Effects of Leishmania major infection on the gut microbiome of resistant and susceptible mice
Jazyk angličtina Země Německo Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SGS18/202/OHK4/3T/17
České Vysoké Učení Technické v Praze
SGS: SGS15/173/OHK4/2T/17
České Vysoké Učení Technické v Praze
PubMed
38240984
PubMed Central
PMC10799115
DOI
10.1007/s00253-024-13002-y
PII: 10.1007/s00253-024-13002-y
Knihovny.cz E-zdroje
- Klíčová slova
- Cutaneous leishmaniasis, Gut microbiota, Host-parasite interaction, Leishmania major infection, Microbiome analysis, Mouse models,
- MeSH
- biologické markery MeSH
- Leishmania major * MeSH
- leishmanióza kožní * MeSH
- lidé MeSH
- myši MeSH
- náchylnost k nemoci mikrobiologie MeSH
- střevní mikroflóra * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery MeSH
Cutaneous leishmaniasis, a parasitic disease caused by Leishmania major, is a widely frequent form in humans. To explore the importance of the host gut microbiota and to investigate its changes during L. major infection, two different groups of mouse models were assessed. The microbiome of two parts of the host gut-ileum and colon-from infected and non-infected mice were characterised by sequencing of 16S rDNA using an Ion Torrent PGM platform. Microbiome analysis was performed to reveal changes related to the susceptibility and the genetics of mice strains in two different gut compartments and to compare the results between infected and non-infected mice. The results showed that Leishmania infection affects mainly the ileum microbiota, whereas the colon bacterial community was more stable. Different biomarkers were determined in the gut microbiota of infected resistant mice and infected susceptible mice using LEfSe analysis. Lactobacillaceae was associated with resistance in the colon microbiota of all resistant mice strains infected with L. major. Genes related to xenobiotic biodegradation and metabolism and amino acid metabolism were primarily enriched in the small intestine microbiome of resistant strains, while genes associated with carbohydrate metabolism and glycan biosynthesis and metabolism were most abundant in the gut microbiome of the infected susceptible mice. These results should improve our understanding of host-parasite interaction and provide important insights into the effect of leishmaniasis on the gut microbiota. Also, this study highlights the role of host genetic variation in shaping the diversity and composition of the gut microbiome. KEY POINTS: • Leishmaniasis may affect mainly the ileum microbiota while colon microbiota was more stable. • Biomarkers related with resistance or susceptibility were determined in the gut microbiota of mice. • Several pathways were predicted to be upregulated in the gut microbiota of resistant or susceptible mice.
Zobrazit více v PubMed
Alemayehu B, Alemayehu M (2017) Leishmaniasis: a review on parasite, vector and reservoir host. Heal Sci J 11:1–6. 10.21767/1791-809x.1000519
Allen JE (2016) Microbiota, parasites and immunity. Parasite Immunol 38:3–4. 10.1111/pim.12298 PubMed
Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, Jannin J, den Boer M (2012) WHO Leishmaniasis worldwide and global estimates of its incidence. PLoS One 7:e35671. 10.1371/journal.pone.0035671 PubMed PMC
Anderson MJ (2017) Permutational multivariate analysis of variance (PERMANOVA). In: Balakrishnan N, Colton T, Everitt B, Piegorsch W, Ruggeri F and Teugels JL (ed) StatsRef: Statistics Reference Online. Wiley, New York. 10.1002/9781118445112.stat07841
Bhattacharjee S, Kalbfuss N, Prazeres da Costa C (2017) Parasites, microbiota and metabolic disease. Parasite Immunol 39. 10.1111/pim.12390 PubMed
