Deep Gray Matter Iron Content in Neuromyelitis Optica and Multiple Sclerosis

. 2020 ; 2020 () : 6492786. [epub] 20200519

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32509866

BACKGROUND: Neuromyelitis optica (NMO) and multiple sclerosis (MS) are often presenting with overlapping symptoms. The aim of this study was to determine whether and how NMO and MS differ regarding cerebral iron deposits in deep gray matter (DGM) and the correlation between iron deposition and clinical severity as well as to regional atrophy of the DGM. METHODS: We analyzed 20 patients with NMO, 40 patients with a relapsing-remitting (RR) form of MS, and 20 healthy controls with 1.5T MRI. Quantitative susceptibility mapping (QSM) was performed to estimate iron concentration in the DGM. RESULTS: Patients with NMO have higher magnetic susceptibility values in the substantia nigra compared to healthy controls. RRMS patients have lower magnetic susceptibility values in the thalamus compared to healthy controls and NMO patients. Atrophy of the thalamus, pulvinar, and putamen is significant both in RRMS compared to NMO patients and healthy controls. A correlation was found between the disability score (EDSS) and magnetic susceptibility in the putamen in RRMS. CONCLUSIONS: This study confirms that a disturbed cerebral iron homeostasis in patients with NMO occurs in different structures than in patients with RRMS. Increased magnetic susceptibility in substantia nigra in NMO and decreased magnetic susceptibility within the thalamus in RRMS were the only significant differences in the study sample. We could confirm that iron concentration in the thalami is decreased in RRMS compared to that in the HC group. Positive association was found between putaminal iron and EDSS in RRMS.

Zobrazit více v PubMed

Lennon V. A., Wingerchuk D. M., Kryzer T. J., et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. The Lancet. 2004;364(9451):2106–2112. doi: 10.1016/S0140-6736(04)17551-X. PubMed DOI

Sinnecker T., Schumacher S., Mueller K., et al. MRI phase changes in multiple sclerosis vs neuromyelitis optica lesions at 7T. Neurology-Neuroimmunology Neuroinflammation. 2016;3(4):p. e259. doi: 10.1212/NXI.0000000000000259. PubMed DOI PMC

Kim H. J., Paul F., Lana-Peixoto M. A., et al. MRI characteristics of neuromyelitis optica spectrum disorder: an international update. Neurology. 2015;84(11):1165–1173. doi: 10.1212/wnl.0000000000001367. PubMed DOI PMC

Chen X., Zeng C., Luo T., et al. Iron deposition of the deep grey matter in patients with multiple sclerosis and neuromyelitis optica: a control quantitative study by 3D-enhanced susceptibility-weighted angiography (ESWAN) European Journal of Radiology. 2012;81(4):e633–e639. doi: 10.1016/j.ejrad.2012.01.003. PubMed DOI

Du S., Sah S. K., Zeng C., et al. Iron deposition in the gray matter in patients with relapse-remitting multiple sclerosis: a longitudinal study using three-dimensional (3D)-enhanced T2∗-weighted angiography (ESWAN) European Journal of Radiology. 2015;84(7):1325–1332. doi: 10.1016/j.ejrad.2015.04.013. PubMed DOI

Cobzas D., Sun H., Walsh A. J., Lebel R. M., Blevins G., Wilman A. H. Subcortical gray matter segmentation and voxel-based analysis using transverse relaxation and quantitative susceptibility mapping with application to multiple sclerosis. Journal of Magnetic Resonance Imaging. 2015;42(6):1601–1610. doi: 10.1002/jmri.24951. PubMed DOI

Burgetova A., Dusek P., Vaneckova M., et al. Thalamic iron differentiates primary-progressive and relapsing-remitting multiple sclerosis. AJNR. American Journal of Neuroradiology. 2017;38(6):1079–1086. doi: 10.3174/ajnr.A5166. PubMed DOI PMC

Schweser F., Martins A. L. R. D., Hagemeier J., et al. Mapping of thalamic magnetic susceptibility in multiple sclerosis indicates decreasing iron with disease duration: a proposed mechanistic relationship between inflammation and oligodendrocyte vitality. NeuroImage. 2018;167:438–452. doi: 10.1016/j.neuroimage.2017.10.063. PubMed DOI PMC

Chawla S., Kister I., Wuerfel J., et al. Iron and non-iron-related characteristics of multiple sclerosis and neuromyelitis optica lesions at 7T MRI. American Journal of Neuroradiology. 2016;37(7):1223–1230. doi: 10.3174/ajnr.A4729. PubMed DOI PMC

Doring T. M., Granado V., Rueda F., et al. Quantitative susceptibility mapping indicates a disturbed brain iron homeostasis in neuromyelitis optica - a pilot study. PloS One. 2016;11(5, article e0155027) doi: 10.1371/journal.pone.0155027. PubMed DOI PMC

Polman C. H., Reingold S. C., Banwell B., et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Annals of Neurology. 2011;69(2):292–302. doi: 10.1002/ana.22366. PubMed DOI PMC

Wingerchuk D. M., Lennon V. A., Pittock S. J., Lucchinetti C. F., Weinshenker B. G. Revised diagnostic criteria for neuromyelitis optica. Neurology. 2006;66(10):1485–1489. doi: 10.1212/01.wnl.0000216139.44259.74. PubMed DOI

Langkammer C., Bredies K., Poser B. A., et al. Fast quantitative susceptibility mapping using 3D EPI and total generalized variation. NeuroImage. 2015;111:622–630. doi: 10.1016/j.neuroimage.2015.02.041. PubMed DOI

