Cerebral Iron Deposition in Neurodegeneration

. 2022 May 17 ; 12 (5) : . [epub] 20220517

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35625641

Disruption of cerebral iron regulation appears to have a role in aging and in the pathogenesis of various neurodegenerative disorders. Possible unfavorable impacts of iron accumulation include reactive oxygen species generation, induction of ferroptosis, and acceleration of inflammatory changes. Whole-brain iron-sensitive magnetic resonance imaging (MRI) techniques allow the examination of macroscopic patterns of brain iron deposits in vivo, while modern analytical methods ex vivo enable the determination of metal-specific content inside individual cell-types, sometimes also within specific cellular compartments. The present review summarizes the whole brain, cellular, and subcellular patterns of iron accumulation in neurodegenerative diseases of genetic and sporadic origin. We also provide an update on mechanisms, biomarkers, and effects of brain iron accumulation in these disorders, focusing on recent publications. In Parkinson's disease, Friedreich's disease, and several disorders within the neurodegeneration with brain iron accumulation group, there is a focal siderosis, typically in regions with the most pronounced neuropathological changes. The second group of disorders including multiple sclerosis, Alzheimer's disease, and amyotrophic lateral sclerosis shows iron accumulation in the globus pallidus, caudate, and putamen, and in specific cortical regions. Yet, other disorders such as aceruloplasminemia, neuroferritinopathy, or Wilson disease manifest with diffuse iron accumulation in the deep gray matter in a pattern comparable to or even more extensive than that observed during normal aging. On the microscopic level, brain iron deposits are present mostly in dystrophic microglia variably accompanied by iron-laden macrophages and in astrocytes, implicating a role of inflammatory changes and blood-brain barrier disturbance in iron accumulation. Options and potential benefits of iron reducing strategies in neurodegeneration are discussed. Future research investigating whether genetic predispositions play a role in brain Fe accumulation is necessary. If confirmed, the prevention of further brain Fe uptake in individuals at risk may be key for preventing neurodegenerative disorders.

Zobrazit více v PubMed

Urrutia P.J., Borquez D.A., Nunez M.T. Inflaming the Brain with Iron. Antioxidants. 2021;10:61. doi: 10.3390/antiox10010061. PubMed DOI PMC

Hinarejos I., Machuca-Arellano C., Sancho P., Espinos C. Mitochondrial Dysfunction, Oxidative Stress and Neuroinflammation in Neurodegeneration with Brain Iron Accumulation (Nbia) Antioxidants. 2020;9:1020. doi: 10.3390/antiox9101020. PubMed DOI PMC

Huo T., Jia Y., Yin C., Luo X., Zhao J., Wang Z., Lv P. Iron Dysregulation in Vascular Dementia: Focused on the Ampk/Autophagy Pathway. Brain Res. Bull. 2019;153:305–313. doi: 10.1016/j.brainresbull.2019.09.006. PubMed DOI

Calderon-Garciduenas L., Torres-Jardon R., Kulesza R.J., Mansour Y., Gonzalez-Gonzalez L.O., Gonzalez-Maciel A., Reynoso-Robles R., Mukherjee P.S. Alzheimer Disease Starts in Childhood in Polluted Metropolitan Mexico City. A Major Health Crisis in Progress. Environ. Res. 2020;183:109137. doi: 10.1016/j.envres.2020.109137. PubMed DOI

Drayer B., Burger P., Darwin R., Riederer S., Herfkens R., Johnson G.A. Mri of Brain Iron. AJR Am. J. Roentgenol. 1986;147:103–110. doi: 10.2214/ajr.147.1.103. PubMed DOI

Bartzokis G., Tishler T.A., Lu P.H., Villablanca P., Altshuler L.L., Carter M., Huang D., Edwards N., Mintz J. Brain Ferritin Iron May Influence Age- and Gender-Related Risks of Neurodegeneration. Neurobiol. Aging. 2007;28:414–423. doi: 10.1016/j.neurobiolaging.2006.02.005. PubMed DOI

Burgetova R., Dusek P., Burgetova A., Pudlac A., Vaneckova M., Horakova D., Krasensky J., Varga Z., Lambert L. Age-Related Magnetic Susceptibility Changes in Deep Grey Matter and Cerebral Cortex of Normal Young and Middle-Aged Adults Depicted by Whole Brain Analysis. Quant. Imaging Med. Surg. 2021;11:3906–3919. doi: 10.21037/qims-21-87. PubMed DOI PMC

Zhang Y., Wei H., Cronin M.J., He N., Yan F., Liu C. Longitudinal Atlas for Normative Human Brain Development and Aging over the Lifespan Using Quantitative Susceptibility Mapping. Neuroimage. 2018;171:176–189. doi: 10.1016/j.neuroimage.2018.01.008. PubMed DOI PMC

Acosta-Cabronero J., Betts M.J., Cardenas-Blanco A., Yang S., Nestor P.J. In Vivo Mri Mapping of Brain Iron Deposition across the Adult Lifespan. J. Neurosci. 2016;36:364–374. doi: 10.1523/JNEUROSCI.1907-15.2016. PubMed DOI PMC

Reinert A., Morawski M., Seeger J., Arendt T., Reinert T. Iron Concentrations in Neurons and Glial Cells with Estimates on Ferritin Concentrations. BMC Neurosci. 2019;20:25. doi: 10.1186/s12868-019-0507-7. PubMed DOI PMC

Ashraf A., Michaelides C., Walker T.A., Ekonomou A., Suessmilch M., Sriskanthanathan A., Abraha S., Parkes A., Parkes H.G., Geraki K., et al. Regional Distributions of Iron, Copper and Zinc and Their Relationships with Glia in a Normal Aging Mouse Model. Front. Aging Neurosci. 2019;11:351. doi: 10.3389/fnagi.2019.00351. PubMed DOI PMC

Connor J.R., Menzies S.L., Martin S.M.S., Mufson E.J. Cellular Distribution of Transferrin, Ferritin, and Iron in Normal and Aged Human Brains. J. Neurosci. Res. 1990;27:595–611. doi: 10.1002/jnr.490270421. PubMed DOI

Ward R.J., Zucca F.A., Duyn J.H., Crichton R.R., Zecca L. The Role of Iron in Brain Ageing and Neurodegenerative Disorders. Lancet Neurol. 2014;13:1045–1060. doi: 10.1016/S1474-4422(14)70117-6. PubMed DOI PMC

Hofer T. Oxidation of 2-Deoxyguanosine by H2O2-Ascorbate: Evidence against Free OH• and Thermodynamic Support for Two Electron Reduction of H2O2. J. Chem. Soc. Perkin Trans. 2001;2:210–213. doi: 10.1039/b006394k. DOI

Hofer T., Servais S., Seo A.Y., Marzetti E., Hiona A., Upadhyay J.S., Wohlgemuth S.E., Leeuwenburgh C. Bioenergetics and Permeability Transition Pore Opening in Heart Subsarcolemmal and Interfibrillar Mitochondria: Effects of Aging and Lifelong Calorie Restriction. Mech. Ageing Dev. 2009;130:297–307. doi: 10.1016/j.mad.2009.01.004. PubMed DOI PMC

Aaseth J., Skalny A.V., Roos P.M., Alexander J., Aschner M., Tinkov A.A. Copper, Iron, Selenium and Lipo-Glycemic Dysmetabolism in Alzheimer’s Disease. Int. J. Mol. Sci. 2021;22:9461. doi: 10.3390/ijms22179461. PubMed DOI PMC

Stockwell B.R., Angeli J.P.F., Bayir H., Bush A.I., Conrad M., Dixon S.J., Fulda S., Gascon S., Hatzios S.K., Kagan V.E., et al. Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell. 2017;171:273–285. doi: 10.1016/j.cell.2017.09.021. PubMed DOI PMC

Zhang Y., Xin L., Xiang M., Shang C., Wang Y., Wang Y., Cui X., Lu Y. The Molecular Mechanisms of Ferroptosis and Its Role in Cardiovascular Disease. Biomed. Pharmacother. 2022;145:112423. doi: 10.1016/j.biopha.2021.112423. PubMed DOI

Mazhar M., Din A.U., Ali H., Yang G., Ren W., Wang L., Fan X., Yang S. Implication of Ferroptosis in Aging. Cell Death Discov. 2021;7:149. doi: 10.1038/s41420-021-00553-6. PubMed DOI PMC

Lane D.J.R., Metselaar B., Greenough M., Bush A.I., Ayton S.J. Ferroptosis and Nrf2: An Emerging Battlefield in the Neurodegeneration of Alzheimer’s Disease. Essays Biochem. 2021;65:925–940. PubMed

Hofer T., Jorgensen T.O., Olsen R.L. Comparison of Food Antioxidants and Iron Chelators in Two Cellular Free Radical Assays: Strong Protection by Luteolin. J. Agric. Food Chem. 2014;62:8402–8410. doi: 10.1021/jf5022779. PubMed DOI

Aaseth J., Alexander J., Alehagen U. Coenzyme Q10 Supplementation—In Ageing and Disease. Mech. Ageing Dev. 2021;197:111521. doi: 10.1016/j.mad.2021.111521. PubMed DOI

Zecca L., Youdim M.B., Riederer P., Connor J.R., Crichton R.R. Iron, Brain Ageing and Neurodegenerative Disorders. Nat. Rev. Neurosci. 2004;5:863–873. doi: 10.1038/nrn1537. PubMed DOI

Fedorow H., Tribl F., Halliday G., Gerlach M., Riederer P., Double K.L. Neuromelanin in Human Dopamine Neurons: Comparison with Peripheral Melanins and Relevance to Parkinson’s Disease. Prog. Neurobiol. 2005;75:109–124. doi: 10.1016/j.pneurobio.2005.02.001. PubMed DOI

Zucca F.A., Basso E., Cupaioli F.A., Ferrari E., Sulzer D., Casella L., Zecca L. Neuromelanin of the Human Substantia Nigra: An Update. Neurotox. Res. 2014;25:13–23. doi: 10.1007/s12640-013-9435-y. PubMed DOI

Zucca F.A., Segura-Aguilar J., Ferrari E., Munoz P., Paris I., Sulzer D., Sarna T., Casella L., Zecca L. Interactions of Iron, Dopamine and Neuromelanin Pathways in Brain Aging and Parkinson’s Disease. Prog. Neurobiol. 2017;155:96–119. doi: 10.1016/j.pneurobio.2015.09.012. PubMed DOI PMC

Zucca F.A., Vanna R., Cupaioli F.A., Bellei C., de Palma A., di Silvestre D., Mauri P., Grassi S., Prinetti A., Casella L., et al. Neuromelanin Organelles Are Specialized Autolysosomes That Accumulate Undegraded Proteins and Lipids in Aging Human Brain and Are Likely Involved in Parkinson’s Disease. NPJ Parkinsons Dis. 2018;4:17. doi: 10.1038/s41531-018-0050-8. PubMed DOI PMC

Zecca L., Bellei C., Costi P., Albertini A., Monzani E., Casella L., Gallorini M., Bergamaschi L., Moscatelli A., Turro N.J., et al. New Melanic Pigments in the Human Brain That Accumulate in Aging and Block Environmental Toxic Metals. Proc. Natl. Acad. Sci. USA. 2008;105:17567–17572. doi: 10.1073/pnas.0808768105. PubMed DOI PMC

Halliday G.M., Fedorow H., Rickert C.H., Gerlach M., Riederer P., Double K.L. Evidence for Specific Phases in the Development of Human Neuromelanin. J. Neural. Transm. 2006;113:721–728. doi: 10.1007/s00702-006-0449-y. PubMed DOI

Zecca L., Tampellini D., Gatti A., Crippa R., Eisner M., Sulzer D., Ito S., Fariello R., Gallorini M. The Neuromelanin of Human Substantia Nigra and Its Interaction with Metals. J. Neural. Transm. 2002;109:663–672. doi: 10.1007/s007020200055. PubMed DOI

Ma Y., Li R., Dong Y., You C., Huang S., Li X., Wang F., Zhang Y. Tlyp-1 Peptide Functionalized Human H Chain Ferritin for Targeted Delivery of Paclitaxel. Int. J. Nanomed. 2021;16:789–802. doi: 10.2147/IJN.S289005. PubMed DOI PMC

Billesbolle C.B., Azumaya C.M., Kretsch R.C., Powers A.S., Gonen S., Schneider S., Arvedson T., Dror R.O., Cheng Y., Manglik A. Structure of Hepcidin-Bound Ferroportin Reveals Iron Homeostatic Mechanisms. Nature. 2020;586:807–811. doi: 10.1038/s41586-020-2668-z. PubMed DOI PMC

Zheng W. Toxicology of Choroid Plexus: Special Reference to Metal-Induced Neurotoxicities. Microsc. Res. Tech. 2001;52:89–103. doi: 10.1002/1097-0029(20010101)52:1<89::AID-JEMT11>3.0.CO;2-2. PubMed DOI PMC

Zheng W., Aschner M., Ghersi-Egea J.F. Brain Barrier Systems: A New Frontier in Metal Neurotoxicological Research. Toxicol. Appl. Pharmacol. 2003;192:1–11. doi: 10.1016/S0041-008X(03)00251-5. PubMed DOI PMC

Ferrucci L., Corsi A., Lauretani F., Bandinelli S., Bartali B., Taub D.D., Guralnik J.M., Longo D.L. The Origins of Age-Related Proinflammatory State. Blood. 2005;105:2294–2299. doi: 10.1182/blood-2004-07-2599. PubMed DOI PMC

Franceschi C., Capri M., Monti D., Giunta S., Olivieri F., Sevini F., Panourgia M.P., Invidia L., Celani L., Scurti M., et al. Inflammaging and Anti-Inflammaging: A Systemic Perspective on Aging and Longevity Emerged from Studies in Humans. Mech. Ageing Dev. 2007;128:92–105. doi: 10.1016/j.mad.2006.11.016. PubMed DOI

Capucciati A., Zucca F.A., Monzani E., Zecca L., Casella L., Hofer T. Interaction of Neuromelanin with Xenobiotics and Consequences for Neurodegeneration; Promising Experimental Models. Antioxidants. 2021;10:824. doi: 10.3390/antiox10060824. PubMed DOI PMC

Myhre O., Utkilen H., Duale N., Brunborg G., Hofer T. Metal Dyshomeostasis and Inflammation in Alzheimer’s and Parkinson’s Diseases: Possible Impact of Environmental Exposures. Oxid. Med. Cell Longev. 2013;2013:726954. doi: 10.1155/2013/726954. PubMed DOI PMC

Kell D.B., Pretorius E. Serum Ferritin Is an Important Inflammatory Disease Marker, as It Is Mainly a Leakage Product from Damaged Cells. Metallomics. 2014;6:748–773. doi: 10.1039/C3MT00347G. PubMed DOI

Kowdley K.V., Gochanour E.M., Sundaram V., Shah R.A., Handa P. Hepcidin Signaling in Health and Disease: Ironing out the Details. Hepatol. Commun. 2021;5:723–735. doi: 10.1002/hep4.1717. PubMed DOI PMC

Camaschella C., Nai A., Silvestri L. Iron Metabolism and Iron Disorders Revisited in the Hepcidin Era. Haematologica. 2020;105:260–272. doi: 10.3324/haematol.2019.232124. PubMed DOI PMC

Zhou S., Du X., Xie J., Wang J. Interleukin-6 Regulates Iron-Related Proteins through C-Jun N-Terminal Kinase Activation in Bv2 Microglial Cell Lines. PLoS ONE. 2017;12:e0180464. doi: 10.1371/journal.pone.0180464. PubMed DOI PMC

Martin-Bastida A., Tilley B.S., Bansal S., Gentleman S.M., Dexter D.T., Ward R.J. Iron and Inflammation: In Vivo and Post-Mortem Studies in Parkinson’s Disease. J. Neural Transm. 2021;128:15–25. doi: 10.1007/s00702-020-02271-2. PubMed DOI

Abu-Rumeileh S., Steinacker P., Polischi B., Mammana A., Bartoletti-Stella A., Oeckl P., Baiardi S., Zenesini C., Huss A., Cortelli P., et al. Csf Biomarkers of Neuroinflammation in Distinct Forms and Subtypes of Neurodegenerative Dementia. Alzheimers Res. Ther. 2019;12:2. doi: 10.1186/s13195-019-0562-4. PubMed DOI PMC

Liang T., Qian Z.M., Mu M.D., Yung W.H., Ke Y. Brain Hepcidin Suppresses Major Pathologies in Experimental Parkinsonism. iScience. 2020;23:101284. doi: 10.1016/j.isci.2020.101284. PubMed DOI PMC

Yambire K.F., Rostosky C., Watanabe T., Pacheu-Grau D., Torres-Odio S., Sanchez-Guerrero A., Senderovich O., Meyron-Holtz E.G., Milosevic I., Frahm J., et al. Impaired Lysosomal Acidification Triggers Iron Deficiency and Inflammation in Vivo. eLife. 2019;8:e51031. doi: 10.7554/eLife.51031. PubMed DOI PMC

Borquez D.A., Urrutia P.J., Nunez M.T. Iron, the Endolysosomal System and Neuroinflammation: A Matter of Balance. Neural Regen. Res. 2022;17:1003–1004. PubMed PMC

Sfera A., Bullock K., Price A., Inderias L., Osorio C. Ferrosenescence: The Iron Age of Neurodegeneration? Mech. Ageing Dev. 2018;174:63–75. doi: 10.1016/j.mad.2017.11.012. PubMed DOI

Spence H., McNeil C.J., Waiter G.D. The Impact of Brain Iron Accumulation on Cognition: A Systematic Review. PLoS ONE. 2020;15:e0240697. doi: 10.1371/journal.pone.0240697. PubMed DOI PMC

