The diversity of cultivable endophytic fungi in native subshrubs of the Brazilian Cerrado is largely unknown. This study investigated the cultivable endophytic mycobiome of stems, leaves, and flowers of Peltaea polymorpha (Malvaceae). In total, 208 endophytic fungi were isolated, 95 from stems, 65 from leaves, and 48 from flowers. The isolates were classified as ascomycetes belonging to three classes, eight orders, ten families, 12 genera, and 31 species. Diaporthe, Nigrospora, and Colletotrichum were the dominant genera in the three analyzed organs. The richness estimators suggested that the number of species might be slightly higher than observed. The highest values for the Shannon and Simpson diversity indices were observed in stems. Beta diversity showed overlapping of fungal communities in different organs, with a high rate of sharing of taxa. Furthermore, the dominant primary fungal lifestyles were plant pathogens and saprobes. Our findings show that the cultivable endophytic fungal community of P. polymorpha is species-rich and that communities in different organs share genera and species.
- MeSH
- Ascomycota isolation & purification classification genetics MeSH
- Biodiversity * MeSH
- Endophytes * classification isolation & purification genetics growth & development MeSH
- Phylogeny MeSH
- Fungi * classification isolation & purification genetics growth & development MeSH
- Flowers microbiology MeSH
- Plant Leaves microbiology MeSH
- Mycobiome MeSH
- Grassland MeSH
- Plant Stems microbiology MeSH
- Tropical Climate MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Brazil MeSH
Necrotizing enterocolitis (NEC) is one of the most devastating intestinal diseases observed in preterm in the first days of life. Researchers have recently focused on potential predictive biomarkers for early and concomitant diagnoses. Thus, we inquired about the linkage of intestinal dysbiosis, one of the most important factors in NEC development to the gut microbiota. In this study, the systematic differences in the bacterial composition between neonates affected by NEC and healthy newborns were highlighted by metagenomic analysis. The next-generation sequencing of the V3-V4 variable region of the 16S rRNA gene and gene-specific qPCR analyzed the untargeted gut microbiota. Total bacteria, total and fecal coliform loads in stool samples with NEC were higher than control. OTU-level relative abundances of NEC infant was characterized by Firmicutes and Bacteroidetes at phylum levels. At the genus level, NEC stool was identified by the lack of Klebsiella and the presence of Roseburia, Blautia, and Parasutterella. Finally, Clostridium fessum was the predominant species of Clostridium genus in disease and healthy specimens at the species level, whereas Clostridium jeddahitimonense was at NEC diagnosis. Despite a strong relationship between pathophysiology and characterization of gut microbiota at a clinical diagnosis of NEC, our results emphasize the broad difficulty in identifying potential biomarkers.
- MeSH
- Bacteria * classification genetics isolation & purification MeSH
- DNA, Bacterial genetics MeSH
- Dysbiosis microbiology MeSH
- Feces * microbiology MeSH
- Humans MeSH
- Metagenomics MeSH
- Enterocolitis, Necrotizing * microbiology MeSH
- Infant, Premature MeSH
- Infant, Newborn MeSH
- RNA, Ribosomal, 16S * genetics MeSH
- Gastrointestinal Microbiome * MeSH
- High-Throughput Nucleotide Sequencing MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Infant, Newborn MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Endophytes are symbionts that live in healthy plants and potentially improve the health of plant holobionts. Here, we investigated the bacterial endophyte community of Citrus reticulata grown in the northern Persian Gulf. Bacteria were isolated seasonally from healthy trees (root, stem, bark, trunk, leaf, and crown tissues) in four regions of Hormozgan province (i.e., Ahmadi, Siyahoo, Sikhoran, Roudan), a subtropical hot region in Iran. A total of 742 strains from 17 taxa, 3 phyla, and 5 orders were found, most of which belonged to Actinobacteria (Actinobacteriales) as the dominant group, followed by Firmicutes (Bacillales), Proteobacteria (Sphingomonadales, Rhizobiales), and Cyanobacteria (Synechoccales). The genera included Altererythrobacter, Arthrobacter, Bacillus, Cellulosimicrobium, Curtobacterium, Kocuria, Kytococcus, Methylopila, Mycobacterium, Nocardioides, Okiabacterium, Paracraurococcus, and Psychrobacillus. The most frequently occurring species included Psychrobacillus psychrodurans, Kytococcus schroetri, and Bacillus cereus. In addition, the overall colonization frequency and variability of endophytes were higher on the trunks. The leaves showed the lowest species variability in all sampling periods. The frequency of endophyte colonization was also higher in summer. The Shannon-Wiener (H') and Simpson indices varied with all factors, i.e., region, season, and tissue type, with the maximum in Roudan. Furthermore, 52.9% of the strains were capable of nitrogen fixation, and 70% produced antagonistic hydrogen cyanide (HCN). Thus, C. reticulata harbors a variety of bioactive bacterial endophytes that could be beneficial for host fitness in such harsh environments.
