Determination of Renal Distribution of Zinc, Copper, Iron, and Platinum in Mouse Kidney Using LA-ICP-MS
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34746306
PubMed Central
PMC8564192
DOI
10.1155/2021/6800294
Knihovny.cz E-zdroje
- MeSH
- buňky PC-3 MeSH
- cisplatina škodlivé účinky farmakologie toxicita MeSH
- hmotnostní spektrometrie metody MeSH
- ledviny účinky léků metabolismus patologie MeSH
- lidé MeSH
- měď analýza MeSH
- myši nahé MeSH
- myši MeSH
- platina analýza MeSH
- spektrální analýza metody MeSH
- železo analýza MeSH
- zinek analýza MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cisplatina MeSH
- měď MeSH
- platina MeSH
- železo MeSH
- zinek MeSH
The main dose-limiting side effect of cisplatin is nephrotoxicity. The utilization of cisplatin is an issue of balancing tumour toxicity versus platinum-induced nephrotoxicity. In this study, we focused on intraorgan distribution of common essential trace elements zinc, copper, and iron in healthy mouse kidneys and distribution of platinum after cisplatin treatment. Renal distribution in 12 nontreated Nu-Nu mice (males) was assessed by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Furthermore, 9 Nu-Nu mice were treated with cisplatin. The order of elements concentration in kidneys was as follows: Fe > Zn > Cu. All three metals showed the higher concentrations at the cortex and medulla (28.60, 3.35, and 93.83 μg/g for Zn, Cu, and Fe, respectively) and lower concentration at the pelvis and the urinary tract (20.20, 1.93, and 62.48 μg/g for Zn, Cu, and Fe, respectively). No statistically significant difference between cortex and medulla was observed for these elements. After platinum treatment, the concentration of platinum in kidneys was enhanced more than 60-times, p < 0.001. Platinum significantly showed the highest accumulation in cortex (2.11 μg/g) with a gradient distribution. Platinum was less accumulated in medulla and pelvis than in cortex, and the lowest accumulation occurred in the urinary tract (1.13 μg/g). Image processing has been successfully utilized to colocalize metal distribution using LA-ICP-MS and histological samples images.
Zobrazit více v PubMed
Pena M. M. O., Lee J., Thiele D. J. A delicate balance: homeostatic control of copper uptake and distribution. Journal of Nutrition . 1999;129(7):1251–1260. doi: 10.1093/jn/129.7.1251. PubMed DOI
Safirstein R., Miller P., Guttenplan J. B. Uptake and metabolism of cisplatin by rat kidney. Kidney International . 1984;25(5):753–758. doi: 10.1038/ki.1984.86. PubMed DOI
Sabbioni E., Fortaner S., Manenti S., et al. The metallobiochemistry of ultratrace levels of platinum group elements in the rat. Metallomics . 2015;7(2):267–276. doi: 10.1039/C4MT00240G. PubMed DOI
Perazella M. A. Renal vulnerability to drug toxicity. Clinical Journal of the American Society of Nephrology . 2009;4(7):1275–1283. doi: 10.2215/CJN.02050309. PubMed DOI
Barbier O., Jacquillet G., Tauc M., Cougnon M., Poujeol P. Effect of heavy metals on, and handling by, the kidney. Nephron. Physiology . 2005;99(4):p105–110. doi: 10.1159/000083981. PubMed DOI
Dasari S., Tchounwou P. B. Cisplatin in cancer therapy: molecular mechanisms of action. European Journal of Pharmacology . 2014;740:364–378. doi: 10.1016/j.ejphar.2014.07.025. PubMed DOI PMC
Arany I., Safirstein R. L. Cisplatin nephrotoxicity. Seminars in Nephrology . 2003;23(5):460–464. doi: 10.1016/S0270-9295(03)00089-5. PubMed DOI
Volarevic V., Djokovic B., Jankovic M. G., et al. Molecular mechanisms of cisplatin-induced nephrotoxicity: a balance on the knife edge between renoprotection and tumor toxicity. Journal of Biomedical Science . 2019;26(1):p. 25. doi: 10.1186/s12929-019-0518-9. PubMed DOI PMC
Zhang P., Chen J. Q., Huang W. Q., et al. Renal medulla is more sensitive to cisplatin than cortex revealed by untargeted mass spectrometry-based metabolomics in rats. Scientific Reports . 2017;7(1) doi: 10.1038/srep44804. PubMed DOI PMC
Niehoff A. C., Grünebaum J., Moosmann A., et al. Quantitative bioimaging of platinum group elements in tumor spheroids. Analytica Chimica Acta . 2016;938:106–113. doi: 10.1016/j.aca.2016.07.021. PubMed DOI
Breglio A. M., Rusheen A. E., Shide E. D., et al. Cisplatin is retained in the cochlea indefinitely following chemotherapy. Nature Communications . 2017;8(1):p. 1654. doi: 10.1038/s41467-017-01837-1. PubMed DOI PMC
Sullivan M. P., Morrow S. J., Goldstone D. C., Hartinger C. G. Gel electrophoresis in combination with laser ablation–inductively coupled plasma mass spectrometry to quantify the interaction of cisplatin with human serum albumin. Electrophoresis . 2019;40(18-19):2329–2335. doi: 10.1002/elps.201900070. PubMed DOI
Vaculovic T., Warchilova T., Cadkova Z., et al. Influence of laser ablation parameters on trueness of imaging. Applied Surface Science . 2015;351:296–302. doi: 10.1016/j.apsusc.2015.05.136. DOI
Anyz J., Vyslouzilova L., Vaculovic T., et al. Spatial mapping of metals in tissue-sections using combination of mass-spectrometry and histology through image registration. Scientific Reports . 2017;7(1) doi: 10.1038/srep40169. PubMed DOI PMC
Rahunathan S., Stredney D., Schmalbrock P., Clymer B. D. Image registration using rigid registration and maximization of mutual information, MMVR13. The 13th Annual Medicine Meets Virtual Reality Conference; 2005; Long Beach, CA.