Salami A., Papenberg G., Sitnikov R., Laukka E.J., Persson J., Kalpouzos G. Elevated Neuroinflammation Contributes to the Deleterious Impact of Iron Overload on Brain Function in Aging. Neuroimage. 2021;230:117792. doi: 10.1016/j.neuroimage.2021.117792. PubMed DOI

Venkatesh A., Daugherty A.M., Bennett I.J. Neuroimaging Measures of Iron and Gliosis Explain Memory Performance in Aging. Hum. Brain Mapp. 2021;42:5761–5770. doi: 10.1002/hbm.25652. PubMed DOI PMC

Timmers P.R.H.J., Wilson J.F., Joshi P.K., Deelen J. Multivariate Genomic Scan Implicates Novel Loci and Haem Metabolism in Human Ageing. Nat. Commun. 2020;11:3570. doi: 10.1038/s41467-020-17312-3. PubMed DOI PMC

Casale G., Bonora C., Migliavacca A., Zurita I.E., de Nicola P. Serum Ferritin and Ageing. Age Ageing. 1981;10:119–122. doi: 10.1093/ageing/10.2.119. PubMed DOI

Yoshida K., Furihata K., Takeda S., Nakamura A., Yamamoto K., Morita H., Hiyamuta S., Ikeda S., Shimizu N., Yanagisawa N. A Mutation in the Ceruloplasmin Gene Is Associated with Systemic Hemosiderosis in Humans. Nat. Genet. 1995;9:267–272. doi: 10.1038/ng0395-267. PubMed DOI

Pelucchi S., Mariani R., Ravasi G., Pelloni I., Marano M., Tremolizzo L., Alessio M., Piperno A. Phenotypic Heterogeneity in Seven Italian Cases of Aceruloplasminemia. Parkinsonism Relat. Disord. 2018;51:36–42. doi: 10.1016/j.parkreldis.2018.02.036. PubMed DOI

Zhou L., Chen Y., Li Y., Gharabaghi S., Chen Y., Sethi S.K., Wu Y., Haacke E.M. Intracranial Iron Distribution and Quantification in Aceruloplasminemia: A Case Study. Magn. Reson. Imaging. 2020;70:29–35. doi: 10.1016/j.mri.2020.02.016. PubMed DOI

Kim H.K., Ki C.S., Kim Y.J., Lee M.S. Radiological Findings of Two Sisters with Aceruloplasminemia Presenting with Chorea. Clin. Neuroradiol. 2017;27:385–388. doi: 10.1007/s00062-017-0573-0. PubMed DOI

Kaneko K., Hineno A., Yoshida K., Ohara S., Morita H., Ikeda S. Extensive Brain Pathology in a Patient with Aceruloplasminemia with a Prolonged Duration of Illness. Hum. Pathol. 2012;43:451–456. doi: 10.1016/j.humpath.2011.05.016. PubMed DOI

Gonzalez-Cuyar L.F., Perry G., Miyajima H., Atwood C.S., Riveros-Angel M., Lyons P.F., Siedlak S.L., Smith M.A., Castellani R.J. Redox Active Iron Accumulation in Aceruloplasminemia. Neuropathology. 2008;28:466–471. doi: 10.1111/j.1440-1789.2008.00901.x. PubMed DOI

Oide T., Yoshida K., Kaneko K., Ohta M., Arima K. Iron Overload and Antioxidative Role of Perivascular Astrocytes in Aceruloplasminemia. Neuropathol. Appl. Neurobiol. 2006;32:170–176. doi: 10.1111/j.1365-2990.2006.00710.x. PubMed DOI

Vroegindeweij L.H.P., Bossoni L., Boon A.J.W., Wilson J.H.P., Bulk M., Labra-Munoz J., Huber M., Webb A., van der Weerd L., Langendonk J.G. Quantification of Different Iron Forms in the Aceruloplasminemia Brain to Explore Iron-Related Neurodegeneration. Neuroimage Clin. 2021;30:102657. doi: 10.1016/j.nicl.2021.102657. PubMed DOI PMC

Miyajima H. Aceruloplasminemia, an Iron Metabolic Disorder. Neuropathology. 2003;23:345–350. doi: 10.1046/j.1440-1789.2003.00521.x. PubMed DOI

Mancuso M., Davidzon G., Kurlan R.M., Tawil R., Bonilla E., di Mauro S., Powers J.M. Hereditary Ferritinopathy: A Novel Mutation, Its Cellular Pathology, and Pathogenetic Insights. J. Neuropathol. Exp. Neurol. 2005;64:280–294. doi: 10.1093/jnen/64.4.280. PubMed DOI

Curtis A.R., Fey C., Morris C.M., Bindoff L.A., Ince P.G., Chinnery P.F., Coulthard A., Jackson M.J., Jackson A.P., McHale D.P., et al. Mutation in the Gene Encoding Ferritin Light Polypeptide Causes Dominant Adult-Onset Basal Ganglia Disease. Nat. Genet. 2001;28:350–354. doi: 10.1038/ng571. PubMed DOI

Ory-Magne F., Brefel-Courbon C., Payoux P., Debruxelles S., Sibon I., Goizet C., Labauge P., Menegon P., Uro-Coste E., Ghetti B., et al. Clinical Phenotype and Neuroimaging Findings in a French Family with Hereditary Ferritinopathy (Ftl498-499instc) Mov. Disord. 2009;24:1676–1683. doi: 10.1002/mds.22669. PubMed DOI

McNeill A., Birchall D., Hayflick S.J., Gregory A., Schenk J.F., Zimmerman E.A., Shang H., Miyajima H., Chinnery P.F. T2* and Fse Mri Distinguishes Four Subtypes of Neurodegeneration with Brain Iron Accumulation. Neurology. 2008;70:1614–1619. doi: 10.1212/01.wnl.0000310985.40011.d6. PubMed DOI PMC

Keogh M.J., Jonas P., Coulthard A., Chinnery P.F., Burn J. Neuroferritinopathy: A New Inborn Error of Iron Metabolism. Neurogenetics. 2012;13:93–96. doi: 10.1007/s10048-011-0310-9. PubMed DOI PMC

McNeill A., Gorman G., Khan A., Horvath R., Blamire A.M., Chinnery P.F. Progressive Brain Iron Accumulation in Neuroferritinopathy Measured by the Thalamic T2* Relaxation Rate. AJNR Am. J. Neuroradiol. 2012;33:1810–1813. doi: 10.3174/ajnr.A3036. PubMed DOI PMC

Kurzawa-Akanbi M., Keogh M., Tsefou E., Ramsay L., Johnson M., Keers S., Ochieng L.W., McNair A., Singh P., Khan A., et al. Neuropathological and Biochemical Investigation of Hereditary Ferritinopathy Cases with Ferritin Light Chain Mutation: Prominent Protein Aggregation in the Absence of Major Mitochondrial or Oxidative Stress. Neuropathol. Appl. Neurobiol. 2021;47:26–42. doi: 10.1111/nan.12634. PubMed DOI

Vidal R., Delisle M.B., Rascol O., Ghetti B. Hereditary Ferritinopathy. J. Neurol. Sci. 2003;207:110–111. doi: 10.1016/S0022-510X(02)00435-5. PubMed DOI

Lee J.H., Gregory A., Hogarth P., Rogers C., Hayflick S.J. Looking Deep into the Eye-of-the-Tiger in Pantothenate Kinase-Associated Neurodegeneration. AJNR Am. J. Neuroradiol. 2018;39:583–588. doi: 10.3174/ajnr.A5514. PubMed DOI PMC

Dusek P., Martinez E.M.T., Madai V.I., Jech R., Sobesky J., Paul F., Niendorf T., Wuerfel J., Schneider S.A. 7-Tesla Magnetic Resonance Imaging for Brain Iron Quantification in Homozygous and Heterozygous Pank2 Mutation Carriers. Mov. Disord. Clin. Pract. 2014;1:329–335. doi: 10.1002/mdc3.12080. PubMed DOI PMC

Zeng J., Xing W., Liao W., Wang X. Magnetic Resonance Imaging, Susceptibility Weighted Imaging and Quantitative Susceptibility Mapping Findings of Pantothenate Kinase-Associated Neurodegeneration. J. Clin. Neurosci. 2019;59:20–28. doi: 10.1016/j.jocn.2018.10.090. PubMed DOI

Fermin-Delgado R., Roa-Sanchez P., Speckter H., Perez-Then E., Rivera-Mejia D., Foerster B., Stoeter P. Involvement of Globus Pallidus and Midbrain Nuclei in Pantothenate Kinase-Associated Neurodegeneration: Measurement of T2 and T2* Time. Clin. Neuroradiol. 2013;23:11–15. doi: 10.1007/s00062-011-0127-9. PubMed DOI

Kruer M.C., Hiken M., Gregory A., Malandrini A., Clark D., Hogarth P., Grafe M., Hayflick S.J., Woltjer R.L. Novel Histopathologic Findings in Molecularly-Confirmed Pantothenate Kinase-Associated Neurodegeneration. Brain. 2011;134:947–958. doi: 10.1093/brain/awr042. PubMed DOI PMC

Li A., Paudel R., Johnson R., Courtney R., Lees A.J., Holton J.L., Hardy J., Revesz T., Houlden H. Pantothenate Kinase-Associated Neurodegeneration Is Not a Synucleinopathy. Neuropathol. Appl. Neurobiol. 2013;39:121–131. doi: 10.1111/j.1365-2990.2012.01269.x. PubMed DOI PMC

Dusek P., Mekle R., Skowronska M., Acosta-Cabronero J., Huelnhagen T., Robinson S.D., Schubert F., Deschauer M., Els A., Ittermann B., et al. Brain Iron and Metabolic Abnormalities in C19orf12 Mutation Carriers: A 7.0 Tesla Mri Study in Mitochondrial Membrane Protein-Associated Neurodegeneration. Mov. Disord. 2020;35:142–150. doi: 10.1002/mds.27827. PubMed DOI

Alavi A., Mokhtari M., Hajati R., Davarzani A., Fasano A., Lang A.E., Rohani M. Late-Onset Mitochondrial Membrane Protein-Associated Neurodegeneration with Extensive Brain Iron Deposition. Mov. Disord. Clin. Pract. 2020;7:120–121. doi: 10.1002/mdc3.12868. PubMed DOI PMC

Hogarth P., Gregory A., Kruer M.C., Sanford L., Wagoner W., Natowicz M.R., Egel R.T., Subramony S.H., Goldman J.G., Berry-Kravis E., et al. New Nbia Subtype: Genetic, Clinical, Pathologic, and Radiographic Features of Mpan. Neurology. 2013;80:268–275. doi: 10.1212/WNL.0b013e31827e07be. PubMed DOI PMC

Hartig M.B., Iuso A., Haack T., Kmiec T., Jurkiewicz E., Heim K., Roeber S., Tarabin V., Dusi S., Krajewska-Walasek M., et al. Absence of an Orphan Mitochondrial Protein, C19orf12, Causes a Distinct Clinical Subtype of Neurodegeneration with Brain Iron Accumulation. Am. J. Hum. Genet. 2011;89:543–550. doi: 10.1016/j.ajhg.2011.09.007. PubMed DOI PMC

Kurian M.A., Morgan N.V., MacPherson L., Foster K., Peake D., Gupta R., Philip S.G., Hendriksz C., Morton J.E., Kingston H.M., et al. Phenotypic Spectrum of Neurodegeneration Associated with Mutations in the Pla2g6 Gene (Plan) Neurology. 2008;70:1623–1629. doi: 10.1212/01.wnl.0000310986.48286.8e. PubMed DOI

Gregory A., Westaway S.K., Holm I.E., Kotzbauer P.T., Hogarth P., Sonek S., Coryell J.C., Nguyen T.M., Nardocci N., Zorzi G., et al. Neurodegeneration Associated with Genetic Defects in Phospholipase a(2) Neurology. 2008;71:1402–1409. doi: 10.1212/01.wnl.0000327094.67726.28. PubMed DOI PMC

Darling A., Aguilera-Albesa S., Tello C.A., Serrano M., Tomas M., Camino-Leon R., Fernandez-Ramos J., Jimenez-Escrig A., Poo P., O’Callaghan M., et al. Pla2g6-Associated Neurodegeneration: New Insights into Brain Abnormalities and Disease Progression. Parkinsonism Relat. Disord. 2019;61:179–186. doi: 10.1016/j.parkreldis.2018.10.013. PubMed DOI

Paisan-Ruiz C., Li A., Schneider S.A., Holton J.L., Johnson R., Kidd D., Chataway J., Bhatia K.P., Lees A.J., Hardy J., et al. Widespread Lewy Body and Tau Accumulation in Childhood and Adult Onset Dystonia-Parkinsonism Cases with Pla2g6 Mutations. Neurobiol. Aging. 2012;33:814–823. doi: 10.1016/j.neurobiolaging.2010.05.009. PubMed DOI PMC

Riku Y., Ikeuchi T., Yoshino H., Mimuro M., Mano K., Goto Y., Hattori N., Sobue G., Yoshida M. Extensive Aggregation of Alpha-Synuclein and Tau in Juvenile-Onset Neuroaxonal Dystrophy: An Autopsied Individual with a Novel Mutation in the Pla2g6 Gene-Splicing Site. Acta Neuropathol. Commun. 2013;1:12. doi: 10.1186/2051-5960-1-12. PubMed DOI PMC

Belohlavkova A., Sterbova K., Betzler C., Burkhard S., Panzer A., Wolff M., Lassuthova P., Vlckova M., Kyncl M., Benova B., et al. Clinical Features and Blood Iron Metabolism Markers in Children with Beta-Propeller Protein Associated Neurodegeneration. Eur. J. Paediatr. Neurol. 2020;28:81–88. doi: 10.1016/j.ejpn.2020.07.010. PubMed DOI

Kimura Y., Sato N., Ishiyama A., Shigemoto Y., Suzuki F., Fujii H., Maikusa N., Matsuda H., Nishioka K., Hattori N., et al. Serial Mri Alterations of Pediatric Patients with Beta-Propeller Protein Associated Neurodegeneration (Bpan) J. Neuroradiol. 2021;48:88–93. doi: 10.1016/j.neurad.2020.04.002. PubMed DOI

Hayflick S.J., Kruer M.C., Gregory A., Haack T.B., Kurian M.A., Houlden H.H., Anderson J., Boddaert N., Sanford L., Harik S.I., et al. Beta-Propeller Protein-Associated Neurodegeneration: A New X-Linked Dominant Disorder with Brain Iron Accumulation. Brain. 2013;136:1708–1717. doi: 10.1093/brain/awt095. PubMed DOI PMC

Paudel R., Li A., Wiethoff S., Bandopadhyay R., Bhatia K., de Silva R., Houlden H., Holton J.L. Neuropathology of Beta-Propeller Protein Associated Neurodegeneration (Bpan): A New Tauopathy. Acta Neuropathol. Commun. 2015;3:39. doi: 10.1186/s40478-015-0221-3. PubMed DOI PMC

Lamarche J.B., Cote M., Lemieux B. The Cardiomyopathy of Friedreich’s Ataxia Morphological Observations in 3 Cases. Can. J. Neurol. Sci. 1980;7:389–396. doi: 10.1017/S0317167100022927. PubMed DOI

Michael S., Petrocine S.V., Qian J., Lamarche J.B., Knutson M.D., Garrick M.D., Koeppen A.H. Iron and Iron-Responsive Proteins in the Cardiomyopathy of Friedreich’s Ataxia. Cerebellum. 2006;5:257–267. doi: 10.1080/14734220600913246. PubMed DOI

Ramirez R.L., Qian J., Santambrogio P., Levi S., Koeppen A.H. Relation of Cytosolic Iron Excess to Cardiomyopathy of Friedreich’s Ataxia. Am. J. Cardiol. 2012;110:1820–1827. doi: 10.1016/j.amjcard.2012.08.018. PubMed DOI PMC

Pathak D., Srivastava A.K., Gulati S., Rajeswari M.R. Assessment of Cell-Free Levels of Iron and Copper in Patients with Friedreich’s Ataxia. Biometals. 2019;32:307–315. doi: 10.1007/s10534-019-00186-4. PubMed DOI

Straub S., Mangesius S., Emmerich J., Indelicato E., Nachbauer W., Degenhardt K.S., Ladd M.E., Boesch S., Gizewski E.R. Toward Quantitative Neuroimaging Biomarkers for Friedreich’s Ataxia at 7 Tesla: Susceptibility Mapping, Diffusion Imaging, R2 and R1 Relaxometry. J. Neurosci. Res. 2020;98:2219–2231. doi: 10.1002/jnr.24701. PubMed DOI PMC

Ward P.G.D., Harding I.H., Close T.G., Corben L.A., Delatycki M.B., Storey E., Georgiou-Karistianis N., Egan G.F. Longitudinal Evaluation of Iron Concentration and Atrophy in the Dentate Nuclei in Friedreich Ataxia. Mov. Disord. 2019;34:335–343. doi: 10.1002/mds.27606. PubMed DOI

Koeppen A.H., Michael S.C., Knutson M.D., Haile D.J., Qian J., Levi S., Santambrogio P., Garrick M.D., Lamarche J.B. The Dentate Nucleus in Friedreich’s Ataxia: The Role of Iron-Responsive Proteins. Acta Neuropathol. 2007;114:163–173. doi: 10.1007/s00401-007-0220-y. PubMed DOI

Koeppen A.H., Ramirez R.L., Yu D., Collins S.E., Qian J., Parsons P.J., Yang K.X., Chen Z., Mazurkiewicz J.E., Feustel P.J. Friedreich’s Ataxia Causes Redistribution of Iron, Copper, and Zinc in the Dentate Nucleus. Cerebellum. 2012;11:845–860. doi: 10.1007/s12311-012-0383-5. PubMed DOI PMC