Burgetova A., Seidl Z., Krasensky J., Horakova D., Vaneckova M. Multiple sclerosis and the accumulation of iron in the basal ganglia: quantitative assessment of brain iron using MRI T<sub>2</sub> relaxometry. European Neurology. 2010;63(3):136–143. doi: 10.1159/000279305. PubMed DOI

Voevodskaya O., Simmons A., Nördenskjold R., et al. The effects of intracranial volume adjustment approaches on multiple regional MRI volumes in healthy aging and Alzheimer’s disease. Frontiers in Aging Neuroscience. 2014;6 doi: 10.3389/fnagi.2014.00264. PubMed DOI PMC

Langkammer C., Liu T., Khalil M., et al. Quantitative susceptibility mapping in multiple sclerosis. Radiology. 2013;267(2):551–559. doi: 10.1148/radiol.12120707. PubMed DOI PMC

Huddleston D. E., Langley J., Dusek P., et al. Imaging Parkinsonian Pathology in Substantia Nigra with MRI. Current Radiology Reports. 2018;6(4):p. 15. doi: 10.1007/s40134-018-0272-x. DOI

Pichiecchio A., Tavazzi E., Poloni G., et al. Advanced magnetic resonance imaging of neuromyelitis optica: a multiparametric approach. Multiple Sclerosis Journal. 2012;18(6):817–824. doi: 10.1177/1352458511431072. PubMed DOI

Zhang L., Hong Z., Chen X., et al. Iron metabolism in neuromyelitis optica patients. Journal of the Neurological Sciences. 2014;347(1–2):214–218. doi: 10.1016/j.jns.2014.09.051. PubMed DOI

Prydz A., Stahl K., Puchades M., et al. Subcellular expression of aquaporin-4 in substantia nigra of normal and MPTP-treated mice. Neuroscience. 2017;359:258–266. doi: 10.1016/j.neuroscience.2017.07.029. PubMed DOI

Zivadinov R., Tavazzi E., Bergsland N., et al. Brain iron at quantitative MRI is associated with disability in multiple sclerosis. Radiology. 2018;289(2):487–496. doi: 10.1148/radiol.2018180136. PubMed DOI PMC

Gemmati D., Zeri G., Orioli E., et al. Polymorphisms in the genes coding for iron binding and transporting proteins are associated with disability, severity, and early progression in multiple sclerosis. BMC Medical Genetics. 2012;13(1):p. 70. doi: 10.1186/1471-2350-13-70. PubMed DOI PMC

Hagemeier J., Ramanathan M., Schweser F., et al. Iron-related gene variants and brain iron in multiple sclerosis and healthy individuals. NeuroImage: Clinical. 2018;17:530–540. doi: 10.1016/j.nicl.2017.11.003. PubMed DOI PMC

Tjoa C. W., Benedict R. H. B., Weinstock-Guttman B., Fabiano A. J., Bakshi R. MRI T2 hypointensity of the dentate nucleus is related to ambulatory impairment in multiple sclerosis. Journal of the Neurological Sciences. 2005;234(1–2):17–24. doi: 10.1016/j.jns.2005.02.009. PubMed DOI

Zhang Y., Metz L. M., Yong V. W., Mitchell J. R. 3 T deep gray matter T2 hypointensity correlates with disability over time in stable relapsing–remitting multiple sclerosis: A 3-year pilot study. Journal of the Neurological Sciences. 2010;297(1–2):76–81. doi: 10.1016/j.jns.2010.07.014. PubMed DOI

Ropele S., Kilsdonk I. D., Wattjes M. P., et al. Determinants of iron accumulation in deep grey matter of multiple sclerosis patients. Multiple Sclerosis Journal. 2014;20(13):1692–1698. doi: 10.1177/1352458514531085. PubMed DOI

Duan Y., Liu Y., Liang P., et al. Comparison of grey matter atrophy between patients with neuromyelitis optica and multiple sclerosis: a voxel-based morphometry study. European Journal of Radiology. 2012;81(2):e110–e114. doi: 10.1016/j.ejrad.2011.01.065. PubMed DOI

Chanson J.-B., Lamy J., Rousseau F., et al. White matter volume is decreased in the brain of patients with neuromyelitis optica. European Journal of Neurology. 2013;20(2):361–367. doi: 10.1111/j.1468-1331.2012.03867.x. PubMed DOI

von Glehn F., Jarius S., Lira R. P. C., et al. Structural brain abnormalities are related to retinal nerve fiber layer thinning and disease duration in neuromyelitis optica spectrum disorders. Multiple Sclerosis Journal. 2014;20(9):1189–1197. doi: 10.1177/1352458513519838. PubMed DOI

Wang Q., Zhang N., Qin W., et al. Gray matter volume reduction is associated with cognitive impairment in neuromyelitis optica. AJNR. American Journal of Neuroradiology. 2015;36(10):1822–1829. doi: 10.3174/ajnr.A4403. PubMed DOI PMC

Hyun J.-W., Park G., Kwak K., et al. Deep gray matter atrophy in neuromyelitis optica spectrum disorder and multiple sclerosis. European Journal of Neurology. 2017;24(2):437–445. doi: 10.1111/ene.13224. PubMed DOI

Fan M., Fu Y., Su L., et al. Comparison of brain and spinal cord magnetic resonance imaging features in neuromyelitis optica spectrum disorders patients with or without aquaporin-4 antibody. Multiple Sclerosis and Related Disorders. 2017;13:58–66. doi: 10.1016/j.msard.2017.02.003. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...