Induced Zinc Loss Produces Heterogenous Biological Responses in Melanoma Cells
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Cooperatio program, research area DIAG
Charles University
PubMed
35955445
PubMed Central
PMC9368258
DOI
10.3390/ijms23158312
PII: ijms23158312
Knihovny.cz E-zdroje
- Klíčová slova
- cell death, chelation, free zinc, melanoma, premature senescence,
- MeSH
- apoptóza MeSH
- lidé MeSH
- melanom * farmakoterapie metabolismus MeSH
- nádorové buněčné linie MeSH
- nádorový supresorový protein p53 metabolismus MeSH
- superoxidy metabolismus MeSH
- zinek * metabolismus farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- nádorový supresorový protein p53 MeSH
- superoxidy MeSH
- zinek * MeSH
Zinc levels in serum and/or tissue are reported to be altered in melanoma with unknown effects on melanoma development and biology. The purpose of this study was to examine the effects of acute chelation of free intracellular zinc pools in melanoma cell lines Bowes and A375, as well as selected melanoma tissue explants with high or low intracellular free zinc. Zinc chelating agent TPEN at the concentration of 25 µM was employed during 48 h, which significantly reduced intracellular free zinc while decreasing melanoma cell proliferation, inducing G1/S arrest and cell damage leading to mitochondrial, caspase-dependent apoptosis. Chelation of free zinc was also associated with increased generation of superoxide in cell lines but not marked lysosomal membrane damage. Conversely, melanoma explant cultures mostly displayed time-dependent loss of lysosomal membrane integrity in the presence of slowly growing superoxide levels. Loss of free zinc-dependent p53 activity was similarly disparate in individual melanoma models. Surviving melanoma cells were arrested in the cell cycle, and varying proportions of them exhibited features characteristic of premature senescence, which increased in time despite zinc reloading. The present results show that melanoma cells with varying free zinc levels respond to its acute loss in a number of individual ways, reflecting activated mechanisms including oxidative stress, lysosomal damage, and p53 activity leading to heterogenous outcomes including cell death, transient, and/or permanent cell cycle arrest and premature senescence.
Zobrazit více v PubMed
Beyersmann D., Haase H. Functions of zinc in signaling, proliferation and differentiation of mammalian cells. Biometals. 2001;14:331–341. doi: 10.1023/A:1012905406548. PubMed DOI
Ogawa Y., Kawamura T., Shimada S. Zinc and skin biology. Arch. Biochem. Biophys. 2016;611:113–119. doi: 10.1016/j.abb.2016.06.003. PubMed DOI
Maret W. The redox biology of redox-inert zinc ions. Free Radic. Biol. Med. 2019;134:311–326. doi: 10.1016/j.freeradbiomed.2019.01.006. PubMed DOI
Prasad A.S., Kucuk O. Zinc in cancer prevention. Cancer Metastasis Rev. 2002;21:291–295. doi: 10.1023/A:1021215111729. PubMed DOI
Costello L.C., Zou J., Franklin R.B. In situ clinical evidence that zinc levels are decreased in breast invasive ductal carcinoma. Cancer Causes Control. 2016;27:729–735. doi: 10.1007/s10552-016-0746-1. PubMed DOI PMC
Wang J., Zhao H., Xu Z., Cheng X. Zinc dysregulation in cancers and its potential as a therapeutic target. Cancer Biol. Med. 2020;17:612–625. doi: 10.20892/j.issn.2095-3941.2020.0106. PubMed DOI PMC
Hodis E., Watson I.R., Kryukov G.V., Arold S.T., Imielinski M., Theurillat J.P., Nickerson E., Auclair D., Li L., Place C., et al. A landscape of driver mutations in melanoma. Cell. 2012;150:251–263. doi: 10.1016/j.cell.2012.06.024. PubMed DOI PMC