Harding I.H., Raniga P., Delatycki M.B., Stagnitti M.R., Corben L.A., Storey E., Georgiou-Karistianis N., Egan G.F. Tissue Atrophy and Elevated Iron Concentration in the Extrapyramidal Motor System in Friedreich Ataxia: The Image-Frda Study. J. Neurol. Neurosurg. Psychiatry. 2016;87:1261–1263. doi: 10.1136/jnnp-2015-312665. PubMed DOI

Reelfs O., Abbate V., Cilibrizzi A., Pook M.A., Hider R.C., Pourzand C. The Role of Mitochondrial Labile Iron in Friedreich’s Ataxia Skin Fibroblasts Sensitivity to Ultraviolet A. Metallomics. 2019;11:656–665. doi: 10.1039/c8mt00257f. PubMed DOI PMC

Bradley J.L., Blake J.C., Chamberlain S., Thomas P.K., Cooper J.M., Schapira A.H. Clinical, Biochemical and Molecular Genetic Correlations in Friedreich’s Ataxia. Hum. Mol. Genet. 2000;9:275–282. doi: 10.1093/hmg/9.2.275. PubMed DOI

Gromadzka G., Wierzbicka D., Litwin T., Przybylkowski A. Iron Metabolism Is Disturbed and Anti-Copper Treatment Improves but Does Not Normalize Iron Metabolism in Wilson’s Disease. Biometals. 2021;34:407–414. doi: 10.1007/s10534-021-00289-x. PubMed DOI PMC

Osterode W., Falkenberg G., Ferenci P., Wrba F. Quantitative Trace Element Mapping in Liver Tissue from Patients with Wilson’S Disease Determined by Micro X-Ray Fluorescence. J. Trace Elem. Med. Biol. 2019;51:42–49. doi: 10.1016/j.jtemb.2018.09.007. PubMed DOI

Hachmoller O., Zibert A., Zischka H., Sperling M., Groba S.R., Grunewald I., Wardelmann E., Schmidt H.H., Karst U. Spatial Investigation of the Elemental Distribution in Wilson’s Disease Liver after D-Penicillamine Treatment by La-Icp-Ms. J. Trace Elem. Med. Biol. 2017;44:26–31. doi: 10.1016/j.jtemb.2017.05.008. PubMed DOI

Dusek P., Lescinskij A., Ruzicka F., Acosta-Cabronero J., Bruha R., Sieger T., Hajek M., Dezortova M. Associations of Brain Atrophy and Cerebral Iron Accumulation at Mri with Clinical Severity in Wilson Disease. Radiology. 2021;299:662–672. doi: 10.1148/radiol.2021202846. PubMed DOI

Dezortova M., Lescinskij A., Dusek P., Herynek V., Acosta-Cabronero J., Bruha R., Jiru F., Robinson S.D., Hajek M. Multiparametric Quantitative Brain Mri in Neurological and Hepatic Forms of Wilson’s Disease. J. Magn. Reson. Imaging. 2020;51:1829–1835. doi: 10.1002/jmri.26984. PubMed DOI

Dusek P., Bahn E., Litwin T., Jablonka-Salach K., Luciuk A., Huelnhagen T., Madai V.I., Dieringer M.A., Bulska E., Knauth M., et al. Brain Iron Accumulation in Wilson Disease: A Post Mortem 7 Tesla Mri—Histopathological Study. Neuropathol. Appl. Neurobiol. 2017;43:514–532. doi: 10.1111/nan.12341. PubMed DOI

Jimenez-Jimenez F.J., Alonso-Navarro H., Garcia-Martin E., Agundez J.A.G. Biological Fluid Levels of Iron and Iron-Related Proteins in Parkinson’s Disease: Review and Meta-Analysis. Eur. J. Neurol. 2021;28:1041–1055. doi: 10.1111/ene.14607. PubMed DOI

Depierreux F., Parmentier E., Mackels L., Baquero K., Degueldre C., Balteau E., Salmon E., Phillips C., Bahri M.A., Maquet P., et al. Parkinson’s Disease Multimodal Imaging: F-Dopa Pet, Neuromelanin-Sensitive and Quantitative Iron-Sensitive Mri. NPJ Parkinsons Dis. 2021;7:57. doi: 10.1038/s41531-021-00199-2. PubMed DOI PMC

Biondetti E., Santin M.D., Valabregue R., Mangone G., Gaurav R., Pyatigorskaya N., Hutchison M., Yahia-Cherif L., Villain N., Habert M.O., et al. The Spatiotemporal Changes in Dopamine, Neuromelanin and Iron Characterizing Parkinson’s Disease. Brain. 2021;144:3114–3125. doi: 10.1093/brain/awab191. PubMed DOI PMC

Riederer P., Monoranu C., Strobel S., Iordache T., Sian-Hulsmann J. Iron as the Concert Master in the Pathogenic Orchestra Playing in Sporadic Parkinson’s Disease. J. Neural. Transm. 2021;128:1577–1598. doi: 10.1007/s00702-021-02414-z. PubMed DOI PMC

Oakley A.E., Collingwood J.F., Dobson J., Love G., Perrott H.R., Edwardson J.A., Elstner M., Morris C.M. Individual Dopaminergic Neurons Show Raised Iron Levels in Parkinson Disease. Neurology. 2007;68:1820–1825. doi: 10.1212/01.wnl.0000262033.01945.9a. PubMed DOI

Friedrich I., Reimann K., Jankuhn S., Kirilina E., Stieler J., Sonntag M., Meijer J., Weiskopf N., Reinert T., Arendt T., et al. Cell Specific Quantitative Iron Mapping on Brain Slices by Immuno-Micropixe in Healthy Elderly and Parkinson’s Disease. Acta Neuropathol. Commun. 2021;9:47. doi: 10.1186/s40478-021-01145-2. PubMed DOI PMC

Davies K.M., Bohic S., Carmona A., Ortega R., Cottam V., Hare D.J., Finberg J.P., Reyes S., Halliday G.M., Mercer J.F., et al. Copper Pathology in Vulnerable Brain Regions in Parkinson’s Disease. Neurobiol. Aging. 2014;35:858–866. doi: 10.1016/j.neurobiolaging.2013.09.034. PubMed DOI

Hare D.J., Doecke J.D., Faux N.G., Rembach A., Volitakis I., Fowler C.J., Grimm R., Doble P.A., Cherny R.A., Masters C.L., et al. Decreased Plasma Iron in Alzheimer’s Disease Is Due to Transferrin Desaturation. ACS Chem. Neurosci. 2015;6:398–402. doi: 10.1021/cn5003557. PubMed DOI

Jouini N., Saied Z., Sassi S.B., Nebli F., Messaoud T., Hentati F., Belal S. Impacts of Iron Metabolism Dysregulation on Alzheimer’s Disease. J. Alzheimers Dis. 2021;80:1439–1450. doi: 10.3233/JAD-201250. PubMed DOI

Kweon O.J., Youn Y.C., Lim Y.K., Lee M.K., Kim H.R. Clinical Utility of Serum Hepcidin and Iron Profile Measurements in Alzheimer’s Disease. J. Neurol. Sci. 2019;403:85–91. doi: 10.1016/j.jns.2019.06.008. PubMed DOI

Van Duijn S., Bulk M., van Duinen S.G., Nabuurs R.J.A., van Buchem M.A., van der Weerd L., Natte R. Cortical Iron Reflects Severity of Alzheimer’s Disease. J. Alzheimers Dis. 2017;60:1533–1545. doi: 10.3233/JAD-161143. PubMed DOI PMC

Ayton S., Wang Y., Diouf I., Schneider J.A., Brockman J., Morris M.C., Bush A.I. Brain Iron Is Associated with Accelerated Cognitive Decline in People with Alzheimer Pathology. Mol. Psychiatry. 2020;25:2932–2941. doi: 10.1038/s41380-019-0375-7. PubMed DOI PMC

Cogswell P.M., Wiste H.J., Senjem M.L., Gunter J.L., Weigand S.D., Schwarz C.G., Arani A., Therneau T.M., Lowe V.J., Knopman D.S., et al. Associations of Quantitative Susceptibility Mapping with Alzheimer’s Disease Clinical and Imaging Markers. Neuroimage. 2021;224:117433. doi: 10.1016/j.neuroimage.2020.117433. PubMed DOI PMC

Spotorno N., Acosta-Cabronero J., Stomrud E., Lampinen B., Strandberg O.T., van Westen D., Hansson O. Relationship between Cortical Iron and Tau Aggregation in Alzheimer’s Disease. Brain. 2020;143:1341–1349. doi: 10.1093/brain/awaa089. PubMed DOI PMC

Damulina A., Pirpamer L., Soellradl M., Sackl M., Tinauer C., Hofer E., Enzinger C., Gesierich B., Duering M., Ropele S., et al. Cross-Sectional and Longitudinal Assessment of Brain Iron Level in Alzheimer Disease Using 3-T Mri. Radiology. 2020;296:619–626. doi: 10.1148/radiol.2020192541. PubMed DOI

Du L., Zhao Z., Cui A., Zhu Y., Zhang L., Liu J., Shi S., Fu C., Han X., Gao W., et al. Increased Iron Deposition on Brain Quantitative Susceptibility Mapping Correlates with Decreased Cognitive Function in Alzheimer’s Disease. ACS Chem. Neurosci. 2018;9:1849–1857. doi: 10.1021/acschemneuro.8b00194. PubMed DOI

Kenkhuis B., Somarakis A., de Haan L., Dzyubachyk O., Ijsselsteijn M.E., de Miranda N.F.C.C., Lelieveldt B.P.F., Dijkstra J., van Roon-Mom W.M.C., Hollt T., et al. Iron Loading Is a Prominent Feature of Activated Microglia in Alzheimer’s Disease Patients. Acta Neuropathol. Commun. 2021;9:27. doi: 10.1186/s40478-021-01126-5. PubMed DOI PMC

Madsen S.J., DiGiacomo P.S., Zeng Y., Goubran M., Chen Y., Rutt B.K., Born D., Vogel H., Sinclair R., Zeineh M.M. Correlative Microscopy to Localize and Characterize Iron Deposition in Alzheimer’s Disease. J. Alzheimers Dis. Rep. 2020;4:525–536. doi: 10.3233/ADR-200234. PubMed DOI PMC

Zeineh M.M., Chen Y., Kitzler H.H., Hammond R., Vogel H., Rutt B.K. Activated Iron-Containing Microglia in the Human Hippocampus Identified by Magnetic Resonance Imaging in Alzheimer Disease. Neurobiol. Aging. 2015;36:2483–2500. doi: 10.1016/j.neurobiolaging.2015.05.022. PubMed DOI PMC

Everett J., Collingwood J.F., Tjendana-Tjhin V., Brooks J., Lermyte F., Plascencia-Villa G., Hands-Portman I., Dobson J., Perry G., Telling N.D. Nanoscale Synchrotron X-ray Speciation of Iron and Calcium Compounds in Amyloid Plaque Cores from Alzheimer’s Disease Subjects. Nanoscale. 2018;10:11782–11796. doi: 10.1039/C7NR06794A. PubMed DOI PMC

Plascencia-Villa G., Ponce A., Collingwood J.F., Arellano-Jimenez M.J., Zhu X., Rogers J.T., Betancourt I., Jose-Yacaman M., Perry G. High-Resolution Analytical Imaging and Electron Holography of Magnetite Particles in Amyloid Cores of Alzheimer’s Disease. Sci. Rep. 2016;6:24873. doi: 10.1038/srep24873. PubMed DOI PMC

Wang L., Li C., Chen X., Li S., Shang H. Abnormal Serum Iron-Status Indicator Changes in Amyotrophic Lateral Sclerosis (Als) Patients: A Meta-Analysis. Front. Neurol. 2020;11:380. doi: 10.3389/fneur.2020.00380. PubMed DOI PMC

Tandon L., Kasarskis E.J., Ehmann W.D. Elemental Imbalance Studies by Inaa on Extraneural Tissues from Amyotrophic Lateral Sclerosis Patients. J. Radioanal. Nucl. Chem. 1995;195:13–19. doi: 10.1007/BF02036468. DOI

Ince P.G., Shaw P.J., Candy J.M., Mantle D., Tandon L., Ehmann W.D., Markesbery W.R. Iron, Selenium and Glutathione Peroxidase Activity Are Elevated in Sporadic Motor Neuron Disease. Neurosci. Lett. 1994;182:87–90. doi: 10.1016/0304-3940(94)90213-5. PubMed DOI

Roos P.M. Ph.D. Thesis. Karolinska Institutet; Stockholm, Sweden: 2013. Studies on Metals in Motor Neuron Disease.

Roeben B., Wilke C., Bender B., Ziemann U., Synofzik M. The Motor Band Sign in Als: Presentations and Frequencies in a Consecutive Series of Als Patients. J. Neurol. Sci. 2019;406:116440. doi: 10.1016/j.jns.2019.116440. PubMed DOI

De Reuck J., Devos D., Moreau C., Auger F., Durieux N., Deramecourt V., Pasquier F., Maurage C.A., Cordonnier C., Leys D., et al. Topographic Distribution of Brain Iron Deposition and Small Cerebrovascular Lesions in Amyotrophic Lateral Sclerosis and in Frontotemporal Lobar Degeneration: A Post-Mortem 7.0-Tesla Magnetic Resonance Imaging Study with Neuropathological Correlates. Acta Neurol. Belg. 2017;117:873–878. doi: 10.1007/s13760-017-0832-5. PubMed DOI

Acosta-Cabronero J., Machts J., Schreiber S., Abdulla S., Kollewe K., Petri S., Spotorno N., Kaufmann J., Heinze H.J., Dengler R., et al. Quantitative Susceptibility Mri to Detect Brain Iron in Amyotrophic Lateral Sclerosis. Radiology. 2018;289:195–203. doi: 10.1148/radiol.2018180112. PubMed DOI PMC

Kasarskis E.J., Ehmann W.D., Markesbery W.R. Trace Metals in Human Neurodegenerative Diseases. Prog. Clin. Biol. Res. 1993;380:299–310. PubMed

Kwan J.Y., Jeong S.Y., van Gelderen P., Deng H.X., Quezado M.M., Danielian L.E., Butman J.A., Chen L., Bayat E., Russell J., et al. Iron Accumulation in Deep Cortical Layers Accounts for Mri Signal Abnormalities in Als: Correlating 7 Tesla Mri and Pathology. PLoS ONE. 2012;7:e35241. doi: 10.1371/journal.pone.0035241. PubMed DOI PMC

Hametner S., Wimmer I., Haider L., Pfeifenbring S., Bruck W., Lassmann H. Iron and Neurodegeneration in the Multiple Sclerosis Brain. Ann. Neurol. 2013;74:848–861. doi: 10.1002/ana.23974. PubMed DOI PMC

Schweser F., Hagemeier J., Dwyer M.G., Bergsland N., Hametner S., Weinstock-Guttman B., Zivadinov R. Decreasing Brain Iron in Multiple Sclerosis: The Difference between Concentration and Content in Iron Mri. Hum. Brain Mapp. 2021;42:1463–1474. doi: 10.1002/hbm.25306. PubMed DOI PMC

Burgetova A., Dusek P., Vaneckova M., Horakova D., Langkammer C., Krasensky J., Sobisek L., Matras P., Masek M., Seidl Z. Thalamic Iron Differentiates Primary-Progressive and Relapsing-Remitting Multiple Sclerosis. AJNR Am. J. Neuroradiol. 2017;38:1079–1086. doi: 10.3174/ajnr.A5166. PubMed DOI PMC

Khalil M., Langkammer C., Pichler A., Pinter D., Gattringer T., Bachmaier G., Ropele S., Fuchs S., Enzinger C., Fazekas F. Dynamics of Brain Iron Levels in Multiple Sclerosis: A Longitudinal 3t Mri Study. Neurology. 2015;84:2396–2402. doi: 10.1212/WNL.0000000000001679. PubMed DOI

Zivadinov R., Tavazzi E., Bergsland N., Hagemeier J., Lin F., Dwyer M.G., Carl E., Kolb C., Hojnacki D., Ramasamy D., et al. Brain Iron at Quantitative Mri Is Associated with Disability in Multiple Sclerosis. Radiology. 2018;289:487–496. doi: 10.1148/radiol.2018180136. PubMed DOI PMC

Kaunzner U.W., Kang Y., Zhang S., Morris E., Yao Y., Pandya S., Rua S.M.H., Park C., Gillen K.M., Nguyen T.D., et al. Quantitative Susceptibility Mapping Identifies Inflammation in a Subset of Chronic Multiple Sclerosis Lesions. Brain. 2019;142:133–145. doi: 10.1093/brain/awy296. PubMed DOI PMC

Dal-Bianco A., Grabner G., Kronnerwetter C., Weber M., Hoftberger R., Berger T., Auff E., Leutmezer F., Trattnig S., Lassmann H., et al. Slow Expansion of Multiple Sclerosis Iron Rim Lesions: Pathology and 7 T Magnetic Resonance Imaging. Acta Neuropathol. 2017;133:25–42. doi: 10.1007/s00401-016-1636-z. PubMed DOI PMC

Popescu B.F., Frischer J.M., Webb S.M., Tham M., Adiele R.C., Robinson C.A., Fitz-Gibbon P.D., Weigand S.D., Metz I., Nehzati S., et al. Pathogenic Implications of Distinct Patterns of Iron and Zinc in Chronic Ms Lesions. Acta Neuropathol. 2017;134:45–64. doi: 10.1007/s00401-017-1696-8. PubMed DOI PMC

Bagnato F., Hametner S., Yao B., van Gelderen P., Merkle H., Cantor F.K., Lassmann H., Duyn J.H. Tracking Iron in Multiple Sclerosis: A Combined Imaging and Histopathological Study at 7 Tesla. Brain. 2011;134:3602–3615. doi: 10.1093/brain/awr278. PubMed DOI PMC

Xu W.Q., Ni W., Wang R.M., Dong Y., Wu Z.Y. A Novel Ceruloplasmin Mutation Identified in a Chinese Patient and Clinical Spectrum of Aceruloplasminemia Patients. Metab. Brain Dis. 2021;36:2273–2281. doi: 10.1007/s11011-021-00799-0. PubMed DOI

