Acute Increases in Intracellular Zinc Lead to an Increased Lysosomal and Mitochondrial Autophagy and Subsequent Cell Demise in Malignant Melanoma
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
PROGRESS Q40/01
Charles University
PubMed
33440911
PubMed Central
PMC7826594
DOI
10.3390/ijms22020667
PII: ijms22020667
Knihovny.cz E-zdroje
- Klíčová slova
- autophagy, cell death, lysosomes, melanoma, mitochondria, zinc,
- MeSH
- apoptóza MeSH
- autofagie * účinky léků MeSH
- buněčná smrt MeSH
- časové faktory MeSH
- intracelulární membrány účinky léků metabolismus MeSH
- intracelulární prostor metabolismus MeSH
- lidé MeSH
- lyzozomy metabolismus MeSH
- melanocyty účinky léků metabolismus MeSH
- melanom metabolismus MeSH
- mitochondrie účinky léků metabolismus MeSH
- nádorové buněčné linie MeSH
- proliferace buněk MeSH
- zinek metabolismus farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- zinek MeSH
Changes in zinc content and dysregulated zinc homeostatic mechanisms have been recognized in several solid malignancies such as prostate cancer, breast cancer, or pancreatic cancer. Moreover, it has been shown that zinc serum and/or tissue levels are altered in melanoma with varying effects on melanoma development and biology. This study was conducted to explore the effects of acute increases of intracellular zinc in a set of melanoma tissue explants obtained from clinical samples. Measurements of their zinc content showed an extant heterogeneity in total and free intracellular zinc pools associated with varying biological behavior of individual cells, e.g., autophagy levels and propensity to cell death. Use of zinc pyrithione elevated intracellular zinc in a short time frame which resulted in marked changes in mitochondrial activity and lysosomes. These alterations were accompanied by significantly enhanced autophagy flux and subsequent cell demise in the absence of typical apoptotic cell death markers. The present results show for the first time that acutely increased intracellular zinc in melanoma cells specifically enhances their autophagic activity via mitochondria and lysosomes which leads to autophagic cell death. While biologically relevant, this discovery may contribute to our understanding and exploration of zinc in relation to autophagy as a means of controlling melanoma growth and survival.
Zobrazit více v PubMed
Gray-Schopfer V., Wellbrock C., Marais R. Melanoma biology and new targeted therapy. Nature. 2007;445:851–857. doi: 10.1038/nature05661. PubMed DOI
Wilmott J.S., Johansson P.A., Newell F., Waddell N., Ferguson P., Quek C., Patch A.M., Nones K., Shang P., Pritchard A.L., et al. Whole genome sequencing of melanomas in adolescent and young adults reveals distinct mutation landscapes and the potential role of germline variants in disease susceptibility. Int. J. Cancer. 2019;144:1049–1060. doi: 10.1002/ijc.31791. PubMed DOI
Hodis E., Watson I.R., Kryukov G.V., Arold S.T., Imielinski M., Theurillat J.P., Nickerson E., Auclair D., Li L., Place C., et al. A landscape of driver mutations in melanoma. Cell. 2012;150:251–263. doi: 10.1016/j.cell.2012.06.024. PubMed DOI PMC
Demirsoy S., Martin S., Maes H., Agostinis P. Adapt, Recycle, and Move on: Proteostasis and Trafficking Mechanisms in Melanoma. Front. Oncol. 2016;6:240. doi: 10.3389/fonc.2016.00240. PubMed DOI PMC
Ratnikov B.I., Scott D.A., Osterman A.L., Smith J.W., Ronai Z.A. Metabolic rewiring in melanoma. Oncogene. 2017;36:147–157. doi: 10.1038/onc.2016.198. PubMed DOI PMC
Araujo L.F., Siena A.D.D., Placa J.R., Brotto D.B., Barros I.I., Muys B.R., Biagi C.A.O., Jr., Peronni K.C., Sousa J.F., Molfetta G.A., et al. Mitochondrial transcription factor A (TFAM) shapes metabolic and invasion gene signatures in melanoma. Sci. Rep. 2018;8:14190. doi: 10.1038/s41598-018-31170-6. PubMed DOI PMC
Chen Y., Klionsky D.J. The regulation of autophagy—Unanswered questions. Pt 2J. Cell. Sci. 2011;124:161–170. doi: 10.1242/jcs.064576. PubMed DOI PMC