Demirsoy S., Martin S., Maes H., Agostinis P. Adapt, Recycle, and Move on: Proteostasis and Trafficking Mechanisms in Melanoma. Front. Oncol. 2016;6:240. doi: 10.3389/fonc.2016.00240. PubMed DOI PMC
Ratnikov B.I., Scott D.A., Osterman A.L., Smith J.W., Ronai Z.A. Metabolic rewiring in melanoma. Oncogene. 2017;36:147–157. doi: 10.1038/onc.2016.198. PubMed DOI PMC
Araujo L.F., Siena A.D.D., Placa J.R., Brotto D.B., Barros I.I., Muys B.R., Biagi C.A.O., Jr., Peronni K.C., Sousa J.F., Molfetta G.A., et al. Mitochondrial transcription factor A (TFAM) shapes metabolic and invasion gene signatures in melanoma. Sci. Rep. 2018;8:14190. doi: 10.1038/s41598-018-31170-6. PubMed DOI PMC
Kim Y.J., Bond G.J., Tsang T., Posimo J.M., Busino L., Brady D.C. Copper chaperone ATOX1 is required for MAPK signaling and growth in BRAF mutation-positive melanoma. Metallomics. 2019;11:1430–1440. doi: 10.1039/c9mt00042a. PubMed DOI PMC
Brady D.C., Crowe M.S., Turski M.L., Hobbs G.A., Yao X., Chaikuad A., Knapp S., Xiao K., Campbell S.L., Thiele D.J., et al. Copper is required for oncogenic BRAF signalling and tumorigenesis. Nature. 2014;509:492–496. doi: 10.1038/nature13180. PubMed DOI PMC
Weinlich G., Bitterlich W., Mayr V., Fritsch P.O., Zelger B. Metallothionein-overexpression as a prognostic factor for progression and survival in melanoma. A prospective study on 520 patients. Br. J. Dermatol. 2003;149:535–541. doi: 10.1046/j.1365-2133.2003.05472.x. PubMed DOI
Bergomi M., Pellacani G., Vinceti M., Bassissi S., Malagoli C., Alber D., Sieri S., Vescovi L., Seidenari S., Vivoli R. Trace elements and melanoma. J. Trace Elem. Med. Biol. 2005;19:69–73. doi: 10.1016/j.jtemb.2005.06.002. PubMed DOI
Zamirska A., Matusiak L., Dziegiel P., Szybejko-Machaj G., Szepietowski J.C. Expression of metallothioneins in cutaneous squamous cell carcinoma and actinic keratosis. Pathology Oncol. Res. 2012;18:849–855. doi: 10.1007/s12253-012-9513-0. PubMed DOI PMC
Ros-Bullon M.R., Sanchez-Pedreno P., Martinez-Liarte J.H. Serum zinc levels are increased in melanoma patients. Melanoma Res. 1998;8:273–277. doi: 10.1097/00008390-199806000-00011. PubMed DOI
Ding W.Q., Yu H.J., Lind S.E. Zinc-binding compounds induce cancer cell death via distinct modes of action. Cancer Lett. 2008;271:251–259. doi: 10.1016/j.canlet.2008.06.011. PubMed DOI
Habel N., Hamidouche Z., Girault I., Patino-Garcia A., Lecanda F., Marie P.J., Fromigue O. Zinc chelation: A metallothionein 2A’s mechanism of action involved in osteosarcoma cell death and chemotherapy resistance. Cell Death Dis. 2013;4:e874. doi: 10.1038/cddis.2013.405. PubMed DOI PMC
Hashemi M., Ghavami S., Eshraghi M., Booy E.P., Los M. Cytotoxic effects of intra and extracellular zinc chelation on human breast cancer cells. Eur. J. Pharmacol. 2007;557:9–19. doi: 10.1016/j.ejphar.2006.11.010. PubMed DOI
Zhu B., Wang J., Zhou F., Liu Y., Lai Y., Wang J., Chen X., Chen D., Luo L., Hua Z.C. Zinc Depletion by TPEN Induces Apoptosis in Human Acute Promyelocytic NB4 Cells. Cell Physiol. Biochem. 2017;42:1822–1836. doi: 10.1159/000479539. PubMed DOI
Mendivil-Perez M., Velez-Pardo C., Jimenez-Del-Rio M. TPEN induces apoptosis independently of zinc chelator activity in a model of acute lymphoblastic leukemia and ex vivo acute leukemia cells through oxidative stress and mitochondria caspase-3- and AIF-dependent pathways. Oxid Med. Cell Longev. 2012;2012:313275. doi: 10.1155/2012/313275. PubMed DOI PMC
Yu Z., Yu Z., Chen Z., Yang L., Ma M., Lu S., Wang C., Teng C., Nie Y. Zinc chelator TPEN induces pancreatic cancer cell death through causing oxidative stress and inhibiting cell autophagy. J. Cell Physiol. 2019;234:20648–20661. doi: 10.1002/jcp.28670. PubMed DOI