Kenawi M., Rouger E., Island M.L., Leroyer P., Robin F., Remy S., Tesson L., Anegon I., Nay K., Derbre F., et al. Ceruloplasmin Deficiency Does Not Induce Macrophagic Iron Overload: Lessons from a New Rat Model of Hereditary Aceruloplasminemia. FASEB J. 2019;33:13492–13502. doi: 10.1096/fj.201901106R. PubMed DOI

Marchi G., Busti F., Zidanes A.L., Castagna A., Girelli D. Aceruloplasminemia: A Severe Neurodegenerative Disorder Deserving an Early Diagnosis. Front. Neurosci. 2019;13:325. doi: 10.3389/fnins.2019.00325. PubMed DOI PMC

Riboldi G.M., Anstett K., Jain R., Lau H., Swope D. Aceruloplasminemia and Putaminal Cavitation. Parkinsonism Relat. Disord. 2018;51:121–123. doi: 10.1016/j.parkreldis.2018.03.003. PubMed DOI

Yoshida K., Hayashi H., Wakusawa S., Shigemasa R., Koide R., Ishikawa T., Tatsumi Y., Kato K., Ohara S., Ikeda S.I. Coexistence of Copper in the Iron-Rich Particles of Aceruloplasminemia Brain. Biol. Trace Elem. Res. 2017;175:79–86. doi: 10.1007/s12011-016-0744-x. PubMed DOI

Dusek P., Schneider S.A., Aaseth J. Iron Chelation in the Treatment of Neurodegenerative Diseases. J. Trace Elem. Med. Biol. 2016;38:81–92. doi: 10.1016/j.jtemb.2016.03.010. PubMed DOI

Miyake Z., Nakamagoe K., Yoshida K., Kondo T., Tamaoka A. Deferasirox Might Be Effective for Microcytic Anemia and Neurological Symptoms Associated with Aceruloplasminemia: A Case Report and Review of the Literature. Intern. Med. 2020;59:1755–1761. doi: 10.2169/internalmedicine.4178-19. PubMed DOI PMC

Vroegindeweij L.H.P., Boon A.J.W., Wilson J.H.P., Langendonk J.G. Effects of Iron Chelation Therapy on the Clinical Course of Aceruloplasminemia: An Analysis of Aggregated Case Reports. Orphanet J. Rare Dis. 2020;15:105. doi: 10.1186/s13023-020-01385-w. PubMed DOI PMC

Zanardi A., Conti A., Cremonesi M., D’Adamo P., Gilberti E., Apostoli P., Cannistraci C.V., Piperno A., David S., Alessio M. Ceruloplasmin Replacement Therapy Ameliorates Neurological Symptoms in a Preclinical Model of Aceruloplasminemia. EMBO Mol. Med. 2018;10:91–106. doi: 10.15252/emmm.201708361. PubMed DOI PMC

Piperno A., Alessio M. Aceruloplasminemia: Waiting for an Efficient Therapy. Front. Neurosci. 2018;12:903. doi: 10.3389/fnins.2018.00903. PubMed DOI PMC

Poli L., Alberici A., Buzzi P., Marchina E., Lanari A., Arosio C., Ciccone A., Semeraro F., Gasparotti R., Padovani A., et al. Is Aceruloplasminemia Treatable? Combining Iron Chelation and Fresh-Frozen Plasma Treatment. Neurol. Sci. 2017;38:357–360. doi: 10.1007/s10072-016-2756-x. PubMed DOI

Wang B., Wang X.P. Does Ceruloplasmin Defend against Neurodegenerative Diseases? Curr. Neuropharmacol. 2019;17:539–549. doi: 10.2174/1570159X16666180508113025. PubMed DOI PMC

Borges M.D., de Albuquerque D.M., Lanaro C., Costa F.F., Fertrin K.Y. Clinical Relevance of Heterozygosis for Aceruloplasminemia. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2019;180:266–271. doi: 10.1002/ajmg.b.32723. PubMed DOI

Cozzi A., Santambrogio P., Ripamonti M., Rovida E., Levi S. Pathogenic Mechanism and Modeling of Neuroferritinopathy. Cell. Mol. Life Sci. 2021;78:3355–3367. doi: 10.1007/s00018-020-03747-w. PubMed DOI PMC

Muhoberac B.B., Vidal R. Iron, Ferritin, Hereditary Ferritinopathy, and Neurodegeneration. Front. Neurosci. 2019;13:1195. doi: 10.3389/fnins.2019.01195. PubMed DOI PMC

Kumar N., Rizek P., Jog M. Neuroferritinopathy: Pathophysiology, Presentation, Differential Diagnoses and Management. Tremor Other Hyperkinet. Mov. 2016;6:355. doi: 10.5334/tohm.317. PubMed DOI PMC

McNally J.R., Mehlenbacher M.R., Luscieti S., Smith G.L., Reutovich A.A., Maura P., Arosio P., Bou-Abdallah F. Mutant L-Chain Ferritins That Cause Neuroferritinopathy Alter Ferritin Functionality and Iron Permeability. Metallomics. 2019;11:1635–1647. doi: 10.1039/c9mt00154a. PubMed DOI PMC

Kuwata T., Okada Y., Yamamoto T., Sato D., Fujiwara K., Fukumura T., Ikeguchi M. Structure, Function, Folding, and Aggregation of a Neuroferritinopathy-Related Ferritin Variant. Biochemistry. 2019;58:2318–2325. doi: 10.1021/acs.biochem.8b01068. PubMed DOI

Park C.W., Kim N.Y., Kim Y.J., Song S.K., Lyoo C.H. A Patient with Neuroferritinopathy Presenting with Juvenile-Onset Voice Tremor. J. Mov. Disord. 2020;13:66–68. doi: 10.14802/jmd.19038. PubMed DOI PMC

Cozzi A., Orellana D.I., Santambrogio P., Rubio A., Cancellieri C., Giannelli S., Ripamonti M., Taverna S., di Lullo G., Rovida E., et al. Stem Cell Modeling of Neuroferritinopathy Reveals Iron as a Determinant of Senescence and Ferroptosis During Neuronal Aging. Stem Cell Rep. 2019;13:832–846. doi: 10.1016/j.stemcr.2019.09.002. PubMed DOI PMC

Garringer H.J., Irimia J.M., Li W., Goodwin C.B., Richine B., Acton A., Chan R.J., Peacock M., Muhoberac B.B., Ghetti B., et al. Effect of Systemic Iron Overload and a Chelation Therapy in a Mouse Model of the Neurodegenerative Disease Hereditary Ferritinopathy. PLoS ONE. 2016;11:e0161341. doi: 10.1371/journal.pone.0161341. PubMed DOI PMC

Hayflick S.J., Kurian M.A., Hogarth P. Neurodegeneration with Brain Iron Accumulation. Handb. Clin. Neurol. 2018;147:293–305. PubMed PMC

Tello C., Darling A., Lupo V., Perez-Duenas B., Espinos C. On the Complexity of Clinical and Molecular Bases of Neurodegeneration with Brain Iron Accumulation. Clin. Genet. 2018;93:731–740. doi: 10.1111/cge.13057. PubMed DOI

Arber C.E., Li A., Houlden H., Wray S. Review: Insights into Molecular Mechanisms of Disease in Neurodegeneration with Brain Iron Accumulation: Unifying Theories. Neuropathol. Appl. Neurobiol. 2016;42:220–241. doi: 10.1111/nan.12242. PubMed DOI PMC

Karin I., Buchner B., Gauzy F., Klucken A., Klopstock T. Treat Iron-Related Childhood-Onset Neurodegeneration (Tircon)-an International Network on Care and Research for Patients with Neurodegeneration with Brain Iron Accumulation (Nbia) Front. Neurol. 2021;12:642228. doi: 10.3389/fneur.2021.642228. PubMed DOI PMC

Wang Z.B., Liu J.Y., Xu X.J., Mao X.Y., Zhang W., Zhou H.H., Liu Z.Q. Neurodegeneration with Brain Iron Accumulation: Insights into the Mitochondria Dysregulation. Biomed. Pharmacother. 2019;118:109068. doi: 10.1016/j.biopha.2019.109068. PubMed DOI

Kinghorn K.J., Castillo-Quan J.I. Mitochondrial Dysfunction and Defects in Lipid Homeostasis as Therapeutic Targets in Neurodegeneration with Brain Iron Accumulation. Rare Dis. 2016;4:e1128616. doi: 10.1080/21675511.2015.1128616. PubMed DOI PMC

Mohd Fauzi N.A., Ibrahim N.M., Mukari S.A.M., Jegan T., Aziz Z.A. Amelioration of Dystonic Opisthotonus in Pantothenate Kinase-Associated Neurodegeneration Syndrome with Absent “Eye-of-the-Tiger” Sign Following Bilateral Pallidal Deep Brain Stimulation. Mov. Disord. Clin. Pract. 2019;6:332–334. doi: 10.1002/mdc3.12748. PubMed DOI PMC

Werning M., Mullner E.W., Mlynek G., Dobretzberger V., Djinovic-Carugo K., Baron D.M., Prokisch H., Buchner B., Klopstock T., Salzer U. Pkan Neurodegeneration and Residual Pank2 Activities in Patient Erythrocytes. Ann. Clin. Transl. Neurol. 2020;7:1340–1351. doi: 10.1002/acn3.51127. PubMed DOI PMC

Chang X., Zhang J., Jiang Y., Wang J., Wu Y. Natural History and Genotype-Phenotype Correlation of Pantothenate Kinase-Associated Neurodegeneration. CNS Neurosci. Ther. 2020;26:754–761. doi: 10.1111/cns.13294. PubMed DOI PMC

Arber C., Angelova P.R., Wiethoff S., Tsuchiya Y., Mazzacuva F., Preza E., Bhatia K.P., Mills K., Gout I., Abramov A.Y., et al. Ipsc-Derived Neuronal Models of Pank2-Associated Neurodegeneration Reveal Mitochondrial Dysfunction Contributing to Early Disease. PLoS ONE. 2017;12:e0184104. doi: 10.1371/journal.pone.0184104. PubMed DOI PMC

Santambrogio P., Ripamonti M., Paolizzi C., Panteghini C., Carecchio M., Chiapparini L., Raimondi M., Rubio A., di Meo I., Cozzi A., et al. Harmful Iron-Calcium Relationship in Pantothenate Kinase Associated Neurodegeneration. Int. J. Mol. Sci. 2020;21:3664. doi: 10.3390/ijms21103664. PubMed DOI PMC

Orellana D.I., Santambrogio P., Rubio A., Yekhlef L., Cancellieri C., Dusi S., Giannelli S.G., Venco P., Mazzara P.G., Cozzi A., et al. Coenzyme a Corrects Pathological Defects in Human Neurons of Pank2-Associated Neurodegeneration. EMBO Mol. Med. 2016;8:1197–1211. doi: 10.15252/emmm.201606391. PubMed DOI PMC

Zhang Y., Zhou D., Yang T. Novel Pank2 Mutation in a Chinese Boy with Pank2-Associated Neurodegeneration: A Case Report and Review of Chinese Cases. Medicine. 2019;98:e14122. doi: 10.1097/MD.0000000000014122. PubMed DOI PMC

Shi X., Zheng F., Ye X., Li X., Zhao Q., Lin Z., Hu Y., Wang J. Basal Ganglia Calcification and Novel Compound Heterozygous Mutations in the Pank2 Gene in a Chinese Boy with Classic Pantothenate Kinase-Associated Neurodegeneration: A Case Report. Medicine. 2018;97:e0316. doi: 10.1097/MD.0000000000010316. PubMed DOI PMC

Fasano A., Shahidi G., Lang A.E., Rohani M. Basal Ganglia Calcification in a Case of Pkan. Parkinsonism Relat. Disord. 2017;36:98–99. doi: 10.1016/j.parkreldis.2016.12.016. PubMed DOI

Drecourt A., Babdor J., Dussiot M., Petit F., Goudin N., Garfa-Traore M., Habarou F., Bole-Feysot C., Nitschke P., Ottolenghi C., et al. Impaired Transferrin Receptor Palmitoylation and Recycling in Neurodegeneration with Brain Iron Accumulation. Am. J. Hum. Genet. 2018;102:266–277. doi: 10.1016/j.ajhg.2018.01.003. PubMed DOI PMC

Petit F., Drecourt A., Dussiot M., Zangarelli C., Hermine O., Munnich A., Rotig A. Defective Palmitoylation of Transferrin Receptor Triggers Iron Overload in Friedreich Ataxia Fibroblasts. Blood. 2021;137:2090–2102. doi: 10.1182/blood.2020006987. PubMed DOI

Klopstock T., Tricta F., Neumayr L., Karin I., Zorzi G., Fradette C., Kmiec T., Buchner B., Steele H.E., Horvath R., et al. Safety and Efficacy of Deferiprone for Pantothenate Kinase-Associated Neurodegeneration: A Randomised, Double-Blind, Controlled Trial and an Open-Label Extension Study. Lancet Neurol. 2019;18:631–642. doi: 10.1016/S1474-4422(19)30142-5. PubMed DOI

Zizioli D., Tiso N., Guglielmi A., Saraceno C., Busolin G., Giuliani R., Khatri D., Monti E., Borsani G., Argenton F., et al. Knock-Down of Pantothenate Kinase 2 Severely Affects the Development of the Nervous and Vascular System in Zebrafish, Providing New Insights into Pkan Disease. Neurobiol. Dis. 2016;85:35–48. doi: 10.1016/j.nbd.2015.10.010. PubMed DOI PMC

Khatri D., Zizioli D., Trivedi A., Borsani G., Monti E., Finazzi D. Overexpression of Human Mutant Pank2 Proteins Affects Development and Motor Behavior of Zebrafish Embryos. Neuromol. Med. 2019;21:120–131. doi: 10.1007/s12017-018-8508-8. PubMed DOI

Alvarez-Cordoba M., Khoury A.F., Villanueva-Paz M., Gomez-Navarro C., Villalon-Garcia I., Suarez-Rivero J.M., Povea-Cabello S., de la Mata M., Cotan D., Talaveron-Rey M., et al. Pantothenate Rescues Iron Accumulation in Pantothenate Kinase-Associated Neurodegeneration Depending on the Type of Mutation. Mol. Neurobiol. 2019;56:3638–3656. doi: 10.1007/s12035-018-1333-0. PubMed DOI

Dusi S., Valletta L., Haack T.B., Tsuchiya Y., Venco P., Pasqualato S., Goffrini P., Tigano M., Demchenko N., Wieland T., et al. Exome Sequence Reveals Mutations in Coa Synthase as a Cause of Neurodegeneration with Brain Iron Accumulation. Am. J. Hum. Genet. 2014;94:11–22. doi: 10.1016/j.ajhg.2013.11.008. PubMed DOI PMC

Khatri D., Zizioli D., Tiso N., Facchinello N., Vezzoli S., Gianoncelli A., Memo M., Monti E., Borsani G., Finazzi D. Down-Regulation of Coasy, the Gene Associated with Nbia-Vi, Reduces Bmp Signaling, Perturbs Dorso-Ventral Patterning and Alters Neuronal Development in Zebrafish. Sci. Rep. 2016;6:37660. doi: 10.1038/srep37660. PubMed DOI PMC

Iankova V., Karin I., Klopstock T., Schneider S.A. Emerging Disease-Modifying Therapies in Neurodegeneration with Brain Iron Accumulation (Nbia) Disorders. Front. Neurol. 2021;12:629414. doi: 10.3389/fneur.2021.629414. PubMed DOI PMC

Jackowski S. Proposed Therapies for Pantothenate-Kinase-Associated Neurodegeneration. J. Exp. Neurosci. 2019;13:1179069519851118. doi: 10.1177/1179069519851118. PubMed DOI PMC

Dusek P., Skoloudik D., Roth J., Dusek P. Mitochondrial Membrane Protein-Associated Neurodegeneration: A Case Report and Literature Review. Neurocase. 2018;24:161–165. doi: 10.1080/13554794.2018.1506038. PubMed DOI

Sparber P., Krylova T., Repina S., Demina N., Rudenskaya G., Sharkova I., Sharkov A., Kadyshev V., Kanivets I., Korostelev S., et al. Retrospective Analysis of 17 Patients with Mitochondrial Membrane Protein-Associated Neurodegeneration Diagnosed in Russia. Parkinsonism Relat. Disord. 2021;84:98–104. doi: 10.1016/j.parkreldis.2021.02.002. PubMed DOI

Rickman O.J., Salter C.G., Gunning A.C., Fasham J., Voutsina N., Leslie J.S., McGavin L., Cross H.E., Posey J.E., Akdemir Z.C., et al. Dominant Mitochondrial Membrane Protein-Associated Neurodegeneration (Mpan) Variants Cluster within a Specific C19orf12 Isoform. Parkinsonism Relat. Disord. 2021;82:84–86. doi: 10.1016/j.parkreldis.2020.10.041. PubMed DOI

Gregory A., Lotia M., Jeong S.Y., Fox R., Zhen D., Sanford L., Hamada J., Jahic A., Beetz C., Freed A., et al. Autosomal Dominant Mitochondrial Membrane Protein-Associated Neurodegeneration (Mpan) Mol. Genet. Genom. Med. 2019;7:e00736. doi: 10.1002/mgg3.736. PubMed DOI PMC

Savitt D., Jankovic J. Levodopa-Induced Dyskinesias in Mitochondrial Membrane Protein-Associated Neurodegeneration. Neurol. Clin. Pract. 2019;9:e7–e9. doi: 10.1212/CPJ.0000000000000577. PubMed DOI PMC