Bisanz J (2018) Qiime2R: Importing QIIME2 artifacts and associated data into R sessions. San Francisco, CA:GitHub. https://github.com/jbisanz/qiime2R
Björkholm B, Bok CM, Lundin A, Rafter J, Hibberd ML, Pettersson S (2009) Intestinal microbiota regulate xenobiotic metabolism in the liver. PLoS One 4:e6958. 10.1371/journal.pone.0006958 PubMed PMC
Bodhale NP, Pal S, Kumar S, Chattopadhyay D, Saha B, Chattopadhyay N, Bhattacharyya M (2018) Inbred mouse strains differentially susceptible to Leishmania donovani infection differ in their immune cell metabolism. Cytokine 112:12–15. 10.1016/j.cyto.2018.06.003 PubMed
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, Da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu YX, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson MS 2nd, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, van der Hooft JJJ, Vargas F, Vázquez-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Zhu Q, Knight R, Caporaso JG (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. 10.1038/s41587-019-0209-9 PubMed PMC
Borbón TY, Scorza BM, Clay GM, Nobre de Queiroz FL, Sariol AJ, Bowen JL, Chen Y, Zhanbolat B, Parlet CP, Valadares DG, Cassel SL, Nauseef WM, Horswill AR, Sutterwala FS, Wilson ME (2019) Coinfection with Leishmania major and Staphylococcus aureus enhances the pathologic responses to both microbes through a pathway involving IL-17A. PLoS Negl Trop Dis 13:1–27. 10.1371/journal.pntd.0007247 PubMed PMC
Bubier JA, Chesler EJ, Weinstock GM (2021) Host genetic control of gut microbiome composition. Mamm Genome 32:263–281. 10.1007/s00335-021-09884-2 PubMed PMC
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. 10.1038/nmeth.3869 PubMed PMC
Campolina TB, Villegas LEM, Monteiro CC, Pimenta PFP, Secundino NFC (2020) Tripartite interactions: Leishmania, microbiota and Lutzomyia longipalpis. PLoS Negl Trop Dis 14:1–18. 10.1371/journal.pntd.0008666 PubMed PMC
Cavallone IN, de Lima SKS, Oliveira KS, Passero LFD, Laurenti MD, Jesus JA, Marinsek GP, Chucri TM, Mari RB (2022) Histological and neuronal changes in the duodenum of hamsters infected with Leishmania (Leishmania) infantum. Exp Parasitol 239:108315. 10.1016/j.exppara.2022.108315 PubMed
Chang CS, Kao CY (2019) Current understanding of the gut microbiota shaping mechanisms. J Biomed Sci 26:59. 10.1186/s12929-019-0554-5 PubMed PMC
Chattopadhyay A, Mittal S, Gupta K, Dhir V, Jain S (2020) Intestinal leishmaniasis. Clin Microbiol Infect 10:1345–1346. 10.1016/j.cmi.2020.05.003 PubMed
Collins SL, Patterson AD (2020) The gut microbiome: an orchestrator of xenobiotic metabolism. Acta Pharm Sin B 10:19–32. 10.1016/j.apsb.2019.12.001 PubMed PMC
Coombs GH, Roland Wolf C, Morrison VM, Craft JA (1990) Changes in hepatic xenobiotic-metabolising enzymes in mouse liver following infection with Leishmania donovani. Mol Biochem Parasitol 41:17–24. 10.1016/0166-6851(90)90092-Z PubMed
de Lima SKS, Cavallone IN, Oliveira KS, Passero LFD, Laurenti MD, Jesus JA, Marinsek GP, Chucri TM, Mari RdB (2021) Infection with Leishmania (Leishmania) infantum changes the morphology and myentericn of the jejunum of golden hamsters. Parasitologia 1:225–237. 10.3390/parasitologia1040024
Dedet JP (2002) Current status of epidemiology of leishmaniases. In: Farrell JP (ed) Leishmania: World Class Parasites, Springer, Boston, MA 1–10. 10.1007/978-1-4615-0955-4_1
Demant P, Hart AA (1986) Recombinant congenic strains - a new tool for analyzing genetic traits determined by more than one gene. Immunogenetics 24:416–422 PubMed
Desjeux P (1996) Leishmaniasis. Public health aspects and control. Clin Dermatol 14:417–423. 10.1016/0738-081x(96)00057-0 PubMed
