle, and Move on: Proteostasis and Trafficking Mechanisms in Melanoma. Front. Oncol. 2016;6:240. doi: 10.3389/fonc.2016.00240. PubMed DOI PMC

Ratnikov B.I., Scott D.A., Osterman A.L., Smith J.W., Ronai Z.A. Metabolic rewiring in melanoma. Oncogene. 2017;36:147–157. doi: 10.1038/onc.2016.198. PubMed DOI PMC

Araujo L.F., Siena A.D.D., Placa J.R., Brotto D.B., Barros I.I., Muys B.R., Biagi C.A.O., Jr., Peronni K.C., Sousa J.F., Molfetta G.A., et al. Mitochondrial transcription factor A (TFAM) shapes metabolic and invasion gene signatures in melanoma. Sci. Rep. 2018;8:14190. doi: 10.1038/s41598-018-31170-6. PubMed DOI PMC

Chen Y., Klionsky D.J. The regulation of autophagy—Unanswered questions. Pt 2J. Cell. Sci. 2011;124:161–170. doi: 10.1242/jcs.064576. PubMed DOI PMC

Feng Y., He D., Yao Z., Klionsky D.J. The machinery of macroautophagy. Cell. Res. 2014;24:24–41. doi: 10.1038/cr.2013.168. PubMed DOI PMC

Glick D., Barth S., Macleod K.F. Autophagy: Cellular and molecular mechanisms. J. Pathol. 2010;221:3–12. doi: 10.1002/path.2697. PubMed DOI PMC

Mathew R., Karantza-Wadsworth V., White E. Role of autophagy in cancer. Nat. Rev. Cancer. 2007;7:961–967. doi: 10.1038/nrc2254. PubMed DOI PMC

Li X., He S., Ma B. Autophagy and autophagy-related proteins in cancer. Mol. Cancer. 2020;19:12. doi: 10.1186/s12943-020-1138-4. PubMed DOI PMC

Miracco C., Cevenini G., Franchi A., Luzi P., Cosci E., Mourmouras V., Monciatti I., Mannucci S., Biagioli M., Toscano M., et al. Beclin 1 and LC3 autophagic gene expression in cutaneous melanocytic lesions. Hum. Pathol. 2010;41:503–512. doi: 10.1016/j.humpath.2009.09.004. PubMed DOI

Liu H., He Z., von Rutte T., Yousefi S., Hunger R.E., Simon H.U. Downregulation of autophagy-related protein 5 (ATG5) contributes to the pathogenesis of early-stage cutaneous melanoma. Sci. Transl. Med. 2013;5:202ra123. doi: 10.1126/scitranslmed.3005864. PubMed DOI

Maes H., Martin S., Verfaillie T., Agostinis P. Dynamic interplay between autophagic flux and Akt during melanoma progression in vitro. Exp. Dermatol. 2014;23:101–106. doi: 10.1111/exd.12298. PubMed DOI

Lazova R., Klump V., Pawelek J. Autophagy in cutaneous malignant melanoma. J. Cutan Pathol. 2010;37:256–268. doi: 10.1111/j.1600-0560.2009.01359.x. PubMed DOI

Lazova R., Camp R.L., Klump V., Siddiqui S.F., Amaravadi R.K., Pawelek J.M. Punctate LC3B expression is a common feature of solid tumors and associated with proliferation, metastasis, and poor outcome. Clin. Cancer Res. 2012;18:370–379. doi: 10.1158/1078-0432.CCR-11-1282. PubMed DOI PMC

Hara Y., Nakamura M. Overexpression of autophagy-related beclin-1 in advanced malignant melanoma and its low expression in melanoma-in-situ. Eur. J. Dermatol. 2012;22:128–129. doi: 10.1684/ejd.2011.1562. PubMed DOI

Beyersmann D., Haase H. Functions of zinc in signaling, proliferation and differentiation of mammalian cells. Biometals. 2001;14:331–341. doi: 10.1023/A:1012905406548. PubMed DOI