- MeSH
- Bacteria * classification metabolism isolation & purification genetics MeSH
- Biodiversity MeSH
- Citrus * microbiology MeSH
- Endophytes * classification isolation & purification metabolism genetics MeSH
- Nitrogen Fixation * MeSH
- Phylogeny MeSH
- Plant Leaves microbiology MeSH
- Microbiota * MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Seasons MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Iran MeSH
INTRODUCTION: Impulsivity and aggression are often interlinked behavioral traits that have major implications for our society. Therefore, the study of this phenomenon and derivative interventions that could lead to better control of impulsive aggression are of interest. METHODS: We analyzed the composition and diversity of the gut bacterial microbiome of 33 impulsively violent female convicts with dissocial personality disorder and 20 non-impulsive age-matched women. Further, levels of assorted neurotransmitters and short-chain fatty acids (SCFAs) were analyzed in serum and stool samples. We also assessed all participants using a battery of psychological questionnaires and tested possible correlations between the collected clinical data and the composition and diversity of their microbiomes and metabolites. RESULTS: We identified four bacterial amplicon sequencing variants that were differentially abundant in non-impulsive versus impulsive women - the genera Bacteroides, Barnesiella, and the order Rhodospirillales were more abundant in impulsive women. In contrast, the genus Catenisphaera was more abundant in non-impulsive women. Fecal tryptophan levels were significantly higher in impulsive women. Association analysis revealed a strong positive intercorrelation between most fecal SCFAs in the entire dataset. CONCLUSIONS: Our study demonstrated possible associations between gut microbiomes and their metabolites and impulsive behavior in a unique cohort of prisoners convicted of violent assaults and a matched group of non-impulsive women from the same prison. Genus Bacteroides, which was differentially abundant in the two groups, encoded enzymes that affect serotonin pathways and could contribute to this maladaptive behavior. Similarly, increased fecal tryptophan levels in impulsive individuals could affect neuronal circuits in the brain. INTRODUCTION: Impulsivity and aggression are often interlinked behavioral traits that have major implications for our society. Therefore, the study of this phenomenon and derivative interventions that could lead to better control of impulsive aggression are of interest. METHODS: We analyzed the composition and diversity of the gut bacterial microbiome of 33 impulsively violent female convicts with dissocial personality disorder and 20 non-impulsive age-matched women. Further, levels of assorted neurotransmitters and short-chain fatty acids (SCFAs) were analyzed in serum and stool samples. We also assessed all participants using a battery of psychological questionnaires and tested possible correlations between the collected clinical data and the composition and diversity of their microbiomes and metabolites. RESULTS: We identified four bacterial amplicon sequencing variants that were differentially abundant in non-impulsive versus impulsive women - the genera Bacteroides, Barnesiella, and the order Rhodospirillales were more abundant in impulsive women. In contrast, the genus Catenisphaera was more abundant in non-impulsive women. Fecal tryptophan levels were significantly higher in impulsive women. Association analysis revealed a strong positive intercorrelation between most fecal SCFAs in the entire dataset. CONCLUSIONS: Our study demonstrated possible associations between gut microbiomes and their metabolites and impulsive behavior in a unique cohort of prisoners convicted of violent assaults and a matched group of non-impulsive women from the same prison. Genus Bacteroides, which was differentially abundant in the two groups, encoded enzymes that affect serotonin pathways and could contribute to this maladaptive behavior. Similarly, increased fecal tryptophan levels in impulsive individuals could affect neuronal circuits in the brain.