Ding RX, Goh WR, Wu RN, Yue XQ, Luo X, Khine WWT, Wu JR, Lee YK (2019) Revisit gut microbiota and its impact on human health and disease. J Food Drug Anal 27:623–631. 10.1016/j.jfda.2018.12.012 PubMed PMC
Dostálová A, Volf P (2012) Leishmania development in sand flies: parasite-vector interactions overview. Parasit Vectors 5:1–12. 10.1186/1756-3305-5-276 PubMed PMC
Ferreira C, Mesquita I, Barbosa AM, Osório NS, Torrado E, Beauparlant CJ, Droit A, Cunha C, Carvalho A, Saha B, Estaquier J, Silvestre R (2020) Glutamine supplementation improves the efficacy of miltefosine treatment for visceral leishmaniasis. PLoS Negl Trop Dis 14:1–17. 10.1371/journal.pntd.0008125 PubMed PMC
Fraihi W, Fares W, Perrin P, Dorkeld F, Sereno D, Barhoumi W, Sbissi I, Cherni S, Chelbi I, Durvasula R, Ramalho-Ortigao M, Gtari M, Zhioua E (2017) An integrated overview of the midgut bacterial flora composition of Phlebotomus perniciosus, a vector of zoonotic visceral leishmaniasis in the Western Mediterranean Basin. PLoS Negl Trop Dis 11:1–22. 10.1371/journal.pntd.0005484 PubMed PMC
Gimblet C, Meisel JS, Loesche MA, Cole SD, Horwinski J, Novais FO, Misic AM, Bradley CW, Beiting DP, Rankin SC, Carvalho LP, Carvalho EM, Scott P, Grice EA (2017) Cutaneous leishmaniasis induces a transmissible dysbiotic skin microbiota that promotes skin inflammation. Cell Host Microbe 22:13–24. 10.1016/j.chom.2017.06.006 PubMed PMC
Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, Beaumont M, Van Treuren W, Knight R, Bell JT, Spector TD, Clark AG, Ley RE (2014) Human genetics shape the gut microbiome. Cell 159:789–799. 10.1016/j.cell.2014.09.053 PubMed PMC
Goodrich JK, Davenport ER, Beaumont M, Jackson MA, Knight R, Ober C, Spector TD, Bell JT, Clark AG, Ley RE (2016) Genetic determinants of the gut microbiome in UK twins. Cell Host Microbe 19:731–743. 10.1016/j.chom.2016.04.017 PubMed PMC
Grekov I, Svobodová M, Nohýnková E, Lipoldová M (2011) Preparation of highly infective Leishmania promastigotes by cultivation on SNB-9 biphasic medium. J Microbiol Methods 87:273–277. 10.1016/j.mimet.2011.08.012 PubMed
Gu S, Chen D, Zhang JN, Lv X, Wang K, Duan LP, Nie Y, Wu XL (2013) Bacterial community mapping of the mouse gastrointestinal tract. PLoS One 8:e74957. 10.1371/journal.pone.0074957 PubMed PMC
Gunathilaka N, Perera H, Wijerathna T, Rodrigo W, Wijegunawardana NDAD (2020) The diversity of midgut bacteria among wild-caught Phlebotomus argentipes (Psychodidae: Phlebotominae), the vector of leishmaniasis in Sri Lanka. Biomed Res Int 19:1–10. 10.1155/2020/5458063 PubMed PMC
Han X, Shao H, Wang Y, Hu A, Chen R, Chen Q (2020) Composition of the bacterial community in the gastrointestinal tract of Kunming mice. Electron J Biotechnol 43:16–22. 10.1016/j.ejbt.2019.11.003
Julia V, McSorley SS, Malherbe L, Breittmayer JP, Girard-Pipau F, Beck A, Glaichenhaus N (2000) Priming by microbial antigens from the intestinal flora determines the ability of CD4 + T cells to rapidly secrete IL-4 in BALB/c mice infected with Leishmania major. J Immunol 165:5637–5645. 10.4049/jimmunol.165.10.5637 PubMed
Kamada N, Seo SU, Chen GY, Núñez G (2013) Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol 13:321–335. 10.1038/nri3430 PubMed
Karakuş M, Karabey B, Orçun Kalkan Ş, Özdemir G, Oǧuz G, Erişöz Kasap Ö, Alten B, Töz S, Özbel Y (2017) Midgut bacterial diversity of wild populations of Phlebotomus (P.) papatasi, the vector of zoonotic cutaneous leishmaniasis (ZCL) in Turkey. Sci Rep 7:1–7. 10.1038/s41598-017-13948-2 PubMed PMC