Matias A.C., Manieri T.M., Cerchiaro G. Zinc Chelation Mediates the Lysosomal Disruption without Intracellular ROS Generation. Oxid. Med. Cell. Longev. 2016;2016:6724585. doi: 10.1155/2016/6724585. PubMed DOI PMC
Donadelli M., Dalla Pozza E., Costanzo C., Scupoli M.T., Scarpa A., Palmieri M. Zinc depletion efficiently inhibits pancreatic cancer cell growth by increasing the ratio of antiproliferative/proliferative genes. J. Cell Biochem. 2008;104:202–212. doi: 10.1002/jcb.21613. PubMed DOI
Wang F., Gomez-Sintes R., Boya P. Lysosomal membrane permeabilization and cell death. Traffic. 2018;19:918–931. doi: 10.1111/tra.12613. PubMed DOI
Ha J.H., Prela O., Carpizo D.R., Loh S.N. p53 and Zinc: A Malleable Relationship. Front. Mol. Biosci. 2022;9:895887. doi: 10.3389/fmolb.2022.895887. PubMed DOI PMC
Azmi A.S., Philip P.A., Beck F.W., Wang Z., Banerjee S., Wang S., Yang D., Sarkar F.H., Mohammad R.M. MI-219-zinc combination: A new paradigm in MDM2 inhibitor-based therapy. Oncogene. 2011;30:117–126. doi: 10.1038/onc.2010.403. PubMed DOI PMC
Meplan C., Richard M.J., Hainaut P. Metalloregulation of the tumor suppressor protein p53: Zinc mediates the renaturation of p53 after exposure to metal chelators in vitro and in intact cells. Oncogene. 2000;19:5227–5236. doi: 10.1038/sj.onc.1203907. PubMed DOI
Blanden A.R., Yu X., Blayney A.J., Demas C., Ha J.H., Liu Y., Withers T., Carpizo D.R., Loh S.N. Zinc shapes the folding landscape of p53 and establishes a pathway for reactivating structurally diverse cancer mutants. Elife. 2020;9:e61487. doi: 10.7554/eLife.61487. PubMed DOI PMC
Ewald J.A., Desotelle J.A., Wilding G., Jarrard D.F. Therapy-induced senescence in cancer. J. Natl. Cancer Inst. 2010;102:1536–1546. doi: 10.1093/jnci/djq364. PubMed DOI PMC
Mocchegiani E., Giacconi R., Cipriano C., Malavolta M. NK and NKT cells in aging and longevity: Role of zinc and metallothioneins. J. Clin. Immunol. 2009;29:416–425. doi: 10.1007/s10875-009-9298-4. PubMed DOI
Magda D., Lecane P., Wang Z., Hu W., Thiemann P., Ma X., Dranchak P.K., Wang X., Lynch V., Wei W., et al. Synthesis and anticancer properties of water-soluble zinc ionophores. Cancer Res. 2008;68:5318–5325. doi: 10.1158/0008-5472.CAN-08-0601. PubMed DOI PMC
Bras M.M., Radmacher M., Sousa S.R., Granja P.L. Melanoma in the Eyes of Mechanobiology. Front. Cell Dev. Biol. 2020;8:54. doi: 10.3389/fcell.2020.00054. PubMed DOI PMC
Rudolf E., Rudolf K. Acute Increases in Intracellular Zinc Lead to an Increased Lysosomal and Mitochondrial Autophagy and Subsequent Cell Demise in Malignant Melanoma. Int. J. Mol. Sci. 2021;22:667. doi: 10.3390/ijms22020667. PubMed DOI PMC
Fernandez-Menendez S., Fernandez-Sanchez M.L., Fernandez-Colomer B., de la Flor St Remy R.R., Cotallo G.D., Freire A.S., Braz B.F., Santelli R.E., Sanz-Medel A. Total zinc quantification by inductively coupled plasma-mass spectrometry and its speciation by size exclusion chromatography-inductively coupled plasma-mass spectrometry in human milk and commercial formulas: Importance in infant nutrition. J. Chromatogr. A. 2016;1428:246–254. doi: 10.1016/j.chroma.2015.09.021. PubMed DOI
Noel L., Guerin T., Fremy J.M., Huet H., Kolf-Clauw M. Optimized simultaneous determination of several elements in human intestinal Caco-2 TC7 cells by inductively coupled plasma-mass spectrometry after closed vessel microwave digestion. J. AOAC Int. 2003;86:1225–1231. doi: 10.1093/jaoac/86.6.1225. PubMed DOI
Ali S., Cuajungco M.P. Protocol for Quantifying Zinc Flux in Cultured Cells using Fluorescent Indicators. STAR Protoc. 2020;1:100050. doi: 10.1016/j.xpro.2020.100050. PubMed DOI PMC