Feng Y., He D., Yao Z., Klionsky D.J. The machinery of macroautophagy. Cell. Res. 2014;24:24–41. doi: 10.1038/cr.2013.168. PubMed DOI PMC
Glick D., Barth S., Macleod K.F. Autophagy: Cellular and molecular mechanisms. J. Pathol. 2010;221:3–12. doi: 10.1002/path.2697. PubMed DOI PMC
Mathew R., Karantza-Wadsworth V., White E. Role of autophagy in cancer. Nat. Rev. Cancer. 2007;7:961–967. doi: 10.1038/nrc2254. PubMed DOI PMC
Li X., He S., Ma B. Autophagy and autophagy-related proteins in cancer. Mol. Cancer. 2020;19:12. doi: 10.1186/s12943-020-1138-4. PubMed DOI PMC
Miracco C., Cevenini G., Franchi A., Luzi P., Cosci E., Mourmouras V., Monciatti I., Mannucci S., Biagioli M., Toscano M., et al. Beclin 1 and LC3 autophagic gene expression in cutaneous melanocytic lesions. Hum. Pathol. 2010;41:503–512. doi: 10.1016/j.humpath.2009.09.004. PubMed DOI
Liu H., He Z., von Rutte T., Yousefi S., Hunger R.E., Simon H.U. Downregulation of autophagy-related protein 5 (ATG5) contributes to the pathogenesis of early-stage cutaneous melanoma. Sci. Transl. Med. 2013;5:202ra123. doi: 10.1126/scitranslmed.3005864. PubMed DOI
Maes H., Martin S., Verfaillie T., Agostinis P. Dynamic interplay between autophagic flux and Akt during melanoma progression in vitro. Exp. Dermatol. 2014;23:101–106. doi: 10.1111/exd.12298. PubMed DOI
Lazova R., Klump V., Pawelek J. Autophagy in cutaneous malignant melanoma. J. Cutan Pathol. 2010;37:256–268. doi: 10.1111/j.1600-0560.2009.01359.x. PubMed DOI
Lazova R., Camp R.L., Klump V., Siddiqui S.F., Amaravadi R.K., Pawelek J.M. Punctate LC3B expression is a common feature of solid tumors and associated with proliferation, metastasis, and poor outcome. Clin. Cancer Res. 2012;18:370–379. doi: 10.1158/1078-0432.CCR-11-1282. PubMed DOI PMC
Hara Y., Nakamura M. Overexpression of autophagy-related beclin-1 in advanced malignant melanoma and its low expression in melanoma-in-situ. Eur. J. Dermatol. 2012;22:128–129. doi: 10.1684/ejd.2011.1562. PubMed DOI
Beyersmann D., Haase H. Functions of zinc in signaling, proliferation and differentiation of mammalian cells. Biometals. 2001;14:331–341. doi: 10.1023/A:1012905406548. PubMed DOI
Ogawa Y., Kawamura T., Shimada S. Zinc and skin biology. Arch. Biochem. Biophys. 2016;611:113–119. doi: 10.1016/j.abb.2016.06.003. PubMed DOI
Palmiter R.D., Huang L. Efflux and compartmentalization of zinc by members of the SLC30 family of solute carriers. Pflug. Archiv. 2004;447:744–751. doi: 10.1007/s00424-003-1070-7. PubMed DOI
Jeong J., Eide D.J. The SLC39 family of zinc transporters. Mol. Asp. Med. 2013;34:612–619. doi: 10.1016/j.mam.2012.05.011. PubMed DOI PMC
Babula P., Masarik M., Adam V., Eckschlager T., Stiborova M., Trnkova L., Skutkova H., Provaznik I., Hubalek J., Kizek R. Mammalian metallothioneins: Properties and functions. Metallomics. 2012;4:739–750. doi: 10.1039/c2mt20081c. PubMed DOI
Prasad A.S. Zinc and immunity. Mol. Cell. Biochem. 1998;188:63–69. doi: 10.1023/A:1006868305749. PubMed DOI
Truong-Tran A.Q., Carter J., Ruffin R., Zalewski P.D. New insights into the role of zinc in the respiratory epithelium. Immunol. Cell. Biol. 2001;79:170–177. doi: 10.1046/j.1440-1711.2001.00986.x. PubMed DOI
Tudor R., Zalewski P.D., Ratnaike R.N. Zinc in health and chronic disease. J. Nutr. Health Aging. 2005;9:45–51. PubMed
Frederickson C.J., Suh S.W., Silva D., Thompson R.B. Importance of zinc in the central nervous system: The zinc-containing neuron. J. Nutr. 2000;130(Suppl. S5):1471S–1483S. doi: 10.1093/jn/130.5.1471S. PubMed DOI
Prasad A.S., Kucuk O. Zinc in cancer prevention. Cancer Metastasis Rev. 2002;21:291–295. doi: 10.1023/A:1021215111729. PubMed DOI
Costello L.C., Zou J., Franklin R.B. In situ clinical evidence that zinc levels are decreased in breast invasive ductal carcinoma. Cancer Causes Control. 2016;27:729–735. doi: 10.1007/s10552-016-0746-1. PubMed DOI PMC
Bergomi M., Pellacani G., Vinceti M., Bassissi S., Malagoli C., Alber D., Sieri S., Vescovi L., Seidenari S., Vivoli R. Trace elements and melanoma. J. Trace Elem. Med. Biol. 2005;19:69–73. doi: 10.1016/j.jtemb.2005.06.002. PubMed DOI
Zamirska A., Matusiak L., Dziegiel P., Szybejko-Machaj G., Szepietowski J.C. Expression of metallothioneins in cutaneous squamous cell carcinoma and actinic keratosis. Pathol. Oncol. Res. 2012;18:849–855. doi: 10.1007/s12253-012-9513-0. PubMed DOI PMC
Ros-Bullon M.R., Sanchez-Pedreno P., Martinez-Liarte J.H. Serum zinc levels are increased in melanoma patients. Melanoma Res. 1998;8:273–277. doi: 10.1097/00008390-199806000-00011. PubMed DOI
Anyz J., Vyslouzilova L., Vaculovic T., Tvrdonova M., Kanicky V., Haase H., Horak V., Stepankova O., Heger Z., Adam V. Spatial mapping of metals in tissue-sections using combination of mass-spectrometry and histology through image registration. Sci. Rep. 2017;7:40169. doi: 10.1038/srep40169. PubMed DOI PMC
Hung H.H., Huang W.P., Pan C.Y. Dopamine- and zinc-induced autophagosome formation facilitates PC12 cell survival. Cell. Biol. Toxicol. 2013;29:415–429. doi: 10.1007/s10565-013-9261-2. PubMed DOI
Liuzzi J.P., Yoo C. Role of zinc in the regulation of autophagy during ethanol exposure in human hepatoma cells. Biol. Trace Elem. Res. 2013;156:350–356. doi: 10.1007/s12011-013-9816-3. PubMed DOI
Hwang J.J., Kim H.N., Kim J., Cho D.H., Kim M.J., Kim Y.S., Kim Y., Park S.J., Koh J.Y. Zinc(II) ion mediates tamoxifen-induced autophagy and cell death in MCF-7 breast cancer cell line. Biometals. 2010;23:997–1013. doi: 10.1007/s10534-010-9346-9. PubMed DOI
Cho Y.H., Lee S.H., Lee S.J., Kim H.N., Koh J.Y. A role of metallothionein-3 in radiation-induced autophagy in glioma cells. Sci. Rep. 2020;10:2015. doi: 10.1038/s41598-020-58237-7. PubMed DOI PMC
Liuzzi J.P., Guo L., Yoo C., Stewart T.S. Zinc and autophagy. Biometals. 2014;27:1087–1096. doi: 10.1007/s10534-014-9773-0. PubMed DOI PMC
Denton D., Kumar S. Autophagy-dependent cell death. Cell. Death Differ. 2019;26:605–616. doi: 10.1038/s41418-018-0252-y. PubMed DOI PMC
Elgendy M., Sheridan C., Brumatti G., Martin S.J. Oncogenic Ras-induced expression of Noxa and Beclin-1 promotes autophagic cell death and limits clonogenic survival. Mol. Cell. 2011;42:23–35. doi: 10.1016/j.molcel.2011.02.009. PubMed DOI
Dasari S.K., Bialik S., Levin-Zaidman S., Levin-Salomon V., Merrill A.H., Jr., Futerman A.H., Kimchi A. Signalome-wide RNAi screen identifies GBA1 as a positive mediator of autophagic cell death. Cell. Death Differ. 2017;24:1288–1302. doi: 10.1038/cdd.2017.80. PubMed DOI PMC
Maret W. Molecular aspects of human cellular zinc homeostasis: Redox control of zinc potentials and zinc signals. Biometals. 2009;22:149–157. doi: 10.1007/s10534-008-9186-z. PubMed DOI
Lu Q., Haragopal H., Slepchenko K.G., Stork C., Li Y.V. Intracellular zinc distribution in mitochondria, ER and the Golgi apparatus. Int. J. Physiol. Pathophysiol. Pharmacol. 2016;8:35–43. PubMed PMC
Kukic I., Kelleher S.L., Kiselyov K. Zn2+ efflux through lysosomal exocytosis prevents Zn2+-induced toxicity. Pt 14J. Cell. Sci. 2014;127:3094–3103. doi: 10.1242/jcs.145318. PubMed DOI PMC
Borovansky J. Zinc in pigmented cells and structures, interactions and possible roles. Sbor. Lek. 1994;95:309–320. PubMed
Hwang J.J., Lee S.J., Kim T.Y., Cho J.H., Koh J.Y. Zinc and 4-hydroxy-2-nonenal mediate lysosomal membrane permeabilization induced by H2O2 in cultured hippocampal neurons. J. Neurosci. 2008;28:3114–3122. doi: 10.1523/JNEUROSCI.0199-08.2008. PubMed DOI PMC
Wang F., Gomez-Sintes R., Boya P. Lysosomal membrane permeabilization and cell death. Traffic. 2018;19:918–931. doi: 10.1111/tra.12613. PubMed DOI
Rudolf E., Cervinka M. The role of intracellular zinc in chromium(VI)-induced oxidative stress, DNA damage and apoptosis. Chem. Biol. Interact. 2006;162:212–227. doi: 10.1016/j.cbi.2006.06.005. PubMed DOI
Induced Zinc Loss Produces Heterogenous Biological Responses in Melanoma Cells