Karimian F, Vatandoost H, Rassi Y, Maleki-Ravasan N, Mohebali M, Shirazi MH, Koosha M, Choubdar N, Oshaghi MA (2019) Aerobic midgut microbiota of sand fly vectors of zoonotic visceral leishmaniasis from northern Iran, a step toward finding potential paratransgenic candidates. Parasit Vectors 12:10. 10.1186/s13071-018-3273-y PubMed PMC
Kelly PH, Bahr SM, Serafim TD, Ajami NJ, Petrosino JF, Meneses C, Kirby JR, Valenzuela JG, Kamhawi S, Wilson ME (2017) The gut microbiome of the vector Lutzomyia longipalpis is essential for survival of Leishmania infantum. mBio 8:1–12. 10.1128/mBio.01121-16 PubMed PMC
Krayem I, Sohrabi Y, Javorková E, Volkova V, Strnad H, Havelková H, Vojtíšková J, Aidarova A, Holáň V, Demant P, Lipoldová M (2022) Genetic influence on frequencies of myeloid-derived cell subpopulations in mouse. Front Immunol 12:760881. 10.3389/fimmu.2021.760881 PubMed PMC
Lamour SD, Veselkov KA, Posma JM, Giraud E, Rogers ME, Croft S, Marchesi JR, Holmes E, Seifert K, Saric J (2015) Metabolic, immune, and gut microbial signals mount a systems response to Leishmania major infection. J Proteome Res 14:318–329. 10.1021/pr5008202 PubMed
Lanchote VL, Almeida R, Barral A, Barral-Netto M, Marques MP, Moraes NV, da Silva AM, Souza TM, Suarez-Kurtz G (2015) Impact of visceral leishmaniasis and curative chemotherapy on cytochrome P450 activity in Brazilian patients. Br J Clin Pharmacol 80:1160–1168. 10.1111/bcp.12677 PubMed PMC
Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Huttenhower C (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821. 10.1038/nbt.2676 PubMed PMC
Lappan R, Classon C, Kumar S, Singh OP, De Almeida RV, Chakravarty J, Kumari P, Kansal S, Sundar S, Blackwell JM (2019) Meta-taxonomic analysis of prokaryotic and eukaryotic gut flora in stool samples from visceral leishmaniasis cases and endemic controls in Bihar State India. PLoS Negl Trop Dis 13:1–28. 10.1371/journal.pntd.0007444 PubMed PMC
Lewis MD, Paun A, Romano A, Langston H, Langner CA, Moore IN, Bock KW, Francisco AF, Brenchley JM, Sacks DL (2020) Fatal progression of experimental visceral leishmaniasis is associated with intestinal parasitism and secondary infection by commensal bacteria, and is delayed by antibiotic prophylaxis. PLoS Pathog 16(4):e1008456. 10.1371/journal.ppat.1008456 PubMed PMC
Li CY, Lee S, Cade S, Kuo LJ, Schultz IR, Bhatt DK, Prasad B, Bammler TK, Cui JY (2017) Novel interactions between gut microbiome and host drug-processing genes modify the hepatic metabolism of the environmental chemicals polybrominated diphenyl ethers. Drug Metab Dispos 45:1197–1214. 10.1124/dmd.117.077024 PubMed PMC
Lipoldová M, Demant P (2006) Genetic susceptibility to infectious disease: lessons from mouse models of leishmaniasis. Nat Rev Genet 7:294–305. 10.1038/nrg1832 PubMed
Lipoldová M, Svobodová M, Krulová M, Havelková H, Badalová J, Nohýnková E, Holán V, Hart AA, Volf P, Demant P (2000) Susceptibility to Leishmania major infection in mice: multiple loci and heterogeneity of immunopathological phenotypes. Genes Immun 1:200–206. 10.1038/sj.gene.6363660 PubMed
Lipoldová M, Svobodová M, Havelková H, Krulová M, Badalová J, Nohýnková E, Hart AA, Schlegel D, Volf P, Demant P (2002) Mouse genetic model for clinical and immunological heterogeneity of leishmaniasis. Immunogenetics 54:174–183. 10.1007/s00251-002-0439-7 PubMed
Lopes MEM, Carneiro MBH, dos Santos LM, Vieira LQ (2016) Indigenous microbiota and leishmaniasis. Parasite Immunol 38:37–44. 10.1111/pim.12279 PubMed
Lopes ME, dos Santos LM, Sacks D, Vieira LQ, Carneiro MB (2021) Resistance against Leishmania major infection depends on microbiota guided macrophage activation. Front Immunol 12:730437. 10.3389/fimmu.2021.730437 PubMed PMC