Goshtasby A. Image registration by local approximation methods. Image and Vision Computing . 1988;6(4):255–261. doi: 10.1016/0262-8856(88)90016-9. DOI
Pabla N., Murphy R. F., Liu K., Dong Z. The copper transporter Ctr1 contributes to cisplatin uptake by renal tubular cells during cisplatin nephrotoxicity. American Journal of Physiology - Renal Physiology . 2009;296(3):F505–F511. doi: 10.1152/ajprenal.90545.2008. PubMed DOI PMC
Smith D. J., Jaggi M., Zhang W., et al. Metallothioneins and resistance to cisplatin and radiation in prostate cancer. Urology . 2006;67(6):1341–1347. doi: 10.1016/j.urology.2005.12.032. PubMed DOI
Shih C.-T., Shiu Y.-L., Chen C.-A., Lin H.-Y., Huang Y.-L., Lin C.-C. Changes in levels of copper, iron, zinc, and selenium in patients at different stages of chronic kidney disease. Genomic Medicine, Biomarkers, and Health Sciences . 2012;4(4):128–130. doi: 10.1016/j.gmbhs.2013.03.001. DOI
Kuo Y. M., Gybina A. A., Pyatskowit J. W., Gitschier J., Prohaska J. R. Copper transport protein (Ctr1) levels in mice are tissue specific and dependent on copper status. The Journal of Nutrition . 2006;136(1):21–26. doi: 10.1093/jn/136.1.21. PubMed DOI PMC
Livingston H. D. Measurement and distribution of zinc, cadmium, and mercury in human kidney tissue. Clinical Chemistry . 1972;18(1):67–72. doi: 10.1093/clinchem/18.1.67. PubMed DOI
Legin A. A., Theiner S., Schintlmeister A., et al. Multi-scale imaging of anticancer platinum(IV) compounds in murine tumor and kidney. Chemical Science . 2016;7(5):3052–3061. doi: 10.1039/C5SC04383B. PubMed DOI PMC
Theiner S., Kornauth C., Varbanov H. P., et al. Tumor microenvironment in focus: LA-ICP-MS bioimaging of a preclinical tumor model upon treatment with platinum(IV)-based anticancer agents. Metallomics . 2015;7(8):1256–1264. doi: 10.1039/C5MT00028A. PubMed DOI PMC
Egger A. E., Theiner S., Kornauth C., et al. Quantitative bioimaging by LA-ICP-MS: a methodological study on the distribution of Pt and Ru in viscera originating from cisplatin- and KP1339-treated mice. Metallomics . 2014;6(9):1616–1625. doi: 10.1039/C4MT00072B. PubMed DOI
Reifschneider O., Wehe C. A., Raj I., et al. Quantitative bioimaging of platinum in polymer embedded mouse organs using laser ablation ICP-MS. Metallomics . 2013;5(10):1440–1447. doi: 10.1039/c3mt00147d. PubMed DOI
Kuhlmann M. K., Burkhardt G., Kohler H. Insights into potential cellular mechanisms of cisplatin nephrotoxicity and their clinical application. Nephrology, Dialysis, Transplantation . 1997;12(12):2478–2480. doi: 10.1093/ndt/12.12.2478. PubMed DOI
Dobyan D. C., Levi J., Jacobs C., Kosek J., Weiner M. W. Mechanism of cis-platinum nephrotoxicity: II. Morphologic observations. Journal of Pharmacology and Experimental Therapeutics . 1980;213(3):551–556. PubMed
Wei Q., Dong G., Franklin J., Dong Z. The pathological role of Bax in cisplatin nephrotoxicity. Kidney International . 2007;72(1):53–62. doi: 10.1038/sj.ki.5002256. PubMed DOI
Urakami Y., Nakamura N., Takahashi K., et al. Gender differences in expression of organic cation transporter OCT2 in rat kidney. FEBS Letters . 1999;461(3):339–342. doi: 10.1016/S0014-5793(99)01491-X. PubMed DOI
Ciarimboli G. Membrane transporters as mediators of cisplatin side-effects. Anticancer Research . 2014;34(1):547–550. PubMed
Burger H., Loos W. J., Eechoute K., Verweij J., Mathijssen R. H. J., Wiemer E. A. C. Drug transporters of platinum-based anticancer agents and their clinical significance. Drug Resistance Updates . 2011;14(1):22–34. doi: 10.1016/j.drup.2010.12.002. PubMed DOI