Monfrini E., Melzi V., Buongarzone G., Franco G., Ronchi D., Dilena R., Scola E., Vizziello P., Bordoni A., Bresolin N., et al. A De Novo C19orf12 Heterozygous Mutation in a Patient with Mpan. Parkinsonism Relat. Disord. 2018;48:109–111. doi: 10.1016/j.parkreldis.2017.12.025. PubMed DOI

Skowronska M., Kmiec T., Jurkiewicz E., Malczyk K., Kurkowska-Jastrzebska I., Czlonkowska A. Evolution and Novel Radiological Changes of Neurodegeneration Associated with Mutations in C19orf12. Parkinsonism Relat. Disord. 2017;39:71–76. doi: 10.1016/j.parkreldis.2017.03.013. PubMed DOI

Venco P., Bonora M., Giorgi C., Papaleo E., Iuso A., Prokisch H., Pinton P., Tiranti V. Mutations of C19orf12, Coding for a Transmembrane Glycine Zipper Containing Mitochondrial Protein, Cause Mis-Localization of the Protein, Inability to Respond to Oxidative Stress and Increased Mitochondrial Ca(2)(+) Front. Genet. 2015;6:185. doi: 10.3389/fgene.2015.00185. PubMed DOI PMC

Shao C., Zhu J., Ma X., Siedlak S.L., Cohen M.L., Lerner A., Wang W. C19orf12 Ablation Causes Ferroptosis in Mitochondrial Membrane Protein-Associated with Neurodegeneration. Free Radic. Biol. Med. 2022;182:23–33. doi: 10.1016/j.freeradbiomed.2022.02.006. PubMed DOI PMC

Skowronska M., Buksinska-Lisik M., Kmiec T., Litwin T., Kurkowska-Jastrzebska I., Czlonkowska A. Is There Heart Disease in Cases of Neurodegeneration Associated with Mutations in C19orf12? Parkinsonism Relat. Disord. 2020;80:15–18. doi: 10.1016/j.parkreldis.2020.09.014. PubMed DOI

Kasapkara C.S., Tumer L., Gregory A., Ezgu F., Inci A., Derinkuyu B.E., Fox R., Rogers C., Hayflick S. A New Nbia Patient from Turkey with Homozygous C19orf12 Mutation. Acta Neurol. Belg. 2019;119:623–625. doi: 10.1007/s13760-018-1026-5. PubMed DOI PMC

Guo Y.P., Tang B.S., Guo J.F. Pla2g6-Associated Neurodegeneration (Plan): Review of Clinical Phenotypes and Genotypes. Front. Neurol. 2018;9:1100. doi: 10.3389/fneur.2018.01100. PubMed DOI PMC

Ji Y., Li Y., Shi C., Gao Y., Yang J., Liang D., Yang Z., Xu Y. Identification of a Novel Mutation in Pla2g6 Gene and Phenotypic Heterogeneity Analysis of Pla2g6-Related Neurodegeneration. Parkinsonism Relat. Disord. 2019;65:159–164. doi: 10.1016/j.parkreldis.2019.04.002. PubMed DOI

Gitiaux C., Kaminska A., Boddaert N., Barcia G., Gueden S., Tich S.N.T., de Lonlay P., Quijano-Roy S., Hully M., Pereon Y., et al. Pla2g6-Associated Neurodegeneration: Lessons from Neurophysiological Findings. Eur. J. Paediatr. Neurol. 2018;22:854–861. doi: 10.1016/j.ejpn.2018.05.005. PubMed DOI

Chu Y.T., Lin H.Y., Chen P.L., Lin C.H. Genotype-Phenotype Correlations of Adult-Onset Pla2g6-Associated Neurodegeneration: Case Series and Literature Review. BMC Neurol. 2020;20:101. doi: 10.1186/s12883-020-01684-6. PubMed DOI PMC

Shen T., Hu J., Jiang Y., Zhao S., Lin C., Yin X., Yan Y., Pu J., Lai H.Y., Zhang B. Early-Onset Parkinson’s Disease Caused by Pla2g6 Compound Heterozygous Mutation, a Case Report and Literature Review. Front. Neurol. 2019;10:915. doi: 10.3389/fneur.2019.00915. PubMed DOI PMC

Mascalchi M., Mari F., Berti B., Bartolini E., Lenge M., Bianchi A., Antonucci L., Santorelli F.M., Garavaglia B., Guerrini R. Fast Progression of Cerebellar Atrophy in Pla2g6-Associated Infantile Neuronal Axonal Dystrophy. Cerebellum. 2017;16:742–745. doi: 10.1007/s12311-017-0843-z. PubMed DOI

Miki Y., Tanji K., Mori F., Kakita A., Takahashi H., Wakabayashi K. Pla2g6 Accumulates in Lewy Bodies in Park14 and Idiopathic Parkinson’s Disease. Neurosci. Lett. 2017;645:40–45. doi: 10.1016/j.neulet.2017.02.027. PubMed DOI

Klein C., Lochte T., Delamonte S.M., Braenne I., Hicks A.A., Zschiedrich-Jansen K., Simon D.K., Friedman J.H., Lohmann K. Pla2g6 Mutations and Parkinsonism: Long-Term Follow-up of Clinical Features and Neuropathology. Mov. Disord. 2016;31:1927–1929. doi: 10.1002/mds.26814. PubMed DOI

Sumi-Akamaru H., Beck G., Shinzawa K., Kato S., Riku Y., Yoshida M., Fujimura H., Tsujimoto Y., Sakoda S., Mochizuki H. High Expression of Alpha-Synuclein in Damaged Mitochondria with Pla2g6 Dysfunction. Acta Neuropathol. Commun. 2016;4:27. doi: 10.1186/s40478-016-0298-3. PubMed DOI PMC

Liu H., Yao Y., Liu H., Peng Y., Ren J., Wu X., Mao R., Zhao J., Zhu Y., Niu Z., et al. Lack of Association between Pla2g6 Genetic Variation and Parkinson’s Disease: A Systematic Review. Neuropsychiatr. Dis. Treat. 2020;16:1755–1763. doi: 10.2147/NDT.S254065. PubMed DOI PMC

Daida K., Nishioka K., Li Y., Yoshino H., Shimada T., Dougu N., Nakatsuji Y., Ohara S., Hashimoto T., Okiyama R., et al. Pla2g6 Variants Associated with the Number of Affected Alleles in Parkinson’s Disease in Japan. Neurobiol. Aging. 2021;97:147.e1–147.e9. doi: 10.1016/j.neurobiolaging.2020.07.004. PubMed DOI

Liu H., Wang Y., Pan H., Xu K., Jiang L., Zhao Y., Xu Q., Sun Q., Tan J., Yan X., et al. Association of Rare Heterozygous Pla2g6 Variants with the Risk of Parkinson’s Disease. Neurobiol. Aging. 2021;101:297.e5–297.e8. doi: 10.1016/j.neurobiolaging.2020.11.003. PubMed DOI

Shen T., Pu J., Lai H.Y., Xu L., Si X., Yan Y., Jiang Y., Zhang B. Genetic Analysis of Atp13a2, Pla2g6 and Fbxo7 in a Cohort of Chinese Patients with Early-Onset Parkinson’s Disease. Sci. Rep. 2018;8:14028. doi: 10.1038/s41598-018-32217-4. PubMed DOI PMC

Ke M., Chong C.M., Zeng H., Huang M., Huang Z., Zhang K., Cen X., Lu J.H., Yao X., Qin D., et al. Azoramide Protects Ipsc-Derived Dopaminergic Neurons with Pla2g6 D331y Mutation through Restoring Er Function and Creb Signaling. Cell Death Dis. 2020;11:130. doi: 10.1038/s41419-020-2312-8. PubMed DOI PMC

Villalon-Garcia I., Alvarez-Cordoba M., Povea-Cabello S., Talaveron-Rey M., Villanueva-Paz M., Luzon-Hidalgo R., Suarez-Rivero J.M., Suarez-Carrillo A., Munuera-Cabeza M., Salas J.J., et al. Vitamin E Prevents Lipid Peroxidation and Iron Accumulation in Pla2g6-Associated Neurodegeneration. Neurobiol. Dis. 2022;165:105649. doi: 10.1016/j.nbd.2022.105649. PubMed DOI

Beharier O., Tyurin V.A., Goff J.P., Guerrero-Santoro J., Kajiwara K., Chu T., Tyurina Y.Y., Croix C.M.S., Wallace C.T., Parry S., et al. Pla2g6 Guards Placental Trophoblasts against Ferroptotic Injury. Proc. Natl. Acad. Sci. USA. 2020;117:27319–27328. doi: 10.1073/pnas.2009201117. PubMed DOI PMC

Sanchez E., Azcona L.J., Paisan-Ruiz C. Pla2g6 Deficiency in Zebrafish Leads to Dopaminergic Cell Death, Axonal Degeneration, Increased Beta-Synuclein Expression, and Defects in Brain Functions and Pathways. Mol. Neurobiol. 2018;55:6734–6754. doi: 10.1007/s12035-017-0846-2. PubMed DOI

Chiu C.C., Lu C.S., Weng Y.H., Chen Y.L., Huang Y.Z., Chen R.S., Cheng Y.C., Huang Y.C., Liu Y.C., Lai S.C., et al. Park14 (D331y) Pla2g6 Causes Early-Onset Degeneration of Substantia Nigra Dopaminergic Neurons by Inducing Mitochondrial Dysfunction, Er Stress, Mitophagy Impairment and Transcriptional Dysregulation in a Knockin Mouse Model. Mol. Neurobiol. 2019;56:3835–3853. doi: 10.1007/s12035-018-1118-5. PubMed DOI

Mori A., Hatano T., Inoshita T., Shiba-Fukushima K., Koinuma T., Meng H., Kubo S.I., Spratt S., Cui C., Yamashita C., et al. Parkinson’s Disease-Associated Ipla2-Via/Pla2g6 Regulates Neuronal Functions and Alpha-Synuclein Stability through Membrane Remodeling. Proc. Natl. Acad. Sci. USA. 2019;116:20689–20699. doi: 10.1073/pnas.1902958116. PubMed DOI PMC

Lin G., Lee P.T., Chen K., Mao D., Tan K.L., Zuo Z., Lin W.W., Wang L., Bellen H.J. Phospholipase Pla2g6, a Parkinsonism-Associated Gene, Affects Vps26 and Vps35, Retromer Function, and Ceramide Levels, Similar to Alpha-Synuclein Gain. Cell Metab. 2018;28:605–618.e6. doi: 10.1016/j.cmet.2018.05.019. PubMed DOI

Iliadi K.G., Gluscencova O.B., Iliadi N., Boulianne G.L. Mutations in the Drosophila Homolog of Human Pla2g6 Give Rise to Age-Dependent Loss of Psychomotor Activity and Neurodegeneration. Sci. Rep. 2018;8:2939. doi: 10.1038/s41598-018-21343-8. PubMed DOI PMC

Cong Y., So V., Tijssen M.A.J., Verbeek D.S., Reggiori F., Mauthe M. Wdr45, One Gene Associated with Multiple Neurodevelopmental Disorders. Autophagy. 2021;17:3908–3923. doi: 10.1080/15548627.2021.1899669. PubMed DOI PMC

Wilson J.L., Gregory A., Kurian M.A., Bushlin I., Mochel F., Emrick L., Adang L., Bpan Guideline Contributing Author Group. Hogarth P., Hayflick S.J. Consensus Clinical Management Guideline for Beta-Propeller Protein-Associated Neurodegeneration. Dev. Med. Child Neurol. 2021;63:1402–1409. doi: 10.1111/dmcn.14980. PubMed DOI

Saffari A., Schroter J., Garbade S.F., Alecu J.E., Ebrahimi-Fakhari D., Hoffmann G.F., Kolker S., Ries M., Syrbe S. Quantitative Retrospective Natural History Modeling of Wdr45-Related Developmental and Epileptic Encephalopathy—A Systematic Cross-Sectional Analysis of 160 Published Cases. Autophagy. 2021:1–13. doi: 10.1080/15548627.2021.1990671. PubMed DOI PMC

Ji C., Zhao H., Chen D., Zhang H., Zhao Y.G. Beta-Propeller Proteins Wdr45 and Wdr45b Regulate Autophagosome Maturation into Autolysosomes in Neural Cells. Curr. Biol. 2021;31:1666–1677.e6. doi: 10.1016/j.cub.2021.01.081. PubMed DOI

Wan H., Wang Q., Chen X., Zeng Q., Shao Y., Fang H., Liao X., Li H.S., Liu M.G., Xu T.L., et al. Wdr45 Contributes to Neurodegeneration through Regulation of Er Homeostasis and Neuronal Death. Autophagy. 2020;16:531–547. doi: 10.1080/15548627.2019.1630224. PubMed DOI PMC

Russo C., Ardissone A., Freri E., Gasperini S., Moscatelli M., Zorzi G., Panteghini C., Castellotti B., Garavaglia B., Nardocci N., et al. Substantia Nigra Swelling and Dentate Nucleus T2 Hyperintensity May Be Early Magnetic Resonance Imaging Signs of Beta-Propeller Protein-Associated Neurodegeneration. Mov. Disord. Clin. Pract. 2019;6:51–56. doi: 10.1002/mdc3.12693. PubMed DOI PMC

Stige K.E., Gjerde I.O., Houge G., Knappskog P.M., Tzoulis C. Beta-Propeller Protein-Associated Neurodegeneration: A Case Report and Review of the Literature. Clin. Case Rep. 2018;6:353–362. doi: 10.1002/ccr3.1358. PubMed DOI PMC

Rohani M., Fasano A., Akhoundi F.H., Haeri G., Lang A.E., Bidgoli M.M.R., Javanparast L., Zamani B., Shahidi G., Alavi A. Beta-Propeller Protein Associated Neurodegeneration (Bpan); the First Report of Three Patients from Iran with De Novo Novel Mutations. Parkinsonism Relat. Disord. 2019;61:231–233. doi: 10.1016/j.parkreldis.2018.11.012. PubMed DOI

Seibler P., Burbulla L.F., Dulovic M., Zittel S., Heine J., Schmidt T., Rudolph F., Westenberger A., Rakovic A., Munchau A., et al. Iron Overload Is Accompanied by Mitochondrial and Lysosomal Dysfunction in Wdr45 Mutant Cells. Brain. 2018;141:3052–3064. doi: 10.1093/brain/awy230. PubMed DOI PMC

Ingrassia R., Memo M., Garavaglia B. Ferrous Iron up-Regulation in Fibroblasts of Patients with Beta Propeller Protein-Associated Neurodegeneration (Bpan) Front. Genet. 2017;8:18. doi: 10.3389/fgene.2017.00018. PubMed DOI PMC

Aring L., Choi E.K., Kopera H., Lanigan T., Iwase S., Klionsky D.J., Seo Y.A. A Neurodegeneration Gene, Wdr45, Links Impaired Ferritinophagy to Iron Accumulation. J. Neurochem. 2022;160:356–375. doi: 10.1111/jnc.15548. PubMed DOI PMC

Lee H.E., Jung M.K., Noh S.G., Choi H.B., Chae S.H., Lee J.H., Mun J.Y. Iron Accumulation and Changes in Cellular Organelles in Wdr45 Mutant Fibroblasts. Int. J. Mol. Sci. 2021;22:11650. doi: 10.3390/ijms222111650. PubMed DOI PMC

Xiong Q., Li X., Li W., Chen G., Xiao H., Li P., Wu C. Wdr45 Mutation Impairs the Autophagic Degradation of Transferrin Receptor and Promotes Ferroptosis. Front. Mol. Biosci. 2021;8:645831. doi: 10.3389/fmolb.2021.645831. PubMed DOI PMC

Lim S.Y., Tan A.H., Ahmad-Annuar A., Schneider S.A., Bee P.C., Lim J.L., Ramli N., Idris M.I. A Patient with Beta-Propeller Protein-Associated Neurodegeneration: Treatment with Iron Chelation Therapy. J. Mov. Disord. 2018;11:89–92. doi: 10.14802/jmd.17082. PubMed DOI PMC

Fonderico M., Laudisi M., Andreasi N.G., Bigoni S., Lamperti C., Panteghini C., Garavaglia B., Carecchio M., Emanuele E.A., Forni G.L., et al. Patient Affected by Beta-Propeller Protein-Associated Neurodegeneration: A Therapeutic Attempt with Iron Chelation Therapy. Front. Neurol. 2017;8:385. doi: 10.3389/fneur.2017.00385. PubMed DOI PMC

Lehericy S., Roze E., Goizet C., Mochel F. Mri of Neurodegeneration with Brain Iron Accumulation. Curr. Opin. Neurol. 2020;33:462–473. doi: 10.1097/WCO.0000000000000844. PubMed DOI

Rattay T.W., Lindig T., Baets J., Smets K., Deconinck T., Sohn A.S., Hortnagel K., Eckstein K.N., Wiethoff S., Reichbauer J., et al. Fahn/Spg35: A Narrow Phenotypic Spectrum across Disease Classifications. Brain. 2019;142:1561–1572. doi: 10.1093/brain/awz102. PubMed DOI PMC

Haeri G., Akhoundi F.H., Alavi A., Abdi S., Rohani M. Endocrine Abnormalities in a Case of Neurodegeneration with Brain Iron Accumulation. Mov. Disord. Clin. Pract. 2020;7:706–707. doi: 10.1002/mdc3.12990. PubMed DOI PMC

Abusrair A.H., Bohlega S., Al-Semari A., Al-Ajlan F.S., Al-Ahmadi K., Mohamed B., AlDakheel A. Brain Mr Imaging Findings in Woodhouse-Sakati Syndrome. AJNR Am. J. Neuroradiol. 2018;39:2256–2262. doi: 10.3174/ajnr.A5879. PubMed DOI PMC

Schneider S.A., Paisan-Ruiz C., Quinn N.P., Lees A.J., Houlden H., Hardy J., Bhatia K.P. Atp13a2 Mutations (Park9) Cause Neurodegeneration with Brain Iron Accumulation. Mov. Disord. 2010;25:979–984. doi: 10.1002/mds.22947. PubMed DOI

