Iron and Non-Iron-Related Characteristics of Multiple Sclerosis and Neuromyelitis Optica Lesions at 7T MRI
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
R01 NS029029
NINDS NIH HHS - United States
R01 NS076588
NINDS NIH HHS - United States
R37 NS029029
NINDS NIH HHS - United States
PubMed
27012298
PubMed Central
PMC4946971
DOI
10.3174/ajnr.a4729
PII: ajnr.A4729
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- dítě MeSH
- dospělí MeSH
- elektromagnetická pole MeSH
- kojenec MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mapování mozku MeSH
- mladiství MeSH
- mladý dospělý MeSH
- neuromyelitis optica diagnostické zobrazování metabolismus MeSH
- novorozenec MeSH
- počítačové zpracování obrazu MeSH
- předškolní dítě MeSH
- roztroušená skleróza diagnostické zobrazování metabolismus MeSH
- železo metabolismus MeSH
- zobrazování trojrozměrné MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- kojenec MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- novorozenec MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- železo MeSH
BACKGROUND AND PURPOSE: Characterization of iron deposition associated with demyelinating lesions of multiple sclerosis and neuromyelitis optica has not been well studied. Our aim was to investigate the potential of ultra-high-field MR imaging to distinguish MS from neuromyelitis optica and to characterize tissue injury associated with iron pathology within lesions. MATERIALS AND METHODS: Twenty-one patients with MS and 21 patients with neuromyelitis optica underwent 7T high-resolution 2D-gradient-echo-T2* and 3D-susceptibility-weighted imaging. An in-house-developed algorithm was used to reconstruct quantitative susceptibility mapping from SWI. Lesions were classified as "iron-laden" if they demonstrated hypointensity on gradient-echo-T2*-weighted images and/or SWI and hyperintensity on quantitative susceptibility mapping. Lesions were considered "non-iron-laden" if they were hyperintense on gradient-echo-T2* and isointense or hyperintense on quantitative susceptibility mapping. RESULTS: Of 21 patients with MS, 19 (90.5%) demonstrated at least 1 quantitative susceptibility mapping-hyperintense lesion, and 11/21 (52.4%) had iron-laden lesions. No quantitative susceptibility mapping-hyperintense or iron-laden lesions were observed in any patients with neuromyelitis optica. Iron-laden and non-iron-laden lesions could each be further characterized into 2 distinct patterns based on lesion signal and morphology on gradient-echo-T2*/SWI and quantitative susceptibility mapping. In MS, most lesions (n = 262, 75.9% of all lesions) were hyperintense on gradient-echo T2* and isointense on quantitative susceptibility mapping (pattern A), while a small minority (n = 26, 7.5% of all lesions) were hyperintense on both gradient-echo-T2* and quantitative susceptibility mapping (pattern B). Iron-laden lesions (n = 57, 16.5% of all lesions) were further classified as nodular (n = 22, 6.4%, pattern C) or ringlike (n = 35, 10.1%, pattern D). CONCLUSIONS: Ultra-high-field MR imaging may be useful in distinguishing MS from neuromyelitis optica. Different patterns related to iron and noniron pathology may provide in vivo insight into the pathophysiology of lesions in MS.
Department of Neurology New York University School of Medicine New York New York
Department of Radiology Wayne State University School of Medicine Detroit Michigan
Zobrazit více v PubMed
Lennon VA, Wingerchuk DM, Kryzer TJ, et al. . A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 2004;364:2106–12 10.1016/S0140-6736(04)17551-X PubMed DOI
Cheng C, Jiang Y, Chen X, et al. . Clinical, radiographic characteristics and immunomodulating changes in neuromyelitis optica with extensive brain lesions. BMC Neurol 2013;13:72 10.1186/1471-2377-13-72 PubMed DOI PMC
Sinnecker T, Mittelstaedt P, Dörr J, et al. . Multiple sclerosis lesions and irreversible brain tissue damage: a comparative ultrahigh-field strength magnetic resonance imaging study. Arch Neurol 2012;69:739–45 10.1001/archneurol.2011.2450 PubMed DOI
Ge Y, Zohrabian VM, Grossman RI. Seven-Tesla magnetic resonance imaging: new vision of microvascular abnormalities in multiple sclerosis. Arch Neurol 2008;65:812–16 PubMed PMC
Sinnecker T, Dörr J, Pfueller CF, et al. . Distinct lesion morphology at 7-T MRI differentiates neuromyelitis optica from multiple sclerosis. Neurology 2012;79:708–14 10.1212/WNL.0b013e3182648bc8 PubMed DOI
Kister I, Herbert J, Zhou Y, et al. . Ultrahigh-field MR (7 T) imaging of brain lesions in neuromyelitis optica. Mult Scler Int 2013;2013:398259 10.1155/2013/398259 PubMed DOI PMC
Chen X, Zeng C, Luo T, et al. . Iron deposition of the deep grey matter in patients with multiple sclerosis and neuromyelitis optica: a control quantitative study by 3D-enhanced susceptibility-weighted angiography (ESWAN). Eur J Radiol 2012;81:e633–39 10.1016/j.ejrad.2012.01.003 PubMed DOI