Ogawa Y., Kawamura T., Shimada S. Zinc and skin biology. Arch. Biochem. Biophys. 2016;611:113–119. doi: 10.1016/j.abb.2016.06.003. PubMed DOI

Palmiter R.D., Huang L. Efflux and compartmentalization of zinc by members of the SLC30 family of solute carriers. Pflug. Archiv. 2004;447:744–751. doi: 10.1007/s00424-003-1070-7. PubMed DOI

Jeong J., Eide D.J. The SLC39 family of zinc transporters. Mol. Asp. Med. 2013;34:612–619. doi: 10.1016/j.mam.2012.05.011. PubMed DOI PMC

Babula P., Masarik M., Adam V., Eckschlager T., Stiborova M., Trnkova L., Skutkova H., Provaznik I., Hubalek J., Kizek R. Mammalian metallothioneins: Properties and functions. Metallomics. 2012;4:739–750. doi: 10.1039/c2mt20081c. PubMed DOI

Prasad A.S. Zinc and immunity. Mol. Cell. Biochem. 1998;188:63–69. doi: 10.1023/A:1006868305749. PubMed DOI

Truong-Tran A.Q., Carter J., Ruffin R., Zalewski P.D. New insights into the role of zinc in the respiratory epithelium. Immunol. Cell. Biol. 2001;79:170–177. doi: 10.1046/j.1440-1711.2001.00986.x. PubMed DOI

Tudor R., Zalewski P.D., Ratnaike R.N. Zinc in health and chronic disease. J. Nutr. Health Aging. 2005;9:45–51. PubMed

Frederickson C.J., Suh S.W., Silva D., Thompson R.B. Importance of zinc in the central nervous system: The zinc-containing neuron. J. Nutr. 2000;130(Suppl. S5):1471S–1483S. doi: 10.1093/jn/130.5.1471S. PubMed DOI

Prasad A.S., Kucuk O. Zinc in cancer prevention. Cancer Metastasis Rev. 2002;21:291–295. doi: 10.1023/A:1021215111729. PubMed DOI

Costello L.C., Zou J., Franklin R.B. In situ clinical evidence that zinc levels are decreased in breast invasive ductal carcinoma. Cancer Causes Control. 2016;27:729–735. doi: 10.1007/s10552-016-0746-1. PubMed DOI PMC

Bergomi M., Pellacani G., Vinceti M., Bassissi S., Malagoli C., Alber D., Sieri S., Vescovi L., Seidenari S., Vivoli R. Trace elements and melanoma. J. Trace Elem. Med. Biol. 2005;19:69–73. doi: 10.1016/j.jtemb.2005.06.002. PubMed DOI

Zamirska A., Matusiak L., Dziegiel P., Szybejko-Machaj G., Szepietowski J.C. Expression of metallothioneins in cutaneous squamous cell carcinoma and actinic keratosis. Pathol. Oncol. Res. 2012;18:849–855. doi: 10.1007/s12253-012-9513-0. PubMed DOI PMC

Ros-Bullon M.R., Sanchez-Pedreno P., Martinez-Liarte J.H. Serum zinc levels are increased in melanoma patients. Melanoma Res. 1998;8:273–277. doi: 10.1097/00008390-199806000-00011. PubMed DOI

Anyz J., Vyslouzilova L., Vaculovic T., Tvrdonova M., Kanicky V., Haase H., Horak V., Stepankova O., Heger Z., Adam V. Spatial mapping of metals in tissue-sections using combination of mass-spectrometry and histology through image registration. Sci. Rep. 2017;7:40169. doi: 10.1038/srep40169. PubMed DOI PMC

Hung H.H., Huang W.P., Pan C.Y. Dopamine- and zinc-induced autophagosome formation facilitates PC12 cell survival. Cell. Biol. Toxicol. 2013;29:415–429. doi: 10.1007/s10565-013-9261-2. PubMed DOI