Bruggemann N., Hagenah J., Reetz K., Schmidt A., Kasten M., Buchmann I., Eckerle S., Bahre M., Munchau A., Djarmati A., et al. Recessively Inherited Parkinsonism: Effect of Atp13a2 Mutations on the Clinical and Neuroimaging Phenotype. Arch. Neurol. 2010;67:1357–1363. doi: 10.1001/archneurol.2010.281. PubMed DOI

Roubertie A., Hieu N., Roux C.J., Leboucq N., Manes G., Charif M., Echenne B., Goizet C., Guissart C., Meyer P., et al. Ap4 Deficiency: A Novel Form of Neurodegeneration with Brain Iron Accumulation? Neurol. Genet. 2018;4:e217. doi: 10.1212/NXG.0000000000000217. PubMed DOI PMC

Horvath R., Lewis-Smith D., Douroudis K., Duff J., Keogh M., Pyle A., Fletcher N., Chinnery P.F. Scp2 Mutations and Neurodegeneration with Brain Iron Accumulation. Neurology. 2015;85:1909–1911. doi: 10.1212/WNL.0000000000002157. PubMed DOI PMC

Dard R., Meyniel C., Touitou V., Stevanin G., Lamari F., Durr A., Ewenczyk C., Mochel F. Mutations in Ddhd1, Encoding a Phospholipase A1, Is a Novel Cause of Retinopathy and Neurodegeneration with Brain Iron Accumulation. Eur. J. Med. Genet. 2017;60:639–642. doi: 10.1016/j.ejmg.2017.08.015. PubMed DOI

Correa-Vela M., Lupo V., Montpeyo M., Sancho P., Marce-Grau A., Hernandez-Vara J., Darling A., Jenkins A., Fernandez-Rodriguez S., Tello C., et al. Impaired Proteasome Activity and Neurodegeneration with Brain Iron Accumulation in Fbxo7 Defect. Ann. Clin. Transl. Neurol. 2020;7:1436–1442. doi: 10.1002/acn3.51095. PubMed DOI PMC

Jaberi E., Rohani M., Shahidi G.A., Nafissi S., Arefian E., Soleimani M., Rasooli P., Ahmadieh H., Daftarian N., KaramiNejadRanjbar M., et al. Identification of Mutation in Gtpbp2 in Patients of a Family with Neurodegeneration Accompanied by Iron Deposition in the Brain. Neurobiol. Aging. 2016;38:216.e11–216.e18. doi: 10.1016/j.neurobiolaging.2015.10.034. PubMed DOI

Carter M.T., Venkateswaran S., Shapira-Zaltsberg G., Davila J., Humphreys P., Canada C.C., Kernohan K.D., Boycott K.M. Clinical Delineation of Gtpbp2-Associated Neuro-Ectodermal Syndrome: Report of Two New Families and Review of the Literature. Clin. Genet. 2019;95:601–606. doi: 10.1111/cge.13523. PubMed DOI

Ediz S.S., Aralasmak A., Yilmaz T.F., Toprak H., Yesil G., Alkan A. Mri and Mrs Findings in Fucosidosis; a Rare Lysosomal Storage Disease. Brain Dev. 2016;38:435–438. doi: 10.1016/j.braindev.2015.09.013. PubMed DOI

Vieira J.P., Conceicao C., Scortenschi E. Gm1 Gangliosidosis, Late Infantile Onset Dystonia, and T2 Hypointensity in the Globus Pallidus and Substantia Nigra. Pediatr. Neurol. 2013;49:195–197. doi: 10.1016/j.pediatrneurol.2013.02.003. PubMed DOI

Lyon G.J., Marchi E., Ekstein J., Meiner V., Hirsch Y., Scher S., Yang E., de Vivo D.C., Madrid R., Li Q., et al. Vac14 Syndrome in Two Siblings with Retinitis Pigmentosa and Neurodegeneration with Brain Iron Accumulation. Cold Spring Harb. Mol. Case Stud. 2019;5:a003715. doi: 10.1101/mcs.a003715. PubMed DOI PMC

Sferra A., Baillat G., Rizza T., Barresi S., Flex E., Tasca G., D’Amico A., Bellacchio E., Ciolfi A., Caputo V., et al. Tbce Mutations Cause Early-Onset Progressive Encephalopathy with Distal Spinal Muscular Atrophy. Am. J. Hum. Genet. 2016;99:974–983. doi: 10.1016/j.ajhg.2016.08.006. PubMed DOI PMC

Meyer E., Carss K.J., Rankin J., Nichols J.M., Grozeva D., Joseph A.P., Mencacci N.E., Papandreou A., Ng J., Barral S., et al. Mutations in the Histone Methyltransferase Gene Kmt2b Cause Complex Early-Onset Dystonia. Nat. Genet. 2017;49:223–237. doi: 10.1038/ng.3740. PubMed DOI

Skorvanek M., Dusek P., Rydzanicz M., Walczak A., Kosinska J., Kostrzewa G., Brzozowska M., Han V., Dosekova P., Gdovinova Z., et al. Neurodevelopmental Disorder Associated with Irf2bpl Gene Mutation: Expanding the Phenotype? Parkinsonism Relat. Disord. 2019;62:239–241. doi: 10.1016/j.parkreldis.2019.01.017. PubMed DOI

Zoons E., de Koning T.J., Abeling N.G., Tijssen M.A. Neurodegeneration with Brain Iron Accumulation on Mri: An Adult Case of Alpha-Mannosidosis. JIMD Rep. 2012;4:99–102. PubMed PMC

Majovska J., Nestrasil I., Paulson A., Nascene D., Jurickova K., Hlavata A., Lund T., Orchard P.J., Vaneckova M., Zeman J., et al. White Matter Alteration and Cerebellar Atrophy Are Hallmarks of Brain Mri in Alpha-Mannosidosis. Mol. Genet. Metab. 2021;132:189–197. doi: 10.1016/j.ymgme.2020.11.008. PubMed DOI

Stepanova A., Magrane J. Mitochondrial Dysfunction in Neurons in Friedreich’s Ataxia. Mol. Cell. Neurosci. 2020;102:103419. doi: 10.1016/j.mcn.2019.103419. PubMed DOI

Llorens J.V., Soriano S., Calap-Quintana P., Gonzalez-Cabo P., Molto M.D. The Role of Iron in Friedreich’s Ataxia: Insights from Studies in Human Tissues and Cellular and Animal Models. Front. Neurosci. 2019;13:75. doi: 10.3389/fnins.2019.00075. PubMed DOI PMC

Li K. Iron Pathophysiology in Friedreich’s Ataxia. Adv. Exp. Med. Biol. 2019;1173:125–143. PubMed

Turchi R., Faraonio R., Lettieri-Barbato D., Aquilano K. An Overview of the Ferroptosis Hallmarks in Friedreich’s Ataxia. Biomolecules. 2020;10:1489. doi: 10.3390/biom10111489. PubMed DOI PMC

La Rosa P., Petrillo S., Turchi R., Berardinelli F., Schirinzi T., Vasco G., Lettieri-Barbato D., Fiorenza M.T., Bertini E.S., Aquilano K., et al. The Nrf2 Induction Prevents Ferroptosis in Friedreich’s Ataxia. Redox Biol. 2021;38:101791. doi: 10.1016/j.redox.2020.101791. PubMed DOI PMC

Tamarit J., Britti E., Delaspre F., Medina-Carbonero M., Sanz-Alcazar A., Cabiscol E., Ros J. Mitochondrial Iron and Calcium Homeostasis in Friedreich Ataxia. IUBMB Life. 2021;73:543–553. doi: 10.1002/iub.2457. PubMed DOI

Elincx-Benizri S., Glik A., Merkel D., Arad M., Freimark D., Kozlova E., Cabantchik I., Hassin-Baer S. Clinical Experience with Deferiprone Treatment for Friedreich Ataxia. J. Child Neurol. 2016;31:1036–1040. doi: 10.1177/0883073816636087. PubMed DOI

Dusek P., Litwin T., Czlonkowska A. Neurologic Impairment in Wilson Disease. Ann. Transl. Med. 2019;7((Suppl. 2)):S64. doi: 10.21037/atm.2019.02.43. PubMed DOI PMC

Czlonkowska A., Litwin T., Dusek P., Ferenci P., Lutsenko S., Medici V., Rybakowski J.K., Weiss K.H., Schilsky M.L. Wilson Disease. Nat. Rev. Dis. Primers. 2018;4:21. doi: 10.1038/s41572-018-0018-3. PubMed DOI PMC

Gromadzka G., Wierzbicka D., Litwin T., Przybylkowski A. Difference in Iron Metabolism May Partly Explain Sex-Related Variability in the Manifestation of Wilson’s Disease. J. Trace Elem. Med. Biol. 2020;62:126637. doi: 10.1016/j.jtemb.2020.126637. PubMed DOI

Azbukina N.V., Lopachev A.V., Chistyakov D.V., Goriainov S.V., Astakhova A.A., Poleshuk V.V., Kazanskaya R.B., Fedorova T.N., Sergeeva M.G. Oxylipin Profiles in Plasma of Patients with Wilson’s Disease. Metabolites. 2020;10:222. doi: 10.3390/metabo10060222. PubMed DOI PMC

Zhou X.X., Xiao X., Qin H., Chen D., Wu C. Study on Different Pathogenic Factors in Different Disease Stages of Patients with Wilson Disease. Neurol. Sci. 2021;42:3749–3756. doi: 10.1007/s10072-020-04973-7. PubMed DOI

Hachmoller O., Buzanich A.G., Aichler M., Radtke M., Dietrich D., Schwamborn K., Lutz L., Werner M., Sperling M., Walch A., et al. Elemental Bioimaging and Speciation Analysis for the Investigation of Wilson’s Disease Using Muxrf and Xanes. Metallomics. 2016;8:648–653. doi: 10.1039/C6MT00001K. PubMed DOI

Hachmoller O., Aichler M., Schwamborn K., Lutz L., Werner M., Sperling M., Walch A., Karst U. Element Bioimaging of Liver Needle Biopsy Specimens from Patients with Wilson’s Disease by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. J. Trace Elem. Med. Biol. 2016;35:97–102. doi: 10.1016/j.jtemb.2016.02.001. PubMed DOI

Gungor S., Selimoglu M.A., Varol F.I., Gungor S., Uremis M.M. The Effects of Iron and Zinc Status on Prognosis in Pediatric Wilson’s Disease. J. Trace Elem. Med. Biol. 2019;55:33–38. doi: 10.1016/j.jtemb.2019.05.010. PubMed DOI

Dusek P., Skoloudik D., Maskova J., Huelnhagen T., Bruha R., Zahorakova D., Niendorf T., Ruzicka E., Schneider S.A., Wuerfel J. Brain Iron Accumulation in Wilson’s Disease: A Longitudinal Imaging Case Study During Anticopper Treatment Using 7.0t Mri and Transcranial Sonography. J. Magn. Reson. Imaging. 2018;47:282–285. doi: 10.1002/jmri.25702. PubMed DOI

Gromadzka G., Wierzbicka D.W., Przybylkowski A., Litwin T. Effect of Homeostatic Iron Regulator Protein Gene Mutation on Wilson’s Disease Clinical Manifestation: Original Data and Literature Review. Int. J. Neurosci. 2020:1–7. doi: 10.1080/00207454.2020.1849190. PubMed DOI

Delatycki M.B., Tai G., Corben L., Yiu E.M., Evans-Galea M.V., Stephenson S.E., Gurrin L., Allen K.J., Lynch D., Lockhart P.J. Hfe P.C282y Heterozygosity Is Associated with Earlier Disease Onset in Friedreich Ataxia. Mov. Disord. 2014;29:940–943. doi: 10.1002/mds.25795. PubMed DOI

Pak K., Ordway S., Sadowski B., Canevari M., Torres D. Wilson’s Disease and Iron Overload: Pathophysiology and Therapeutic Implications. Clin. Liver Dis. 2021;17:61–66. doi: 10.1002/cld.986. PubMed DOI PMC

Jonczy A., Lipinski P., Ogorek M., Starzynski R.R., Krzysztofik D., Bednarz A., Krzeptowski W., Szudzik M., Haberkiewicz O., Milon A., et al. Functional Iron Deficiency in Toxic Milk Mutant Mice (Tx-J) Despite High Hepatic Ferroportin: A Critical Role of Decreased Gpi-Ceruloplasmin Expression in Liver Macrophages. Metallomics. 2019;11:1079–1092. doi: 10.1039/c9mt00035f. PubMed DOI

Tisdall M.D., Ohm D.T., Lobrovich R., Das S.R., Mizsei G., Prabhakaran K., Ittyerah R., Lim S., McMillan C.T., Wolk D.A., et al. Ex Vivo Mri and Histopathology Detect Novel Iron-Rich Cortical Inflammation in Frontotemporal Lobar Degeneration with Tau Versus Tdp-43 Pathology. Neuroimage Clin. 2022;33:102913. doi: 10.1016/j.nicl.2021.102913. PubMed DOI PMC

Bhattarai A., Egan G.F., Talman P., Chua P., Chen Z. Magnetic Resonance Iron Imaging in Amyotrophic Lateral Sclerosis. J. Magn. Reson. Imaging. 2021;55:1283–1300. doi: 10.1002/jmri.27530. PubMed DOI

Zarow C., Lyness S.A., Mortimer J.A., Chui H.C. Neuronal Loss Is Greater in the Locus Coeruleus Than Nucleus Basalis and Substantia Nigra in Alzheimer and Parkinson Diseases. Arch. Neurol. 2003;60:337–341. doi: 10.1001/archneur.60.3.337. PubMed DOI

Fu H., Hardy J., Duff K.E. Selective Vulnerability in Neurodegenerative Diseases. Nat. Neurosci. 2018;21:1350–1358. doi: 10.1038/s41593-018-0221-2. PubMed DOI PMC

Ehrenberg A.J., Nguy A.K., Theofilas P., Dunlop S., Suemoto C.K., Alho A.T.d., Leite R.P., Rodriguez R.D., Mejia M.B., Rub U., et al. Quantifying the Accretion of Hyperphosphorylated Tau in the Locus Coeruleus and Dorsal Raphe Nucleus: The Pathological Building Blocks of Early Alzheimer’s Disease. Neuropathol. Appl. Neurobiol. 2017;43:393–408. doi: 10.1111/nan.12387. PubMed DOI PMC

Kato S., Oda M., Tanabe H. Diminution of Dopaminergic Neurons in the Substantia Nigra of Sporadic Amyotrophic Lateral Sclerosis. Neuropathol. Appl. Neurobiol. 1993;19:300–304. doi: 10.1111/j.1365-2990.1993.tb00444.x. PubMed DOI

Hofer T., Perry G. Nucleic Acid Oxidative Damage in Alzheimer’s Disease-Explained by the Hepcidin-Ferroportin Neuronal Iron Overload Hypothesis? J. Trace Elem. Med. Biol. 2016;38:1–9. doi: 10.1016/j.jtemb.2016.06.005. PubMed DOI

Ma L., Azad M.G., Dharmasivam M., Richardson V., Quinn R.J., Feng Y., Pountney D.L., Tonissen K.F., Mellick G.D., Yanatori I., et al. Parkinson’s Disease: Alterations in Iron and Redox Biology as a Key to Unlock Therapeutic Strategies. Redox Biol. 2021;41:101896. doi: 10.1016/j.redox.2021.101896. PubMed DOI PMC

Zecca L., Stroppolo A., Gatti A., Tampellini D., Toscani M., Gallorini M., Giaveri G., Arosio P., Santambrogio P., Fariello R.G., et al. The Role of Iron and Copper Molecules in the Neuronal Vulnerability of Locus Coeruleus and Substantia Nigra During Aging. Proc. Natl. Acad. Sci. USA. 2004;101:9843–9848. doi: 10.1073/pnas.0403495101. PubMed DOI PMC

Biesemeier A., Eibl O., Eswara S., Audinot J.N., Wirtz T., Pezzoli G., Zucca F.A., Zecca L., Schraermeyer U. Elemental Mapping of Neuromelanin Organelles of Human Substantia Nigra: Correlative Ultrastructural and Chemical Analysis by Analytical Transmission Electron Microscopy and Nano-Secondary Ion Mass Spectrometry. J. Neurochem. 2016;138:339–353. doi: 10.1111/jnc.13648. PubMed DOI

Aaseth J., Dusek P., Roos P.M. Prevention of Progression in Parkinson’s Disease. Biometals. 2018;31:737–747. doi: 10.1007/s10534-018-0131-5. PubMed DOI PMC

D’Amato R.J., Lipman Z.P., Snyder S.H. Selectivity of the Parkinsonian Neurotoxin Mptp: Toxic Metabolite Mpp+ Binds to Neuromelanin. Science. 1986;231:987–989. doi: 10.1126/science.3080808. PubMed DOI

Goldman S.M., Musgrove R.E., Jewell S.A., Di Monte D.A. Chapter Three—Pesticides and Parkinson’s Disease: Current experimental and epidemiological evidence. In: Costa L.G., Aschner M., editors. Advances in Neurotoxicology. Academic Press; Cambridge, MA, USA: 2017. pp. 83–117.