- MeSH
- Aggression physiology MeSH
- Adult MeSH
- Feces * microbiology chemistry MeSH
- Impulsive Behavior * physiology MeSH
- Fatty Acids, Volatile analysis metabolism MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Gastrointestinal Microbiome * physiology MeSH
- Tryptophan blood metabolism MeSH
- Criminals MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
The growth and accumulation of active ingredients of Angelica sinensis were affected by rhizosphere soil microbial communities and soil environmental factors. However, the correlationship between growth and active ingredients and soil biotic and abiotic factors is still unclear. This study explored rhizosphere soil microbial community structures, soil physicochemical properties, enzyme activities, and their effects on the growth and active ingredient contents of A. sinensis in three principal cropping areas. Results indicated that the growth indices, ligustilide, ferulic acid contents, and soil environmental factors varied in cropping areas. Pearson correlation analysis revealed that the growth of A. sinensis was affected by organic matter, total nitrogen, total phosphorus, and available phosphorus; ferulic acid and ligustilide accumulation were related to soil catalase and alkaline phosphatase activities, respectively. Illumina MiSeq sequencing showed that the genera Mortierella and Conocybe were the dominant fungal communities, and Sphingomonas, Pseudomonas, Bryobacter, and Lysobacter were the main bacterial communities associated with the rhizosphere soil. Kruskal-Wallis one-way ANOVA and Spearman correlation conjoint analysis demonstrated a significant positive correlation (p < 0.001) among the composition of the rhizosphere microbial communities at all three sampling sites. The growth and active ingredient accumulation of A. sinensis not only was significantly susceptible to the bacterial communities of Sphingomonas, Epicoccum, Marivita, Muribaculum, and Gemmatimonas but also were significantly influenced by the fungal communities of Inocybe, Septoria, Tetracladium, and Mortierella (p < 0.05). Our findings provide a scientific basis for understanding the relationship between the growth and active ingredients in A. sinensis and their corresponding rhizosphere soil microbial communities, soil physicochemical properties, and enzyme activities.
- MeSH
- Angelica sinensis * growth & development chemistry microbiology MeSH
- Bacteria classification genetics isolation & purification MeSH
- Nitrogen analysis MeSH
- Phosphorus analysis MeSH
- Fungi classification genetics isolation & purification MeSH
- Microbiota * MeSH
- Soil chemistry MeSH
- Soil Microbiology * MeSH
- Rhizosphere * MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- China MeSH
The isolation and study of fungi within specific contexts yield valuable insights into the intricate relationships between fungi and ecosystems. Unlike culture-independent approaches, cultivation methods are advantageous in this context because they provide standardized replicates, specific species isolation, and easy sampling. This study aimed to understand the ecological process using a microcosm system with pesticide concentrations similar to those found in the soil, in contrast to high doses, from the isolation of the enriched community. The atrazine concentrations used were 0.02 mg/kg (control treatment), 300 ng/kg (treatment 1), and 3000 ng/kg (treatment 2), using a 28-day microcosm system. Ultimately, the isolation resulted in 561 fungi classified into 76 morphospecies. The Ascomycota phylum was prevalent, with Purpureocillium, Aspergillus, and Trichoderma being consistently isolated, denoting robust and persistent genera. Diversity analyses showed that the control microcosms displayed more distinct fungal morphospecies, suggesting the influence of atrazine on fungal communities. Treatment 2 (higher atrazine concentration) showed a structure comparable to that of the control, whereas treatment 1 (lower atrazine concentration) differed significantly, indicating that atrazine concentration impacted community variance. Higher atrazine addition subtly altered ligninolytic fungal community dynamics, implying its potential for pesticide degradation. Finally, variations in atrazine concentrations triggered diverse community responses over time, shedding light on fungal resilience and adaptive strategies against pesticides.