LeVine SM, Chakrabarty A. The role of iron in the pathogenesis of experimental allergic encephalomyelitis and multiple sclerosis. Ann N Y Acad Sci 2004;1012:252–66 10.1196/annals.1306.021 PubMed DOI
Haacke EM, Makki M, Ge Y, et al. . Characterizing iron deposition in multiple sclerosis lesions using susceptibility weighted imaging. J Magn Reson Imaging 2009;29:537–44 10.1002/jmri.21676 PubMed DOI PMC
Wuerfel J, Sinnecker T, Ringelstein EB, et al. . Lesion morphology at 7 Tesla MRI differentiates Susac syndrome from multiple sclerosis. Mult Scler 2012;18:1592–99 10.1177/1352458512441270 PubMed DOI
Bagnato F, Hametner S, Yao B, et al. . Tracking iron in multiple sclerosis: a combined imaging and histopathological study at 7 Tesla. Brain 2011;134:3602–15 10.1093/brain/awr278 PubMed DOI PMC
Mehta V, Pei W, Yang G, et al. . Iron is a sensitive biomarker for inflammation in multiple sclerosis lesions. PLoS One 2013;8:e57573 10.1371/journal.pone.0057573 PubMed DOI PMC
Hogarth P. Neurodegeneration with brain iron accumulation: diagnosis and management. J Mov Disord 2015;8:1–13 10.14802/jmd.14034 PubMed DOI PMC
Williams R, Buchheit CL, Berman NE, et al. . Pathogenic implications of iron accumulation in multiple sclerosis. J Neurochem 2012;120:7–25 10.1111/j.1471-4159.2011.07536.x PubMed DOI PMC
Adams CW. Perivascular iron deposition and other vascular damage in multiple sclerosis. J Neurol Neurosurg Psychiatry 1988;51(2):260–65 10.1136/jnnp.51.2.260 PubMed DOI PMC
Stankiewicz JM. Iron and multiple sclerosis. Neurobiol Aging 2014;35(suppl 2):S51–58 10.1016/j.neurobiolaging.2014.03.039 PubMed DOI
Li X, Harrison DM, Liu H, et al. . Magnetic susceptibility contrast variations in multiple sclerosis lesions. J Magn Reson Imaging 2016;43:463–73 10.1002/jmri.24976 PubMed DOI PMC
Chen W, Gauthier SA, Gupta A, et al. . Quantitative susceptibility mapping of multiple sclerosis lesions at various ages. Radiology 2014;271:183–92 10.1148/radiol.13130353 PubMed DOI PMC
Wisnieff C, Ramanan S, Olesik J, et al. . Quantitative susceptibility mapping (QSM) of white matter multiple sclerosis lesions: interpreting positive susceptibility and the presence of iron. Magn Reson Med 2015;74:564–70 10.1002/mrm.25420 PubMed DOI PMC
Eskreis-Winkler S, Deh K, Gupta A, et al. . Multiple sclerosis lesion geometry in quantitative susceptibility mapping (QSM) and phase imaging. J Magn Reson Imaging 2015;42:224–29 10.1002/jmri.24745 PubMed DOI PMC
Wingerchuk DM, Weinshenker BG. Neuromyelitis optica: clinical predictors of a relapsing course and survival. Neurology 2003;60:848–53 10.1212/01.WNL.0000049912.02954.2C PubMed DOI
Polman CH, Reingold SC, Banwell B, et al. . Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 2011;69:292–302 10.1002/ana.22366 PubMed DOI PMC
Haacke EM, Tang J, Neelavalli J, et al. . Susceptibility mapping as a means to visualize veins and quantify oxygen saturation. J Magn Reson Imaging 2010;32:663–76 10.1002/jmri.22276 PubMed DOI PMC
Liu S, Neelavalli J, Cheng YC, et al. . Quantitative susceptibility mapping of small objects using volume constraints. Magn Reson Med 2013;69:716–23 10.1002/mrm.24305 PubMed DOI PMC
Mealy MA, Wingerchuk DM, Greenberg BM, et al. . Epidemiology of neuromyelitis optica in the United States: a multicenter analysis. Arch Neurol 2012;69:1176–80 10.1001/archneurol.2012.314 PubMed DOI
Pitt D, Boster A, Pei W, et al. . Imaging cortical lesions in multiple sclerosis with ultra-high-field magnetic resonance imaging. Arch Neurol 2010;67:812–18 10.1001/archneurol.2010.148 PubMed DOI
Walsh AJ, Lebel RM, Eissa A, et al. . Multiple sclerosis: validation of MR imaging for quantification and detection of iron. Radiology 2013;267:531–42 10.1148/radiol.12120863 PubMed DOI
Stüber C, Morawski M, Schäfer A, et al. . Myelin and iron concentration in the human brain: a quantitative study of MRI contrast. Neuroimage 2014;93(pt 1):95–106 10.1016/j.neuroimage.2014.02.026 PubMed DOI
Liu T, Surapaneni K, Lou M, et al. . Cerebral microbleeds: burden assessment by using quantitative susceptibility mapping. Radiology 2012;262:269–78 10.1148/radiol.11110251 PubMed DOI PMC
Doshi H, Wiseman N, Liu J, et al. . Cerebral hemodynamic changes of mild traumatic brain injury at the acute stage. PLoS One 2015;10:e0118061 10.1371/journal.pone.0118061 PubMed DOI PMC
Löbel U, Sedlacik J, Sabin ND, et al. . Three-dimensional susceptibility-weighted imaging and two-dimensional T2*-weighted gradient-echo imaging of intratumoral hemorrhages in pediatric diffuse intrinsic pontine glioma. Neuroradiology 2010;52:1167–77 10.1007/s00234-010-0771-9 PubMed DOI PMC
Soman S, Holdsworth SJ, Barnes PD, et al. . Improved T2* imaging without increase in scan time: SWI processing of 2D gradient echo. AJNR Am J Neuroradiol 2013;34:2092–97 10.3174/ajnr.A3595 PubMed DOI PMC
Cabrera-Gomez JA, Kister I. Conventional brain MRI in neuromyelitis optica. Eur J Neurol 2012;19:812–19 10.1111/j.1468-1331.2011.03565.x PubMed DOI
Cerebral Iron Deposition in Neurodegeneration
Deep Gray Matter Iron Content in Neuromyelitis Optica and Multiple Sclerosis