Bjorklund G., Hofer T., Nurchi V.M., Aaseth J. Iron and Other Metals in the Pathogenesis of Parkinson’s Disease: Toxic Effects and Possible Detoxification. J. Inorg. Biochem. 2019;199:110717. doi: 10.1016/j.jinorgbio.2019.110717. PubMed DOI

Genoud S., Senior A.M., Hare D.J., Double K.L. Meta-Analysis of Copper and Iron in Parkinson’s Disease Brain and Biofluids. Mov. Disord. 2020;35:662–671. doi: 10.1002/mds.27947. PubMed DOI

Cho I.Y., Shin D.W., Roh Y., Jang W., Cho J.W., Lee E.A., Ko H., Han K., Yoo J.H. Anemia and the Risk of Parkinson’s Disease in Korean Older Adults: A Nationwide Population-Based Study. Sci. Rep. 2020;10:4268. doi: 10.1038/s41598-020-61153-5. PubMed DOI PMC

Joppe K., Nicolas J.D., Grunewald T.A., Eckermann M., Salditt T., Lingor P. Elemental Quantification and Analysis of Structural Abnormalities in Neurons from Parkinson’s-Diseased Brains by X-ray Fluorescence Microscopy and Diffraction. Biomed. Opt. Express. 2020;11:3423–3443. doi: 10.1364/BOE.389408. PubMed DOI PMC

Hu Y., Guo P., Lian T.H., Zuo L.J., Yu S.Y., Liu L., Jin Z., Yu Q.J., Wang R.D., Li L.X., et al. Clinical Characteristics, Iron Metabolism and Neuroinflammation: New Insight into Excessive Daytime Sleepiness in Parkinson’s Disease. Neuropsychiatr. Dis. Treat. 2021;17:2041–2051. doi: 10.2147/NDT.S272110. PubMed DOI PMC

Kwiatek-Majkusiak J., Geremek M., Koziorowski D., Tomasiuk R., Szlufik S., Friedman A. Serum Levels of Hepcidin and Interleukin 6 in Parkinson’s Disease. Acta Neurobiol. Exp. 2020;80:297–304. doi: 10.21307/ane-2020-026. PubMed DOI

Huang C., Ma W., Luo Q., Shi L., Xia Y., Lao C., Liu W., Zou Y., Cheng A., Shi R., et al. Iron Overload Resulting from the Chronic Oral Administration of Ferric Citrate Induces Parkinsonism Phenotypes in Middle-Aged Mice. Aging. 2019;11:9846–9861. doi: 10.18632/aging.102433. PubMed DOI PMC

Cabantchik Z.I., Munnich A., Youdim M.B., Devos D. Regional Siderosis: A New Challenge for Iron Chelation Therapy. Front. Pharmacol. 2013;4:167. doi: 10.3389/fphar.2013.00167. PubMed DOI PMC

Devos D., Moreau C., Devedjian J.C., Kluza J., Petrault M., Laloux C., Jonneaux A., Ryckewaert G., Garcon G., Rouaix N., et al. Targeting Chelatable Iron as a Therapeutic Modality in Parkinson’s Disease. Antioxid. Redox Signal. 2014;21:195–210. doi: 10.1089/ars.2013.5593. PubMed DOI PMC

Dubois B., Feldman H.H., Jacova C., Hampel H., Molinuevo J.L., Blennow K., DeKosky S.T., Gauthier S., Selkoe D., Bateman R., et al. Advancing Research Diagnostic Criteria for Alzheimer’s Disease: The Iwg-2 Criteria. Lancet Neurol. 2014;13:614–629. doi: 10.1016/S1474-4422(14)70090-0. PubMed DOI

Braak H., Thal D.R., Ghebremedhin E., del Tredici K. Stages of the Pathologic Process in Alzheimer Disease: Age Categories from 1 to 100 Years. J. Neuropathol. Exp. Neurol. 2011;70:960–969. doi: 10.1097/NEN.0b013e318232a379. PubMed DOI

Goodman L. Alzheimer’s Disease: A Clinico-Pathologic Analysis of Twenty-Three Cases with a Theory on Pathogenesis. J. Nerv. Ment. Dis. 1953;118:97–130. doi: 10.1097/00005053-195308000-00001. PubMed DOI

Gleason A., Bush A.I. Iron and Ferroptosis as Therapeutic Targets in Alzheimer’s Disease. Neurotherapeutics. 2021;18:252–264. doi: 10.1007/s13311-020-00954-y. PubMed DOI PMC

Jakaria M., Belaidi A.A., Bush A.I., Ayton S. Ferroptosis as a Mechanism of Neurodegeneration in Alzheimer’s Disease. J. Neurochem. 2021;159:804–825. doi: 10.1111/jnc.15519. PubMed DOI

Lei P., Ayton S., Bush A.I. The Essential Elements of Alzheimer’s Disease. J. Biol. Chem. 2021;296:100105. doi: 10.1074/jbc.REV120.008207. PubMed DOI PMC

Bulk M., Abdelmoula W.M., Geut H., Wiarda W., Ronen I., Dijkstra J., van der Weerd L. Quantitative Mri and Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Imaging of Iron in the Frontal Cortex of Healthy Controls and Alzheimer’s Disease Patients. Neuroimage. 2020;215:116808. doi: 10.1016/j.neuroimage.2020.116808. PubMed DOI

Cruz-Alonso M., Fernandez B., Navarro A., Junceda S., Astudillo A., Pereiro R. Laser Ablation Icp-Ms for Simultaneous Quantitative Imaging of Iron and Ferroportin in Hippocampus of Human Brain Tissues with Alzheimer’s Disease. Talanta. 2019;197:413–421. doi: 10.1016/j.talanta.2019.01.056. PubMed DOI

Exley C., House E., Polwart A., Esiri M.M. Brain Burdens of Aluminum, Iron, and Copper and Their Relationships with Amyloid-Beta Pathology in 60 Human Brains. J. Alzheimers Dis. 2012;31:725–730. doi: 10.3233/JAD-2012-120766. PubMed DOI

Hare D.J., Raven E.P., Roberts B.R., Bogeski M., Portbury S.D., McLean C.A., Masters C.L., Connor J.R., Bush A.I., Crouch P.J., et al. Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Imaging of White and Gray Matter Iron Distribution in Alzheimer’s Disease Frontal Cortex. Neuroimage. 2016;137:124–131. doi: 10.1016/j.neuroimage.2016.05.057. PubMed DOI

Gong N.J., Dibb R., Bulk M., van der Weerd L., Liu C. Imaging Beta Amyloid Aggregation and Iron Accumulation in Alzheimer’s Disease Using Quantitative Susceptibility Mapping Mri. Neuroimage. 2019;191:176–185. doi: 10.1016/j.neuroimage.2019.02.019. PubMed DOI

Bulk M., Abdelmoula W.M., Nabuurs R.J.A., van der Graaf L.M., Mulders C.W.H., Mulder A.A., Jost C.R., Koster A.J., van Buchem M.A., Natte R., et al. Postmortem Mri and Histology Demonstrate Differential Iron Accumulation and Cortical Myelin Organization in Early- and Late-Onset Alzheimer’s Disease. Neurobiol. Aging. 2018;62:231–242. doi: 10.1016/j.neurobiolaging.2017.10.017. PubMed DOI

Zeng Y., DiGiacomo P.S., Madsen S.J., Zeineh M.M., Sinclair R. Exploring Valence States of Abnormal Mineral Deposits in Biological Tissues Using Correlative Microscopy and Spectroscopy Techniques: A Case Study on Ferritin and Iron Deposits from Alzheimer’s Disease Patients. Ultramicroscopy. 2021;231:113254. doi: 10.1016/j.ultramic.2021.113254. PubMed DOI PMC

Everett J., Lermyte F., Brooks J., Tjendana-Tjhin V., Plascencia-Villa G., Hands-Portman I., Donnelly J.M., Billimoria K., Perry G., Zhu X., et al. Biogenic Metallic Elements in the Human Brain? Sci. Adv. 2021;7:eabf6707. doi: 10.1126/sciadv.abf6707. PubMed DOI PMC

Ayton S., Faux N.G., Bush A.I., Alzheimer’s Disease Neuroimaging Initiative Ferritin Levels in the Cerebrospinal Fluid Predict Alzheimer’s Disease Outcomes and Are Regulated by Apoe. Nat. Commun. 2015;6:6760. doi: 10.1038/ncomms7760. PubMed DOI PMC

Ayton S., Faux N.G., Bush A.I. Association of Cerebrospinal Fluid Ferritin Level with Preclinical Cognitive Decline in Apoe-Epsilon4 Carriers. JAMA Neurol. 2017;74:122–125. doi: 10.1001/jamaneurol.2016.4406. PubMed DOI

Ahmadi S., Zhu S., Sharma R., Wilson D.J., Kraatz H.B. Interaction of Metal Ions with Tau Protein. The Case for a Metal-Mediated Tau Aggregation. J. Inorg. Biochem. 2019;194:44–51. doi: 10.1016/j.jinorgbio.2019.02.007. PubMed DOI

Bourassa M.W., Leskovjan A.C., Tappero R.V., Farquhar E.R., Colton C.A., van Nostrand W.E., Miller L.M. Elevated Copper in the Amyloid Plaques and Iron in the Cortex Are Observed in Mouse Models of Alzheimer’s Disease That Exhibit Neurodegeneration. Biomed. Spectrosc. Imaging. 2013;2:129–139. doi: 10.3233/BSI-130041. PubMed DOI PMC

Cheignon C., Tomas M., Bonnefont-Rousselot D., Faller P., Hureau C., Collin F. Oxidative Stress and the Amyloid Beta Peptide in Alzheimer’s Disease. Redox Biol. 2018;14:450–464. doi: 10.1016/j.redox.2017.10.014. PubMed DOI PMC

Kanekiyo T., Bu G. The Low-Density Lipoprotein Receptor-Related Protein 1 and Amyloid-Beta Clearance in Alzheimer’s Disease. Front. Aging Neurosci. 2014;6:93. doi: 10.3389/fnagi.2014.00093. PubMed DOI PMC

Angelova D.M., Brown D.R. Microglia and the Aging Brain: Are Senescent Microglia the Key to Neurodegeneration? J. Neurochem. 2019;151:676–688. doi: 10.1111/jnc.14860. PubMed DOI

Chaudhary S., Ashok A., McDonald D., Wise A.S., Kritikos A.E., Rana N.A., Harding C.V., Singh N. Upregulation of Local Hepcidin Contributes to Iron Accumulation in Alzheimer’s Disease Brains. J. Alzheimers Dis. 2021;82:1487–1497. doi: 10.3233/JAD-210221. PubMed DOI PMC

Masaldan S., Bush A.I., Devos D., Rolland A.S., Moreau C. Striking While the Iron Is Hot: Iron Metabolism and Ferroptosis in Neurodegeneration. Free Radic. Biol. Med. 2019;133:221–233. doi: 10.1016/j.freeradbiomed.2018.09.033. PubMed DOI

Yan N., Zhang J. Iron Metabolism, Ferroptosis, and the Links with Alzheimer’s Disease. Front. Neurosci. 2019;13:1443. doi: 10.3389/fnins.2019.01443. PubMed DOI PMC

Hambright W.S., Fonseca R.S., Chen L., Na R., Ran Q. Ablation of Ferroptosis Regulator Glutathione Peroxidase 4 in Forebrain Neurons Promotes Cognitive Impairment and Neurodegeneration. Redox Biol. 2017;12:8–17. doi: 10.1016/j.redox.2017.01.021. PubMed DOI PMC

Chen L., Dar N.J., Na R., McLane K.D., Yoo K., Han X., Ran Q. Enhanced Defense against Ferroptosis Ameliorates Cognitive Impairment and Reduces Neurodegeneration in 5xfad Mice. Free Radic. Biol. Med. 2022;180:1–12. doi: 10.1016/j.freeradbiomed.2022.01.002. PubMed DOI PMC

Karuppagounder S.S., Alin L., Chen Y., Brand D., Bourassa M.W., Dietrich K., Wilkinson C.M., Nadeau C.A., Kumar A., Perry S., et al. N-Acetylcysteine Targets 5 Lipoxygenase-Derived, Toxic Lipids and Can Synergize with Prostaglandin E2 to Inhibit Ferroptosis and Improve Outcomes Following Hemorrhagic Stroke in Mice. Ann. Neurol. 2018;84:854–872. doi: 10.1002/ana.25356. PubMed DOI PMC

Adair J.C., Knoefel J.E., Morgan N. Controlled Trial of N-Acetylcysteine for Patients with Probable Alzheimer’s Disease. Neurology. 2001;57:1515–1517. doi: 10.1212/WNL.57.8.1515. PubMed DOI

Ratan R.R. The Chemical Biology of Ferroptosis in the Central Nervous System. Cell Chem. Biol. 2020;27:479–498. doi: 10.1016/j.chembiol.2020.03.007. PubMed DOI PMC

Fasae K.D., Abolaji A.O., Faloye T.R., Odunsi A.Y., Oyetayo B.O., Enya J.I., Rotimi J.A., Akinyemi R.O., Whitworth A.J., Aschner M. Metallobiology and Therapeutic Chelation of Biometals (Copper, Zinc and Iron) in Alzheimer’s Disease: Limitations, and Current and Future Perspectives. J. Trace Elem. Med. Biol. 2021;67:126779. doi: 10.1016/j.jtemb.2021.126779. PubMed DOI

McLachlan D.R., Smith W.L., Kruck T.P. Desferrioxamine and Alzheimer’s Disease: Video Home Behavior Assessment of Clinical Course and Measures of Brain Aluminum. Ther. Drug Monit. 1993;15:602–607. doi: 10.1097/00007691-199312000-00027. PubMed DOI

Rao S.S., Portbury S.D., Lago L., McColl G., Finkelstein D.I., Bush A.I., Adlard P.A. The Iron Chelator Deferiprone Improves the Phenotype in a Mouse Model of Tauopathy. J. Alzheimers Dis. 2020;77:753–771. doi: 10.3233/JAD-200551. PubMed DOI

Prasanthi J.R., Schrag M., Dasari B., Marwarha G., Dickson A., Kirsch W.M., Ghribi O. Deferiprone Reduces Amyloid-Beta and Tau Phosphorylation Levels but Not Reactive Oxygen Species Generation in Hippocampus of Rabbits Fed a Cholesterol-Enriched Diet. J. Alzheimers Dis. 2012;30:167–182. doi: 10.3233/JAD-2012-111346. PubMed DOI PMC

Faux N.G., Ritchie C.W., Gunn A., Rembach A., Tsatsanis A., Bedo J., Harrison J., Lannfelt L., Blennow K., Zetterberg H., et al. Pbt2 Rapidly Improves Cognition in Alzheimer’s Disease: Additional Phase Ii Analyses. J. Alzheimers Dis. 2010;20:509–516. doi: 10.3233/JAD-2010-1390. PubMed DOI

Shefner J.M., Al-Chalabi A., Baker M.R., Cui L.Y., de Carvalho M., Eisen A., Grosskreutz J., Hardiman O., Henderson R., Matamala J.M., et al. A Proposal for New Diagnostic Criteria for Als. Clin. Neurophysiol. 2020;131:1975–1978. doi: 10.1016/j.clinph.2020.04.005. PubMed DOI

Jankovska N., Matej R. Molecular Pathology of Als: What We Currently Know and What Important Information Is Still Missing. Diagnostics. 2021;11:1365. doi: 10.3390/diagnostics11081365. PubMed DOI PMC

Sheelakumari R., Madhusoodanan M., Radhakrishnan A., Ranjith G., Thomas B. A Potential Biomarker in Amyotrophic Lateral Sclerosis: Can Assessment of Brain Iron Deposition with Swi and Corticospinal Tract Degeneration with Dti Help? AJNR Am. J. Neuroradiol. 2016;37:252–258. doi: 10.3174/ajnr.A4524. PubMed DOI PMC

Bu X.L., Xiang Y., Guo Y. The Role of Iron in Amyotrophic Lateral Sclerosis. Adv. Exp. Med. Biol. 2019;1173:145–152. PubMed

Kurlander H.M., Patten B.M. Metals in Spinal Cord Tissue of Patients Dying of Motor Neuron Disease. Ann. Neurol. 1979;6:21–24. doi: 10.1002/ana.410060105. PubMed DOI

Veyrat-Durebex C., Corcia P., Mucha A., Benzimra S., Mallet C., Gendrot C., Moreau C., Devos D., Piver E., Pages J.C., et al. Iron Metabolism Disturbance in a French Cohort of Als Patients. Biomed. Res. Int. 2014;2014:485723. doi: 10.1155/2014/485723. PubMed DOI PMC

Mitchell R.M., Simmons Z., Beard J.L., Stephens H.E., Connor J.R. Plasma Biomarkers Associated with Als and Their Relationship to Iron Homeostasis. Muscle Nerve. 2010;42:95–103. doi: 10.1002/mus.21625. PubMed DOI

Nadjar Y., Gordon P., Corcia P., Bensimon G., Pieroni L., Meininger V., Salachas F. Elevated Serum Ferritin Is Associated with Reduced Survival in Amyotrophic Lateral Sclerosis. PLoS ONE. 2012;7:e45034. doi: 10.1371/journal.pone.0045034. PubMed DOI PMC

Orts-Del’Immagine A., Wyart C. Cerebrospinal-Fluid-Contacting Neurons. Curr. Biol. 2017;27:R1198–R1200. doi: 10.1016/j.cub.2017.09.017. PubMed DOI

Roos P.M., Vesterberg O., Syversen T., Flaten T.P., Nordberg M. Metal Concentrations in Cerebrospinal Fluid and Blood Plasma from Patients with Amyotrophic Lateral Sclerosis. Biol. Trace Elem. Res. 2013;151:159–170. doi: 10.1007/s12011-012-9547-x. PubMed DOI

Patti F., Fiore M., Chisari C.G., D’Amico E., Fermo S.L., Toscano S., Copat C., Ferrante M., Zappia M. Csf Neurotoxic Metals/Metalloids Levels in Amyotrophic Lateral Sclerosis Patients: Comparison between Bulbar and Spinal Onset. Environ. Res. 2020;188:109820. doi: 10.1016/j.envres.2020.109820. PubMed DOI

Graeber M.B., Raivich G., Kreutzberg G.W. Increase of Transferrin Receptors and Iron Uptake in Regenerating Motor Neurons. J. Neurosci. Res. 1989;23:342–345. doi: 10.1002/jnr.490230315. PubMed DOI