- MeSH
- Atrazine * metabolism pharmacology MeSH
- Biodegradation, Environmental MeSH
- Phylogeny MeSH
- Herbicides * metabolism MeSH
- Fungi * classification isolation & purification metabolism drug effects genetics growth & development MeSH
- Soil Pollutants metabolism MeSH
- Mycobiome * drug effects MeSH
- Soil Microbiology MeSH
- Publication type
- Journal Article MeSH
Growing evidence suggests that specific volatile organic compound (VOC) profiles may reflect key pathophysiological processes in Parkinson's disease (PD), including alterations in the microbiome, metabolism, and oxidative stress. Identifying reliable VOC biomarkers could enable non-invasive tests for early diagnosis, disease monitoring, and therapy evaluation. This review examines VOC analysis in biological matrices such as breath, skin, and stool, outlining current research and future applications in PD. We evaluate analytical techniques based on sensitivity, specificity, and clinical applicability. Additionally, we classify VOCs identified in previous studies alongside their proposed biological origins. Special attention is given to short-chain fatty acids, produced by the gut microbiome, a novel target in PD research. Our findings highlight the need for larger cohort studies and standardized protocols to advance VOC-based diagnostics in PD. Understanding the interplay between VOCs and PD may facilitate biomarker discovery, enhancing non-invasive diagnostic strategies and personalized disease management.
- Publication type
- Journal Article MeSH
Although the understanding of the causes of infertility is the key to its successful treatment, recent studies have shown that as many as 50% of male-caused infertility cases are considered idiopathic. The microbial colonization of the male reproductive system was shown to be associated with reduced male reproductive fitness. Investigation of the seminal microbiome, however, remains challenging. This article aimed to improve this situation by creating the first comprehensive review of literature on the metagenomic methods (including the pre-analytical and analytical approaches) used in the research on human seminal bacteriome (total bacterial DNA in the matrix), published in 2018-2024. A total of 29 studies addressing the analysis of the human seminal bacteriome were identified. The analysis typically involved DNA extraction from the supernatant using commercial kits, amplification of the gene for 16S rRNA, and sequencing of amplicons. Where the separation of seminal plasma was performed, centrifugation was the dominant method used for this purpose. The significant heterogeneity in individual steps of methodological approaches in the analysis of the human seminal bacteriome complicates the comparison of results among studies and the establishment of standard procedures, hindering clinical advancements. For this reason, a protocol for the analysis of the human seminal plasma bacteriome is proposed here, which could lead to improved comparability of results among studies and make future research more efficient. This protocol is founded on rigorous quality control measures, compliance with the WHO laboratory manual for sample collection, extensive pretreatment involving mechanical and enzymatic lysis, DNA extraction using the QIAamp DNA Mini Kit (Qiagen), and short-read sequencing conducted on the MiSeq platform (Illumina).
- Publication type
- Journal Article MeSH
- Review MeSH
Mezinárodní panel odborníků vydal společné konsenzuální stanovisko k možnostem klinického využití analýzy střevního mikrobiomu s jednoznačným závěrem: Mikrobiom je důležitou složkou lidského těla a jeho stav nezpochybnitelně souvisí s lidským zdravím. Metodika analýzy složení mikrobiomu však dosud nebyla standardizována a interpretace výsledků vzhledem ke zdraví jedince zatím není dostatečně průkazná. Terapeutické poradenství na základě výsledku testování mikrobiomu se důrazně nedoporučuje. Pro široké použití v klinické praxi je nutný další výzkum.
The international panel of experts has issued a joint consensus opinion on the possibilities of clinical use of gut microbiome analysis with an unequivocal conclusion: The microbiome is an important component of the human body, and its condition is indisputably related to human health. However, the methodology of microbiome composition analysis has not yet been standardized and the interpretation of the results regarding the health of the individual is not yet sufficiently conclusive. Therapeutic counseling based on the results of microbiome testing is strongly discouraged. Further research is required for widespread use in clinical practice.