Liuzzi J.P., Yoo C. Role of zinc in the regulation of autophagy during ethanol exposure in human hepatoma cells. Biol. Trace Elem. Res. 2013;156:350–356. doi: 10.1007/s12011-013-9816-3. PubMed DOI

Hwang J.J., Kim H.N., Kim J., Cho D.H., Kim M.J., Kim Y.S., Kim Y., Park S.J., Koh J.Y. Zinc(II) ion mediates tamoxifen-induced autophagy and cell death in MCF-7 breast cancer cell line. Biometals. 2010;23:997–1013. doi: 10.1007/s10534-010-9346-9. PubMed DOI

Cho Y.H., Lee S.H., Lee S.J., Kim H.N., Koh J.Y. A role of metallothionein-3 in radiation-induced autophagy in glioma cells. Sci. Rep. 2020;10:2015. doi: 10.1038/s41598-020-58237-7. PubMed DOI PMC

Liuzzi J.P., Guo L., Yoo C., Stewart T.S. Zinc and autophagy. Biometals. 2014;27:1087–1096. doi: 10.1007/s10534-014-9773-0. PubMed DOI PMC

Denton D., Kumar S. Autophagy-dependent cell death. Cell. Death Differ. 2019;26:605–616. doi: 10.1038/s41418-018-0252-y. PubMed DOI PMC

Elgendy M., Sheridan C., Brumatti G., Martin S.J. Oncogenic Ras-induced expression of Noxa and Beclin-1 promotes autophagic cell death and limits clonogenic survival. Mol. Cell. 2011;42:23–35. doi: 10.1016/j.molcel.2011.02.009. PubMed DOI

Dasari S.K., Bialik S., Levin-Zaidman S., Levin-Salomon V., Merrill A.H., Jr., Futerman A.H., Kimchi A. Signalome-wide RNAi screen identifies GBA1 as a positive mediator of autophagic cell death. Cell. Death Differ. 2017;24:1288–1302. doi: 10.1038/cdd.2017.80. PubMed DOI PMC

Maret W. Molecular aspects of human cellular zinc homeostasis: Redox control of zinc potentials and zinc signals. Biometals. 2009;22:149–157. doi: 10.1007/s10534-008-9186-z. PubMed DOI

Lu Q., Haragopal H., Slepchenko K.G., Stork C., Li Y.V. Intracellular zinc distribution in mitochondria, ER and the Golgi apparatus. Int. J. Physiol. Pathophysiol. Pharmacol. 2016;8:35–43. PubMed PMC

Kukic I., Kelleher S.L., Kiselyov K. Zn2+ efflux through lysosomal exocytosis prevents Zn2+-induced toxicity. Pt 14J. Cell. Sci. 2014;127:3094–3103. doi: 10.1242/jcs.145318. PubMed DOI PMC

Borovansky J. Zinc in pigmented cells and structures, interactions and possible roles. Sbor. Lek. 1994;95:309–320. PubMed

Hwang J.J., Lee S.J., Kim T.Y., Cho J.H., Koh J.Y. Zinc and 4-hydroxy-2-nonenal mediate lysosomal membrane permeabilization induced by H2O2 in cultured hippocampal neurons. J. Neurosci. 2008;28:3114–3122. doi: 10.1523/JNEUROSCI.0199-08.2008. PubMed DOI PMC

Wang F., Gomez-Sintes R., Boya P. Lysosomal membrane permeabilization and cell death. Traffic. 2018;19:918–931. doi: 10.1111/tra.12613. PubMed DOI

Rudolf E., Cervinka M. The role of intracellular zinc in chromium(VI)-induced oxidative stress, DNA damage and apoptosis. Chem. Biol. Interact. 2006;162:212–227. doi: 10.1016/j.cbi.2006.06.005. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Induced Zinc Loss Produces Heterogenous Biological Responses in Melanoma Cells

. 2022 Jul 27 ; 23 (15) : . [epub] 20220727

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...