Martinez-Guryn K, Leone V, Chang EB (2019) Regional diversity of the gastrointestinal microbiome. Cell Host Microbe 26:314–324. 10.1016/j.chom.2019.08.011 PubMed PMC
Martins VD, Silva FC, Caixeta F, Carneiro MB, Goes GR, Torres L, Barbosa SC, Vaz L, Paiva NC, Carneiro CM, Vieira LQ, Faria AMC, Maioli TU (2020) Obesity impairs resistance to Leishmania major infection in C57BL/6 mice. PLoS Negl Trop Dis 14:1–20. 10.1371/journal.pntd.0006596 PubMed PMC
Mekadim C, Skalnikova HK, Cizkova J, Cizkova V, Palanova A, Horak V, Mrazek J (2022) Dysbiosis of skin microbiome and gut microbiome in melanoma progression. BMC Microbiol 22:63. 10.1186/s12866-022-02458-5 PubMed PMC
Milani C, Hevia A, Foroni E, Duranti S, Turroni F, Lugli GA, Sanchez B, Martín R, Gueimonde M, van Sinderen D, Margolles A, Ventura M (2013) Assessing the fecal microbiota: an optimized Ion Torrent 16S rRNA gene-based analysis protocol. PLoS One 8:e68739. 10.1371/journal.pone.0068739 PubMed PMC
Misra P, Singh S (2019) Site specific microbiome of Leishmania parasite and its cross-talk with immune milieu. Immunol Lett 216:79–88. 10.1016/j.imlet.2019.10.004 PubMed
Monteiro CC, Villegas LEM, Campolina TB, Pires ACMHA, Miranda JC, Pimenta PFP, Secundino NFC (2016) Bacterial diversity of the American sand fly Lutzomyia intermedia using high-throughput metagenomic sequencing. Parasit Vectors 9:1–6. 10.1186/s13071-016-1767-z PubMed PMC
Monteiro CC, Inbar E, Ghosh K, Merkhofer R, Lawyer P, Paun A, Smelkinson M, Secundino N, Lewis M, Erram D, Zurek L, Sacks D (2017) The midgut microbiota plays an essential role in sand fly vector competence for Leishmania major. Cell Microbiol 19:1–20. 10.1111/cmi.12755 PubMed PMC
Naik S, Bouladoux N, Wilhelm C, Molloy MJ, Salcedo R, Kastenmuller W, Deming C, Quinones M, Koo L, Conlan S, Spencer S, Hall JA, Dzutsev A, Kong H, Campbell DJ, Trinchieri G, Segre JA, Belkaid Y (2012) Compartmentalized control of skin immunity by resident commensals. Science 337:1115–1119. 10.1126/science.1225152 PubMed PMC
Oliveira MR, Tafuri WL, Nicoli JR, Vieira EC, Melo MN, Vieira LQ (1999) Influence of microbiota in experimental cutaneous leishmaniasis in Swiss mice. Rev Inst Med Trop Sao Paulo 41:87–94. 10.1590/s0036-46651999000200005 PubMed
Oliveira MR, Tafuri WL, Afonso LC, Oliveira MA, Nicoli JR, Vieira EC, Scott P, Melo MN, Vieira LQ (2005) Germ-free mice produce high levels of interferon-gamma in response to infection with Leishmania major but fail to heal lesions. Parasitology 131:477–488. 10.1017/S0031182005008073 PubMed
Org E, Lusis AJ (2018) Using the natural variation of mouse populations to understand host-gut microbiome interactions. Drug Discov Today Dis Models 28:61–71. 10.1016/j.ddmod.2019.08.003 PubMed PMC
Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30:3123–3124. 10.1093/bioinformatics/btu494 PubMed PMC
Partida-Rodríguez O, Serrano-Vázquez A, Nieves-Ramírez ME, Moran P, Rojas L, Portillo T, González E, Hernández E, Finlay BB, Ximenez C (2017) Human intestinal microbiota: interaction between parasites and the host immune response. Arch Med Res 48:690–700. 10.1016/j.arcmed.2017.11.015 PubMed
Passos FC, Gois MB, Sousa AD, de Marinho AIL, Corvo L, Soto M, Barral-Netto M, Barral A, Baccan GC (2020) Investigating associations between intestinal alterations and parasite load according to Bifidobacterium spp. and Lactobacillus spp. abundance in the gut microbiota of hamsters infected by Leishmania infantum. Mem Inst Oswaldo Cruz 115:e200377. 10.1590/0074-02760200377 PubMed PMC
Rabhi I, Rabhi S, Ben-Othman R, Rasche A, Daskalaki A, Trentin B, Piquemal D, Regnault B, Descoteaux A, Guizani-Tabbane L (2012) Sysco Consortium. Transcriptomic signature of Leishmania infected mice macrophages: a metabolic point of view. PLoS Negl Trop Dis 6:e1763. 10.1371/journal.pntd.0001763 PubMed PMC