Escherichia coli (E. coli) is a rod-shaped gram-negative bacterium that includes the diarrheagenic strains, an identical group of intestinal pathogens.E. coli diarrhea is transmitted through the feco-oral route, through contaminated food and water. Enteropathogenic E. coli (EPEC) is one of the leading causes of diarrhea in the pediatric age group in developing and developed countries. Depending on the absence or presence of E. coli adherence factor plasmids, they are classified as typical or atypical isolates. The distinguishing feature of EPEC's pathology is the attaching and effacing lesions, which facilitate localized damage by tightly adhering to intestinal epithelial cells, disarranging their surfaces, and effacing microvilli. Typical EPEC possess the locus of enterocyte effacement (LEE), a pathogenicity island, encoding adherence factors, including the Type III Secretion System (T3SS), a needle-like structure injecting effector proteins into host cells. EPEC also have other effector genes like cif or nleC encoded by non-LEE pathogenicity islands, which enable destruction of tight junctions in the host cell. Another key virulence factor is bundle-forming pili (BFP), which aids in the first attachment to enterocytes. Methods like quantitative PCR exist to diagnose EPEC accurately. As of today, no licensed vaccine exists to prevent EPEC infections. Virulence factors for attachment, such as bfpA and intimin, and immunogenic carriers can be potential candidates for vaccine development. Moreover, studies are required to better understand the interaction of EPECwith the intestinal microbiome and immune evasion strategies. This article is aimed at providing a comprehensive review of the epidemiology, transmission, virulence factors, challenges in studying EPEC virulence factors, pathogenesis, host-pathogen interaction, mechanism of intestinal injury, diagnosis, treatment, antibiotic resistance, and vaccination strategy for EPEC, and future research implications. We conducted a comprehensive literature search using credible sources such as PubMed, Google Scholar, and Scopus. We refined our keywords, applied database filters, and assessed citations in the included studies. No meta-analysis, statistical aggregation, or formal evaluation of risk bias was carried out as this review consolidates the literature narratively. High-quality English articles published in reputable peer-reviewed journals from 2010 to 2025 were analyzed, and their findings have been summarized in this comprehensive review.
- Publication type
- Journal Article MeSH
- Review MeSH
BACKGROUND: Understanding the temporal variability of the microbiome is critical for translating associations of the microbiome with health and disease into clinical practice. The aim of this study is to assess the extent of temporal variability of the human urinary microbiota. A pair of urine samples were collected from study participants at 3-40-month interval. DNA was extracted and the bacterial V4 hypervariable region of the 16S rRNA gene was sequenced on the Illumina MiSeq platform. The alpha diversity of paired samples was analyzed using Chao1 and Shannon indices and PERMANOVA was used to test the factors influencing beta diversity. RESULTS: A total of 63 participants (43 men and 20 women with a mean age of 63.0 and 57.1 years, respectively) were included in the final analysis. An average of 152 ± 128 bacterial operational taxonomic units (OTUs) were identified in each urine sample from the entire cohort. There was an average of 41 ± 32 overlapping OTUs in each sample pair, accounting for 66.3 ± 29.4% of the relative abundance. There was a clear correlation between the number of overlapping OTUs and the relative abundance covered. The difference in Chao1 index between paired samples was statistically significant; the difference in Shannon index was not. Beta diversity did not differ significantly within the paired samples. Neither age nor sex of the participants influenced the variation in community composition. With a longer interval between the collections, the relative abundance covered by the overlapping OTUs changed significantly but not the number of OTUs. CONCLUSION: Our findings demonstrated that, while the relative abundance of dominant bacteria varied, repeated collections generally shared more than 60% of the bacterial community. Furthermore, we observed little variation in the alpha and beta diversity of the microbial community in human urine. These results help to understand the dynamics of human urinary microbiota and enable interpretation of future studies.