Stuber C., Pitt D., Wang Y. Iron in Multiple Sclerosis and Its Noninvasive Imaging with Quantitative Susceptibility Mapping. Int. J. Mol. Sci. 2016;17:100. doi: 10.3390/ijms17010100. PubMed DOI PMC

Al-Radaideh A., Athamneh I., Alabadi H., Hbahbih M. Cortical and Subcortical Morphometric and Iron Changes in Relapsing-Remitting Multiple Sclerosis and Their Association with White Matter T2 Lesion Load: A 3-Tesla Magnetic Resonance Imaging Study. Clin. Neuroradiol. 2019;29:51–64. doi: 10.1007/s00062-017-0654-0. PubMed DOI

Taege Y., Hagemeier J., Bergsland N., Dwyer M.G., Weinstock-Guttman B., Zivadinov R., Schweser F. Assessment of Mesoscopic Properties of Deep Gray Matter Iron through a Model-Based Simultaneous Analysis of Magnetic Susceptibility and R2*—A Pilot Study in Patients with Multiple Sclerosis and Normal Controls. Neuroimage. 2019;186:308–320. doi: 10.1016/j.neuroimage.2018.11.011. PubMed DOI PMC

Elkady A.M., Cobzas D., Sun H., Blevins G., Wilman A.H. Progressive Iron Accumulation across Multiple Sclerosis Phenotypes Revealed by Sparse Classification of Deep Gray Matter. J. Magn. Reson. Imaging. 2017;46:1464–1473. doi: 10.1002/jmri.25682. PubMed DOI

Bergsland N., Tavazzi E., Lagana M.M., Baglio F., Cecconi P., Viotti S., Zivadinov R., Baselli G., Rovaris M. White Matter Tract Injury Is Associated with Deep Gray Matter Iron Deposition in Multiple Sclerosis. J. Neuroimaging. 2017;27:107–113. doi: 10.1111/jon.12364. PubMed DOI

Yarnykh V.L., Krutenkova E.P., Aitmagambetova G., Repovic P., Mayadev A., Qian P., Henson L.K.J., Gangadharan B., Bowen J.D. Iron-Insensitive Quantitative Assessment of Subcortical Gray Matter Demyelination in Multiple Sclerosis Using the Macromolecular Proton Fraction. AJNR Am. J. Neuroradiol. 2018;39:618–625. doi: 10.3174/ajnr.A5542. PubMed DOI PMC

Fujiwara E., Kmech J.A., Cobzas D., Sun H., Seres P., Blevins G., Wilman A.H. Cognitive Implications of Deep Gray Matter Iron in Multiple Sclerosis. AJNR Am. J. Neuroradiol. 2017;38:942–948. doi: 10.3174/ajnr.A5109. PubMed DOI PMC

Schmalbrock P., Prakash R.S., Schirda B., Janssen A., Yang G.K., Russell M., Knopp M.V., Boster A., Nicholas J.A., Racke M., et al. Basal Ganglia Iron in Patients with Multiple Sclerosis Measured with 7 T Quantitative Susceptibility Mapping Correlates with Inhibitory Control. AJNR Am. J. Neuroradiol. 2016;37:439–446. doi: 10.3174/ajnr.A4599. PubMed DOI PMC

Elkady A.M., Cobzas D., Sun H., Blevins G., Wilman A.H. Discriminative Analysis of Regional Evolution of Iron and Myelin/Calcium in Deep Gray Matter of Multiple Sclerosis and Healthy Subjects. J. Magn. Reson. Imaging. 2018;48:652–668. doi: 10.1002/jmri.26004. PubMed DOI

Elkady A.M., Cobzas D., Sun H., Seres P., Blevins G., Wilman A.H. Five Year Iron Changes in Relapsing-Remitting Multiple Sclerosis Deep Gray Matter Compared to Healthy Controls. Mult. Scler. Relat. Disord. 2019;33:107–115. doi: 10.1016/j.msard.2019.05.028. PubMed DOI

Hernandez-Torres E., Wiggermann V., Machan L., Sadovnick A.D., Li D.K.B., Traboulsee A., Hametner S., Rauscher A. Increased Mean R2* in the Deep Gray Matter of Multiple Sclerosis Patients: Have We Been Measuring Atrophy? J. Magn. Reson. Imaging. 2019;50:201–208. doi: 10.1002/jmri.26561. PubMed DOI

Pontillo G., Petracca M., Monti S., Quarantelli M., Criscuolo C., Lanzillo R., Tedeschi E., Elefante A., Morra V.B., Brunetti A., et al. Unraveling Deep Gray Matter Atrophy and Iron and Myelin Changes in Multiple Sclerosis. AJNR Am. J. Neuroradiol. 2021;42:1223–1230. doi: 10.3174/ajnr.A7093. PubMed DOI PMC

Pudlac A., Burgetova A., Dusek P., Nytrova P., Vaneckova M., Horakova D., Krasensky J., Lambert L. Deep Gray Matter Iron Content in Neuromyelitis Optica and Multiple Sclerosis. Biomed. Res. Int. 2020;2020:6492786. doi: 10.1155/2020/6492786. PubMed DOI PMC

Schweser F., Martins A.L.R.D., Hagemeier J., Lin F., Hanspach J., Weinstock-Guttman B., Hametner S., Bergsland N., Dwyer M.G., Zivadinov R. Mapping of Thalamic Magnetic Susceptibility in Multiple Sclerosis Indicates Decreasing Iron with Disease Duration: A Proposed Mechanistic Relationship between Inflammation and Oligodendrocyte Vitality. Neuroimage. 2018;167:438–452. doi: 10.1016/j.neuroimage.2017.10.063. PubMed DOI PMC

Castellaro M., Magliozzi R., Palombit A., Pitteri M., Silvestri E., Camera V., Montemezzi S., Pizzini F.B., Bertoldo A., Reynolds R., et al. Heterogeneity of Cortical Lesion Susceptibility Mapping in Multiple Sclerosis. AJNR Am. J. Neuroradiol. 2017;38:1087–1095. doi: 10.3174/ajnr.A5150. PubMed DOI PMC

Tham M., Frischer J.M., Weigand S.D., Fitz-Gibbon P.D., Webb S.M., Guo Y., Adiele R.C., Robinson C.A., Bruck W., Lassmann H., et al. Iron Heterogeneity in Early Active Multiple Sclerosis Lesions. Ann. Neurol. 2021;89:498–510. doi: 10.1002/ana.25974. PubMed DOI PMC

Chawla S., Kister I., Wuerfel J., Brisset J.C., Liu S., Sinnecker T., Dusek P., Haacke E.M., Paul F., Ge Y. Iron and Non-Iron-Related Characteristics of Multiple Sclerosis and Neuromyelitis Optica Lesions at 7 T Mri. AJNR Am. J. Neuroradiol. 2016;37:1223–1230. doi: 10.3174/ajnr.A4729. PubMed DOI PMC

Maggi P., Sati P., Nair G., Cortese I.C.M., Jacobson S., Smith B.R., Nath A., Ohayon J., van Pesch V., Perrotta G., et al. Paramagnetic Rim Lesions Are Specific to Multiple Sclerosis: An International Multicenter 3t Mri Study. Ann. Neurol. 2020;88:1034–1042. doi: 10.1002/ana.25877. PubMed DOI PMC

Preziosa P., Rocca M.A., Filippi M. Central Vein Sign and Iron Rim in Multiple Sclerosis: Ready for Clinical Use? Curr. Opin. Neurol. 2021;34:505–513. doi: 10.1097/WCO.0000000000000946. PubMed DOI

Sinnecker T., Schumacher S., Mueller K., Pache F., Dusek P., Harms L., Ruprecht K., Nytrova P., Chawla S., Niendorf T., et al. Mri Phase Changes in Multiple Sclerosis vs. Neuromyelitis Optica Lesions at 7 T. Neurol. Neuroimmunol. Neuroinflamm. 2016;3:e259. doi: 10.1212/NXI.0000000000000259. PubMed DOI PMC

Dal-Bianco A., Grabner G., Kronnerwetter C., Weber M., Kornek B., Kasprian G., Berger T., Leutmezer F., Rommer P.S., Trattnig S., et al. Long-Term Evolution of Multiple Sclerosis Iron Rim Lesions in 7 T Mri. Brain. 2021;144:833–847. doi: 10.1093/brain/awaa436. PubMed DOI

Zhang Y., Gauthier S.A., Gupta A., Chen W., Comunale J., Chiang G.C., Zhou D., Askin G., Zhu W., Pitt D., et al. Quantitative Susceptibility Mapping and R2* Measured Changes During White Matter Lesion Development in Multiple Sclerosis: Myelin Breakdown, Myelin Debris Degradation and Removal, and Iron Accumulation. AJNR Am. J. Neuroradiol. 2016;37:1629–1635. doi: 10.3174/ajnr.A4825. PubMed DOI PMC

Clarke M.A., Pareto D., Pessini-Ferreira L., Arrambide G., Alberich M., Crescenzo F., Cappelle S., Tintore M., Sastre-Garriga J., Auger C., et al. Value of 3t Susceptibility-Weighted Imaging in the Diagnosis of Multiple Sclerosis. AJNR Am. J. Neuroradiol. 2020;41:1001–1008. doi: 10.3174/ajnr.A6547. PubMed DOI PMC

Absinta M., Sati P., Masuzzo F., Nair G., Sethi V., Kolb H., Ohayon J., Wu T., Cortese I.C.M., Reich D.S. Association of Chronic Active Multiple Sclerosis Lesions with Disability in Vivo. JAMA Neurol. 2019;76:1474–1483. doi: 10.1001/jamaneurol.2019.2399. PubMed DOI PMC

Gillen K.M., Mubarak M., Nguyen T.D., Pitt D. Significance and in Vivo Detection of Iron-Laden Microglia in White Matter Multiple Sclerosis Lesions. Front. Immunol. 2018;9:255. doi: 10.3389/fimmu.2018.00255. PubMed DOI PMC

Zrzavy T., Hametner S., Wimmer I., Butovsky O., Weiner H.L., Lassmann H. Loss of ‘Homeostatic’ Microglia and Patterns of Their Activation in Active Multiple Sclerosis. Brain. 2017;140:1900–1913. doi: 10.1093/brain/awx113. PubMed DOI PMC

Ding D., Valdivia A.O., Bhattacharya S.K. Nuclear Prelamin a Recognition Factor and Iron Dysregulation in Multiple Sclerosis. Metab. Brain Dis. 2020;35:275–282. doi: 10.1007/s11011-019-00515-z. PubMed DOI

Van Rensburg S.J., Peeters A.V., van Toorn R., Schoeman J., Moremi K.E., van Heerden C.J., Kotze M.J. Identification of an Iron-Responsive Subtype in Two Children Diagnosed with Relapsing-Remitting Multiple Sclerosis Using Whole Exome Sequencing. Mol. Genet. Metab. Rep. 2019;19:100465. doi: 10.1016/j.ymgmr.2019.100465. PubMed DOI PMC

Herbert E., Engel-Hills P., Hattingh C., Fouche J.P., Kidd M., Lochner C., Kotze M.J., van Rensburg S.J. Fractional Anisotropy of White Matter, Disability and Blood Iron Parameters in Multiple Sclerosis. Metab. Brain Dis. 2018;33:545–557. doi: 10.1007/s11011-017-0171-5. PubMed DOI

Siotto M., Filippi M.M., Simonelli I., Landi D., Ghazaryan A., Vollaro S., Ventriglia M., Pasqualetti P., Rongioletti M.C.A., Squitti R., et al. Oxidative Stress Related to Iron Metabolism in Relapsing Remitting Multiple Sclerosis Patients with Low Disability. Front. Neurosci. 2019;13:86. doi: 10.3389/fnins.2019.00086. PubMed DOI PMC

Dogan H.O., Yildiz O.K. Serum Nadph Oxidase Concentrations and the Associations with Iron Metabolism in Relapsing Remitting Multiple Sclerosis. J. Trace Elem. Med. Biol. 2019;55:39–43. doi: 10.1016/j.jtemb.2019.05.011. PubMed DOI

Bergsland N., Agostini S., Lagana M.M., Mancuso R., Mendozzi L., Tavazzi E., Cecconi P., Clerici M., Baglio F. Serum Iron Concentration Is Associated with Subcortical Deep Gray Matter Iron Levels in Multiple Sclerosis Patients. Neuroreport. 2017;28:645–648. doi: 10.1097/WNR.0000000000000804. PubMed DOI

Khalil M., Renner A., Langkammer C., Enzinger C., Ropele S., Stojakovic T., Scharnagl H., Bachmaier G., Pichler A., Archelos J.J., et al. Cerebrospinal Fluid Lipocalin 2 in Patients with Clinically Isolated Syndromes and Early Multiple Sclerosis. Mult. Scler. 2016;22:1560–1568. doi: 10.1177/1352458515624560. PubMed DOI

Dekens D.W., Eisel U.L.M., Gouweleeuw L., Schoemaker R.G., de Deyn P.P., Naude P.J.W. Lipocalin 2 as a Link between Ageing, Risk Factor Conditions and Age-Related Brain Diseases. Ageing Res. Rev. 2021;70:101414. doi: 10.1016/j.arr.2021.101414. PubMed DOI

Magliozzi R., Hametner S., Facchiano F., Marastoni D., Rossi S., Castellaro M., Poli A., Lattanzi F., Visconti A., Nicholas R., et al. Iron Homeostasis, Complement, and Coagulation Cascade as Csf Signature of Cortical Lesions in Early Multiple Sclerosis. Ann. Clin. Transl. Neurol. 2019;6:2150–2163. doi: 10.1002/acn3.50893. PubMed DOI PMC

Aspli K.T., Flaten T.P., Roos P.M., Holmoy T., Skogholt J.H., Aaseth J. Iron and Copper in Progressive Demyelination—New Lessons from Skogholt’s Disease. J. Trace Elem. Med. Biol. 2015;31:183–187. doi: 10.1016/j.jtemb.2014.12.002. PubMed DOI

Hider R.C., Hoffbrand A.V. The Role of Deferiprone in Iron Chelation. N. Engl. J. Med. 2018;379:2140–2150. doi: 10.1056/NEJMra1800219. PubMed DOI

Aaseth J., Skaug M.A., Cao Y., Andersen O. Chelation in Metal Intoxication—Principles and Paradigms. J. Trace Elem. Med. Biol. 2015;31:260–266. doi: 10.1016/j.jtemb.2014.10.001. PubMed DOI

Piga A., Gaglioti C., Fogliacco E., Tricta F. Comparative Effects of Deferiprone and Deferoxamine on Survival and Cardiac Disease in Patients with Thalassemia Major: A Retrospective Analysis. Haematologica. 2003;88:489–496. PubMed

Rao S.S., Lago L., Volitakis I., Shukla J.J., McColl G., Finkelstein D.I., Adlard P.A. Deferiprone Treatment in Aged Transgenic Tau Mice Improves Y-Maze Performance and Alters Tau Pathology. Neurotherapeutics. 2021;18:1081–1094. doi: 10.1007/s13311-020-00972-w. PubMed DOI PMC

Flaten T.P., Aaseth J., Andersen O., Kontoghiorghes G.J. Iron Mobilization Using Chelation and Phlebotomy. J. Trace Elem. Med. Biol. 2012;26:127–130. doi: 10.1016/j.jtemb.2012.03.009. PubMed DOI

Mourad F.H., Hoffbrand A.V., Sheikh-Taha M., Koussa S., Khoriaty A.I., Taher A. Comparison between Desferrioxamine and Combined Therapy with Desferrioxamine and Deferiprone in Iron Overloaded Thalassaemia Patients. Br. J. Haematol. 2003;121:187–189. doi: 10.1046/j.1365-2141.2003.04240.x. PubMed DOI

Sedgwick A.C., Yan K.C., Mangel D.N., Shang Y., Steinbrueck A., Han H.H., Brewster J.T., II, Hu X.L., Snelson D.W., Lynch V.M., et al. Deferasirox (Exjade): An Fda-Approved Aiegen Platform with Unique Photophysical Properties. J. Am. Chem. Soc. 2021;143:1278–1283. doi: 10.1021/jacs.0c11641. PubMed DOI

Dou H., Qin Y., Chen G., Zhao Y. Effectiveness and Safety of Deferasirox in Thalassemia with Iron Overload: A Meta-Analysis. Acta Haematol. 2019;141:32–42. doi: 10.1159/000494487. PubMed DOI

Totadri S., Bansal D., Bhatia P., Attri S.V., Trehan A., Marwaha R.K. The Deferiprone and Deferasirox Combination Is Efficacious in Iron Overloaded Patients with Beta-Thalassemia Major: A Prospective, Single Center, Open-Label Study. Pediatr. Blood Cancer. 2015;62:1592–1596. doi: 10.1002/pbc.25533. PubMed DOI

DivakarJose R.R., Delhikumar C.G., Kumar G.R. Efficacy and Safety of Combined Oral Chelation with Deferiprone and Deferasirox on Iron Overload in Transfusion Dependent Children with Thalassemia—A Prospective Observational Study. Indian J. Pediatr. 2021;88:330–335. doi: 10.1007/s12098-020-03442-5. PubMed DOI

Mu M.D., Qian Z.M., Yang S.X., Rong K.L., Yung W.H., Ke Y. Therapeutic Effect of a Histone Demethylase Inhibitor in Parkinson’s Disease. Cell Death Dis. 2020;11:927. doi: 10.1038/s41419-020-03105-5. PubMed DOI PMC

Zhang D.L., Wu J., Shah B.N., Greutelaers K.C., Ghosh M.C., Ollivierre H., Su X.Z., Thuma P.E., Bedu-Addo G., Mockenhaupt F.P., et al. Erythrocytic Ferroportin Reduces Intracellular Iron Accumulation, Hemolysis, and Malaria Risk. Science. 2018;359:1520–1523. doi: 10.1126/science.aal2022. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace