Age-related magnetic susceptibility changes in deep grey matter and cerebral cortex of normal young and middle-aged adults depicted by whole brain analysis

. 2021 Sep ; 11 (9) : 3906-3919.

Status PubMed-not-MEDLINE Jazyk angličtina Země Čína Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34476177
Odkazy

PubMed 34476177
PubMed Central PMC8339659
DOI 10.21037/qims-21-87
PII: qims-11-09-3906
Knihovny.cz E-zdroje

BACKGROUND: Iron accumulates in brain tissue in healthy subjects during aging. Our goal was to conduct a detailed analysis of iron deposition patterns in the cerebral deep grey matter and cortex using region-based and whole-brain analyses of brain magnetic susceptibility. METHODS: Brain MRI was performed in 95 healthy individuals aged between 21 and 58 years on a 3T scanner. MRI protocol included T1-weighted (T1W) magnetization-prepared rapid acquisition with gradient echo images and 3D flow-compensated multi-echo gradient-echo images for quantitative susceptibility mapping (QSM). In the region-based analysis, QSM and T1W images entered an automated multi-atlas segmentation pipeline and regional mean bulk susceptibility values were calculated. The whole-brain analysis included a non-linear transformation of QSM images to the standard MNI template. For the whole-brain analysis voxel-wise maps of linear regression slopes β and P values were calculated. Regional masks of cortical voxels with a significant association between susceptibility and age were created and further analyzed. RESULTS: In cortical regions, the highest increase of susceptibility values with age was found in areas involved in motor functions (precentral and postcentral areas, premotor cortex), in cognitive processing (prefrontal cortex, superior temporal gyrus, insula, precuneus), and visual processing (occipital gyri, cuneus, posterior cingulum, fusiform, calcarine and lingual gyrus). Thalamic susceptibility increased until the fourth decade and decreased thereafter with the exception of the pulvinar where susceptibility increase was observed throughout the adult lifespan. Deep grey matter structures with the highest increase of susceptibility values with age included the red nucleus, putamen, substantia nigra, dentate nucleus, external globus pallidus, caudate nucleus, and the subthalamic nucleus in decreasing order. CONCLUSIONS: Accumulation of iron in basal ganglia follows a linear pattern whereas in the thalamus, pulvinar, precentral cortex, and precuneus, it follows a quadratic or exponential pattern. Age-related changes of iron content are different in the pulvinar and the rest of the thalamus as well as in internal and external globus pallidus. In the cortex, areas involved in motor and cognitive functions and visual processing show the highest iron increase with aging. We suggest that the departure from normal patterns of regional brain iron trajectories during aging may be helpful in the detection of subtle neurodegenerative and neuroinflammatory processes.

Zobrazit více v PubMed

Callaghan MF, Freund P, Draganski B, Anderson E, Cappelletti M, Chowdhury R, Diedrichsen J, FitzGerald THB, Smittenaar P, Helms G, Lutti A, Weiskopf N. Widespread age-related differences in the human brain microstructure revealed by quantitative magnetic resonance imaging. Neurobiol Aging 2014;35:1862-72. 10.1016/j.neurobiolaging.2014.02.008 PubMed DOI PMC

Lorio S, Lutti A, Kherif F, Ruef A, Dukart J, Chowdhury R, Frackowiak RS, Ashburner J, Helms G, Weiskopf N, Draganski B. Disentangling in vivo the effects of iron content and atrophy on the ageing human brain. NeuroImage 2014;103:280-9. 10.1016/j.neuroimage.2014.09.044 PubMed DOI PMC

Pfefferbaum A, Adalsteinsson E, Rohlfing T, Sullivan EV. MRI estimates of brain iron concentration in normal aging: Comparison of field-dependent (FDRI) and phase (SWI) methods. NeuroImage 2009;47:493-500. 10.1016/j.neuroimage.2009.05.006 PubMed DOI PMC

Taubert M, Roggenhofer E, Melie-Garcia L, Muller S, Lehmann N, Preisig M, Vollenweider P, Marques-Vidal P, Lutti A, Kherif F, Draganski B. Converging patterns of aging-associated brain volume loss and tissue microstructure differences. Neurobiol Aging 2020;88:108-18. 10.1016/j.neurobiolaging.2020.01.006 PubMed DOI

Wang Y, Liu T. Quantitative susceptibility mapping (QSM): Decoding MRI data for a tissue magnetic biomarker. Magn Reson Med 2015;73:82-101. 10.1002/mrm.25358 PubMed DOI PMC

Langkammer C, Bredies K, Poser BA, Barth M, Reishofer G, Fan AP, Bilgic B, Fazekas F, Mainero C, Ropele S. Fast quantitative susceptibility mapping using 3D EPI and total generalized variation. NeuroImage 2015;111:622-30. 10.1016/j.neuroimage.2015.02.041 PubMed DOI

Acosta-Cabronero J, Milovic C, Mattern H, Tejos C, Speck O, Callaghan MF. A robust multi-scale approach to quantitative susceptibility mapping. NeuroImage 2018;183:7-24. 10.1016/j.neuroimage.2018.07.065 PubMed DOI PMC

Dusek P, Dezortova M, Wuerfel J. Imaging of iron. Int Rev Neurobiol 2013;110:195-239. 10.1016/B978-0-12-410502-7.00010-7 PubMed DOI

Burgetova A, Seidl Z, Krasensky J, Horakova D, Vaneckova M. Multiple sclerosis and the accumulation of iron in the Basal Ganglia: quantitative assessment of brain iron using MRI t(2) relaxometry. Eur Neurol 2010;63:136-43. 10.1159/000279305 PubMed DOI

Connor JR, Menzies SL, Martin SMS, Mufson EJ. Cellular distribution of transferrin, ferritin, and iron in normal and aged human brains. J Neurosci Res 1990;27:595-611. 10.1002/jnr.490270421 PubMed DOI

Daugherty A, Raz N. Age-related differences in iron content of subcortical nuclei observed in vivo: a meta-analysis. NeuroImage 2013;70:113-21. 10.1016/j.neuroimage.2012.12.040 PubMed DOI PMC

Schipper HM. Neurodegeneration with brain iron accumulation - clinical syndromes and neuroimaging. Biochim Biophys Acta 2012;1822:350-60. 10.1016/j.bbadis.2011.06.016 PubMed DOI

Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol 2014;13:1045-60. 10.1016/S1474-4422(14)70117-6 PubMed DOI PMC

Ghadery C, Pirpamer L, Hofer E, Langkammer C, Petrovic K, Loitfelder M, Schwingenschuh P, Seiler S, Duering M, Jouvent E, Schmidt H, Fazekas F, Mangin J-F, Chabriat H, Dichgans M, Ropele S, Schmidt R. R2* mapping for brain iron: associations with cognition in normal aging. Neurobiol Aging 2015;36:925-32. 10.1016/j.neurobiolaging.2014.09.013 PubMed DOI

Hallgren B, Sourander P. The effect of age on the non-haemin iron in the human brain. J Neurochem 1958;3:41-51. 10.1111/j.1471-4159.1958.tb12607.x PubMed DOI

Ramos P, Santos A, Pinto NR, Mendes R, Magalhães T, Almeida A. Iron levels in the human brain: a post-mortem study of anatomical region differences and age-related changes. J Trace Elem Med Biol 2014;28:13-7. 10.1016/j.jtemb.2013.08.001 PubMed DOI

Li J, Cao F, Yin H, Huang Z, Lin Z, Mao N, Sun B, Wang G. Ferroptosis: past, present and future. Cell Death Dis 2020;11:88. 10.1038/s41419-020-2298-2 PubMed DOI PMC

Schipper HM. Brain iron deposition and the free radical-mitochondrial theory of ageing. Ageing Res Rev 2004;3:265-301. 10.1016/j.arr.2004.02.001 PubMed DOI

Daugherty AM, Haacke EM, Raz N. Striatal Iron Content Predicts Its Shrinkage and Changes in Verbal Working Memory after Two Years in Healthy Adults. J Neurosci 2015;35:6731-43. 10.1523/JNEUROSCI.4717-14.2015 PubMed DOI PMC

Kalpouzos G, Garzón B, Sitnikov R, Heiland C, Salami A, Persson J, Bäckman L. Higher Striatal Iron Concentration is Linked to Frontostriatal Underactivation and Poorer Memory in Normal Aging. Cereb Cortex 2017;27:3427-36. 10.1093/cercor/bhx045 PubMed DOI

Aquino D, Bizzi A, Grisoli M, Garavaglia B, Bruzzone MG, Nardocci N, Savoiardo M, Chiapparini L. Age-related Iron Deposition in the Basal Ganglia: Quantitative Analysis in Healthy Subjects. Radiology 2009;252:165-72. 10.1148/radiol.2522081399 PubMed DOI