- MeSH
- Bacteria * classification genetics isolation & purification MeSH
- Biodiversity MeSH
- Time Factors MeSH
- DNA, Bacterial genetics MeSH
- Middle Aged MeSH
- Humans MeSH
- Microbiota * genetics MeSH
- Urine * microbiology MeSH
- Prospective Studies MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Sequence Analysis, DNA MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Observational Study MeSH
Super- and low-shedding phenomena have been observed in genetically homogeneous hosts infected by a single bacterial strain. To decipher the mechanisms underlying these phenotypes, we conducted an experiment with chicks infected with Salmonella Enteritidis in a non-sterile isolator, which prevents bacterial transmission between animals while allowing the development of the gut microbiota. We investigated the impact of four commensal bacteria called Mix4, inoculated at hatching, on chicken systemic immune response and intestinal microbiota composition and functions, before and after Salmonella infection. Our results revealed that these phenotypes were not linked to changes in cell invasion capacity of bacteria during infection. Mix4 inoculation had both short- and long-term effects on immune response and microbiota and promoted the low-shedder phenotype. Kinetic analysis revealed that Mix4 activated immune response from day 4, which modified the microbiota on day 6. This change promotes a more fermentative microbiota, using the aromatic compounds degradation pathway, which inhibited Salmonella colonization by day 11 and beyond. In contrast, control animals exhibited a delayed TNF-driven pro-inflammatory response and developed a microbiota using anaerobic respiration, which facilitates Salmonella colonization and growth. This strategy offers promising opportunities to strengthen the barrier effect against Salmonella and possibly other pathogens.
- MeSH
- Bacteria * classification genetics isolation & purification MeSH
- Chickens * microbiology immunology MeSH
- Poultry Diseases * microbiology immunology prevention & control MeSH
- Salmonella enteritidis * immunology growth & development MeSH
- Salmonella Infections, Animal * microbiology immunology prevention & control MeSH
- Gastrointestinal Microbiome * MeSH
- Symbiosis MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
INTRODUCTION: Human and animal skin is colonized by a complex microbial population. An imbalance of these microorganisms is often associated with dermatological diseases. METHODS: The aim of this work was to describe the skin bacterial microbiota composition of healthy dogs and dogs with inflammatory skin lesions. Genomic DNA was sequenced using primers that target the V4 region of the bacterial 16S rRNA gene. Superficial skin swabs were collected from eight body areas of six healthy dogs (n = 48) and directly from inflammatory altered canine skin (n = 16). RESULTS: The skin of healthy dogs was predominantly colonized by phylum Bacillota (34.4 ± 27.2%), followed by Actinomycetota (32.2 ± 20.3%), Pseudomonadota (16.4 ± 12.2%), and Bacteroidota (8.7 ± 11.6%). At the level of genera, Streptococcus spp. (19.4 ± 26.1%) was the most abundant genus across all samples collected from healthy skin, followed by Curtobacterium (5.4 ± 12.1%), Bacteroides (5.2 ± 11.1%) and Corynebacterium_1 (4.3 ± 13.2%). More specifically, Streptococcus spp. was the most abundant on the chin (49.0 ± 35.5%), nose (37.9 ± 32.1%), perianal region (21.1 ± 28.2%), abdomen (11.0 ± 12.8%), dorsal back (12.4 ± 10.3%) and interdigital area (5.5 ± 2.2%). Curtobacterium spp. was predominant on inner pinna (17.8 ± 24.8%) and axilla (6.7 ± 10.8%). Alpha diversity analysis (Shannon index) showed maximum on interdigital area but minimum on a chin (p-value: 0.0416). Beta diversity analysis showed clustering across samples from the individual skin sites but also across samples collected from individual dogs. Staphylococcus spp. was the most abundant genus in 12/16 samples collected from inflammatory skin. In addition, a lower bacterial diversity was observed in samples from skin lesions compared to samples from healthy canine skin. DISCUSSION: The results confirm the fact that the microbiome of healthy skin is very diverse. Compared to other studies, streptococci predominated on healthy canine skin. Shannon index showed only minor differences in diversity between different parts of canine skin. Results of beta-diversity showed the fact that the main force driving the skin microbiota composition is the individual, followed by the skin site. On the area of skin lesions, dysbiosis was observed with a significant predominance of staphylococci.