Ren W, Rajendran R, Zhao Y, Tan B, Wu G, Bazer FW, Zhu G, Peng Y, Huang X, Deng J, Yin Y (2018) Amino acids as mediators of metabolic cross talk between host and pathogen. Front Immunol 9:319. 10.3389/fimmu.2018.00319 PubMed PMC
Rognes T, Flouri T, Nichols B, Quince C, Mahé F (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584. 10.7717/peerj.2584 PubMed PMC
RStudio Team. (2020) RStudio: integrated development for R. RStudio, PBC, Boston, MA. http://www.rstudio.com/
Salgado VR, de Queiroz ATL, Sanabani SS, de Oliveira CI, Carvalho EM, Costa JML, Barral-Netto M, Barral A (2016) The microbiological signature of human cutaneous leishmaniasis lesions exhibits restricted bacterial diversity compared to healthy skin. Mem Inst Oswaldo Cruz 111:241–251. 10.1590/0074-02760150436 PubMed PMC
Samanta TB, Das N, Das M, Marik R (2003) Mechanism of impairment of cytochrome P450-dependent metabolism in hamster liver during leishmaniasis. Biochem Biophys Res Commun 312:75–79. 10.1016/j.bbrc.2003.09.227 PubMed
Santos AGA, da Silva MGL, Carneiro EL, de Lima LL, Fernandes ACBS, Silveira TGV, Sant’Ana DMG, Nogueira-Melo GA (2021) A new target organ of Leishmania (Viannia) braziliensis chronic infection: the intestine. Front Cell Infect Microbiol 11:687499. 10.3389/fcimb.2021.687499 PubMed PMC
Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12:1–18. 10.1186/gb-2011-12-6-r60 PubMed PMC
Sohrabi Y, Volkova V, Kobets T, Havelková H, Krayem I, Slapničková M, Demant P, Lipoldová M (2018) Genetic regulation of guanylate-binding proteins 2b and 5 during leishmaniasis in mice. Front Immunol 9:130. 10.3389/fimmu.2018.00130 PubMed PMC
Stassen AP, Groot PC, Eppig JT, Demant P (1996) Genetic composition of the recombinant congenic strains. Mamm Genome 7:55–58. 10.1007/s003359900013 PubMed
Suzuki TA, Phifer-Rixey M, Mack KL, Sheehan MJ, Lin D, Bi K, Nachman MW (2019) Host genetic determinants of the gut microbiota of wild mice. Mol Ecol 28:3197–3207. 10.1111/mec.15139 PubMed PMC
Toda T, Saito N, Ikarashi N, Ito K, Yamamoto M, Ishige A, Watanabe K, Sugiyama K (2009) Intestinal flora induces the expression of Cyp3a in the mouse liver. Xenobiotica 39:323–334. 10.1080/00498250802651984 PubMed
Vieira EC, Nicoli JR, Moraes-Santos T, Silva ME, da Costa CA, Mayrink W, Bambirra EA (1987) Cutaneous leishmaniasis in germfree, gnotobiotic, and conventional mice. Rev Inst Med Trop Sao Paulo 29:385–387. 10.1590/S0036-46651987000600009 PubMed
Vieira LQ, Oliveira MR, Neumann E, Nicoli JR, Vieira EC (1998) Parasitic infections in germfree animals. Brazilian J Med Biol Res 31:105–110. 10.1590/S0100-879X1998000100013 PubMed
Vivero RJ, Villegas-Plazas M, Cadavid-Restrepo GE, Herrera CXM, Uribe SI, Junca H (2019) Wild specimens of sand fly phlebotomine Lutzomyia evansi, vector of leishmaniasis, show high abundance of Methylobacterium and natural carriage of Wolbachia and Cardinium types in the midgut microbiome. Sci Rep 9:1–12. 10.1038/s41598-019-53769-z PubMed PMC
Wanasen N, Soong L (2008) L-arginine metabolism and its impact on host immunity against Leishmania infection. Immunol Res 41:15–25. 10.1007/s12026-007-8012-y PubMed PMC
Wang B, Yao M, Lv L, Ling Z, Li L (2017) The human microbiota in health and disease. Engineering 3:71–82. 10.1016/J.ENG.2017.01.008
Wang J, Lang T, Shen J, Dai J, Tian L, Wang X (2019) Core gut bacteria analysis of healthy mice. Front Microbiol 10:1–14. 10.3389/fmicb.2019.00887 PubMed PMC
Wickham H (2016) ggplot2: Elegant graphics for data analysis. Springer-Verlag. New York ISBN 978–3–319–24277–4. https://ggplot2.tidyverse.org