Bilgic B, Pfefferbaum A, Rohlfing T, Sullivan EV, Adalsteinsson E. MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping. NeuroImage 2012;59:2625-35. 10.1016/j.neuroimage.2011.08.077 PubMed DOI PMC

Gong NJ, Wong CS, Hui ES, Chan CC, Leung LM. Hemisphere, gender and age-related effects on iron deposition in deep gray matter revealed by quantitative susceptibility mapping. NMR Biomed 2015;28:1267-74. 10.1002/nbm.3366 PubMed DOI

Haacke EM, Miao Y, Liu M, Habib CA, Katkuri Y, Liu T, Yang Z, Lang Z, Hu J, Wu J. Correlation of putative iron content as represented by changes in R2* and phase with age in deep gray matter of healthy adults. J Magn Reson Imaging 2010;32:561-76. 10.1002/jmri.22293 PubMed DOI PMC

Li W, Wu B, Batrachenko A, Bancroft‐Wu V, Morey RA, Shashi V, Langkammer C, Bellis MDD, Ropele S, Song AW, Liu C. Differential developmental trajectories of magnetic susceptibility in human brain gray and white matter over the lifespan. Hum Brain Mapp 2014;35:2698-713. 10.1002/hbm.22360 PubMed DOI PMC

Liu M, Liu S, Ghassaban K, Zheng W, Dicicco D, Miao Y, Habib C, Jazmati T, Haacke EM. Assessing global and regional iron content in deep gray matter as a function of age using susceptibility mapping. J Magn Reson Imaging 2016;44:59-71. 10.1002/jmri.25130 PubMed DOI

Persson N, Wu J, Zhang Q, Liu T, Shen J, Bao R, Ni M, Liu T, Wang Y, Spincemaille P. Age and Sex Related Differences in Subcortical Brain Iron Concentrations among Healthy Adults. NeuroImage 2015;122:385-98. 10.1016/j.neuroimage.2015.07.050 PubMed DOI PMC

Acosta-Cabronero J, Betts MJ, Cardenas-Blanco A, Yang S, Nestor PJ. In Vivo MRI Mapping of Brain Iron Deposition across the Adult Lifespan. J Neurosci 2016;36:364-74. 10.1523/JNEUROSCI.1907-15.2016 PubMed DOI PMC

Betts MJ, Acosta-Cabronero J, Cardenas-Blanco A, Nestor PJ, Düzel E. High-resolution characterisation of the aging brain using simultaneous quantitative susceptibility mapping (QSM) and R2* measurements at 7T. NeuroImage 2016;138:43-63. 10.1016/j.neuroimage.2016.05.024 PubMed DOI

Milovic C, Prieto C, Bilgic B, Uribe S, Acosta-Cabronero J, Irarrazaval P, Tejos C. Comparison of parameter optimization methods for quantitative susceptibility mapping. Magn Reson Med 2021;85:480-94. 10.1002/mrm.28435 PubMed DOI PMC

Huhdanpaa H, Hwang DH, Gasparian GG, Booker MT, Cen Y, Lerner A, Boyko OB, Go JL, Kim PE, Rajamohan A, Law M, Shiroishi MS. Image Coregistration: Quantitative Processing Framework for the Assessment of Brain Lesions. J Digit Imaging 2014;27:369-79. 10.1007/s10278-013-9655-y PubMed DOI PMC

Li X, Chen L, Kutten K, Ceritoglu C, Li Y, Kang N, Hsu J, Qiao Y, Wei H, Liu C, Miller M, Mori S, Yousem DM, van Zijl P, Faria AV. Multi-Atlas Tool for Automated Segmentation of Brain Gray Matter Nuclei and Quantification of their Magnetic Susceptibility. NeuroImage 2019;191:337-49. 10.1016/j.neuroimage.2019.02.016 PubMed DOI PMC

Mori S, Wu D, Ceritoglu C, Li Y, Kolasny A, Vaillant MA, Faria AV, Oishi K, Miller MI. MRICloud: Delivering High-Throughput MRI Neuroinformatics as Cloud-Based Software as a Service. Comput Sci Eng 2016;18:21-35. 10.1109/MCSE.2016.93 DOI

Avants BB, Tustison NJ, Song G, Gee JC. Ants: Open-source tools for normalization and neuroanatomy. HeanetIe 2009;10:1-11.

Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage 2006;31:1116-28. 10.1016/j.neuroimage.2006.01.015 PubMed DOI

Joliot M, Jobard G, Naveau M, Delcroix N, Petit L, Zago L, Crivello F, Mellet E, Mazoyer B, Tzourio-Mazoyer N. AICHA: An atlas of intrinsic connectivity of homotopic areas. J Neurosci Methods 2015;254:46-59. 10.1016/j.jneumeth.2015.07.013 PubMed DOI

van der Weijden MCM, van Laar PJ, Lambrechts RA, Verbeek DS, Tijssen MAJ. Cortical pencil lining on SWI MRI in NBIA and healthy aging. BMC Neurol 2019;19:233. 10.1186/s12883-019-1471-7 PubMed DOI PMC

Liu C, Wei H, Gong NJ, Cronin M, Dibb R, Decker K. Quantitative Susceptibility Mapping: Contrast Mechanisms and Clinical Applications. Tomography 2015;1:3-17. 10.18383/j.tom.2015.00136 PubMed DOI PMC

Ning N, Liu C, Wu P, Hu Y, Zhang W, Zhang L, Li M, Gho SM, Kim DH, Guo H, Yang J, Jin C. Spatiotemporal variations of magnetic susceptibility in the deep gray matter nuclei from 1 month to 6 years: A quantitative susceptibility mapping study. J Magn Reson Imaging 2019;49:1600-9. 10.1002/jmri.26579 PubMed DOI

Peterson ET, Kwon D, Luna B, Larsen B, Prouty D, Bellis MDD, Voyvodic J, Liu C, Li W, Pohl KM, Sullivan EV, Pfefferbaum A. Distribution of brain iron accrual in adolescence: Evidence from cross-sectional and longitudinal analysis. Hum Brain Mapp 2019;40:1480-95. 10.1002/hbm.24461 PubMed DOI PMC

Hagemeier J, Dwyer MG, Bergsland N, Schweser F, Magnano CR, Heininen-Brown M, Ramasamy DP, Carl E, Kennedy C, Melia R, Polak P, Deistung A, Geurts JJG, Reichenbach JR, Zivadinov R. Effect of age on MRI phase behavior in the subcortical deep gray matter of healthy individuals. Am J Neuroradiol 2013;34:2144-51. 10.3174/ajnr.A3569 PubMed DOI PMC

Zhang Y, Wei H, Cronin MJ, He N, Yan F, Liu C. Longitudinal atlas for normative human brain development and aging over the lifespan using quantitative susceptibility mapping. NeuroImage 2018;171:176-89. 10.1016/j.neuroimage.2018.01.008 PubMed DOI PMC

Burgetova A, Dusek P, Vaneckova M, Horakova D, Langkammer C, Krasensky J, Sobisek L, Matras P, Masek M, Seidl Z. Thalamic Iron Differentiates Primary-Progressive and Relapsing-Remitting Multiple Sclerosis. Am J Neuroradiol 2017;38:1079-86. 10.3174/ajnr.A5166 PubMed DOI PMC

Steiger TK, Weiskopf N, Bunzeck N. Iron Level and Myelin Content in the Ventral Striatum Predict Memory Performance in the Aging Brain. J Neurosci 2016;36:3552-8. 10.1523/JNEUROSCI.3617-15.2016 PubMed DOI PMC

Branson HM. Normal Myelination: A Practical Pictorial Review. Neuroimaging Clin N Am 2013;23:183-95. 10.1016/j.nic.2012.12.001 PubMed DOI

Dezortova M, Lescinskij A, Dusek P, Herynek V, Acosta‐Cabronero J, Bruha R, Jiru F, Robinson SD, Hajek M. Multiparametric Quantitative Brain MRI in Neurological and Hepatic Forms of Wilson’s Disease. J Magn Reson Imaging 2020;51:1829-35. 10.1002/jmri.26984 PubMed DOI

Pudlac A, Burgetova A, Dusek P, Nytrova P, Vaneckova M, Horakova D, Krasensky J, Lambert L. Deep Gray Matter Iron Content in Neuromyelitis Optica and Multiple Sclerosis. Biomed Res Int 2020;2020:6492786. 10.1155/2020/6492786 PubMed DOI PMC

Schweser F, Hagemeier J, Dwyer MG, Bergsland N, Hametner S, Weinstock-Guttman B, Zivadinov R. Decreasing brain iron in multiple sclerosis: The difference between concentration and content in iron MRI. Hum Brain Mapp 2021;42:1463-74. 10.1002/hbm.25306 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...