- Publication type
- Journal Article MeSH
Horizontal gene transfer (HGT) is a key driver in the evolution of bacterial genomes. The acquisition of genes mediated by HGT may enable bacteria to adapt to ever-changing environmental conditions. Long-term application of antibiotics in intensive agriculture is associated with the dissemination of antibiotic resistance genes among bacteria with the consequences causing public health concern. Commensal farm-animal-associated gut microbiota are considered the reservoir of the resistance genes. Therefore, in this study, we identified known and not-yet characterized mobilized genes originating from chicken and porcine fecal samples using our innovative pipeline followed by network analysis to provide appropriate visualization to support proper interpretation.
- MeSH
- Anti-Bacterial Agents MeSH
- Bacteria genetics MeSH
- Genes, Bacterial MeSH
- Genome, Bacterial MeSH
- Microbiota * MeSH
- Swine MeSH
- Gene Transfer, Horizontal * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
Environmental pollution is a serious problem that can cause sicknesses, fatality, and biological contaminants such as bacteria, which can trigger allergic reactions and infectious illnesses. There is also evidence that environmental pollutants can have an impact on the gut microbiome and contribute to the development of various mental health and metabolic disorders. This study aimed to study the antibiotic resistance and virulence potential of environmental Pseudomonas aeruginosa (P. aeruginosa) isolates in slaughterhouses. A total of 100 samples were collected from different slaughterhouse tools. The samples were identified by cultural and biochemical tests and confirmed by the VITEK 2 system. P. aeruginosa isolates were further confirmed by CHROMagarTM Pseudomonas and genetically by rpsL gene analysis. Molecular screening of virulence genes (fimH, papC, lasB, rhlI, lasI, csgA, toxA, and hly) and antibiotic resistance genes (blaCTX-M, blaAmpC, blaSHV, blaNDM, IMP-1, aac(6')-Ib-, ant(4')IIb, mexY, TEM, tetA, and qnrB) by PCR and testing the antibiotic sensitivity, biofilm formation, and production of pigments, and hemolysin were carried out in all isolated strains. A total of 62 isolates were identified as P. aeruginosa. All P. aeruginosa isolates were multidrug-resistant and most of them have multiple resistant genes. blaCTX-M gene was detected in all strains; 23 (37.1%) strains have the ability for biofilm formation, 33 strains had virulence genes, and 26 isolates from them have more than one virulence genes. There should be probably 60 (96.8%) P. aeruginosa strains that produce pyocyanin pigment. Slaughterhouse tools are sources for multidrug-resistant and virulent pathogenic microorganisms which are a serious health problem. Low-hygienic slaughterhouses could be a reservoir for resistance and virulence genes which could then be transferred to other pathogens.
- MeSH
- Anti-Bacterial Agents * pharmacology MeSH
- Drug Resistance, Bacterial genetics MeSH
- Biofilms drug effects growth & development MeSH
- Virulence Factors * genetics MeSH
- Abattoirs * MeSH
- Microbial Sensitivity Tests * MeSH
- Environmental Microbiology MeSH
- Pseudomonas aeruginosa * genetics drug effects pathogenicity isolation & purification MeSH
- Virulence genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
Over recent decades, advancements in omics technologies, such as proteomics, genomics, epigenomics, metabolomics, transcriptomics, and microbiomics, have significantly enhanced our understanding of the molecular mechanisms underlying various physiological and pathological processes. Nonetheless, the analysis and interpretation of vast omics data concerning reproductive diseases are complicated by the cyclic regulation of hormones and multiple other factors, which, in conjunction with a genetic makeup of an individual, lead to diverse biological responses. Reproductomics investigates the interplay between a hormonal regulation of an individual, environmental factors, genetic predisposition (DNA composition and epigenome), health effects, and resulting biological outcomes. It is a rapidly emerging field that utilizes computational tools to analyze and interpret reproductive data, with the aim of improving reproductive health outcomes. It is time to explore the applications of reproductomics in understanding the molecular mechanisms underlying infertility, identification of potential biomarkers for diagnosis and treatment, and in improving assisted reproductive technologies (ARTs). Reproductomics tools include machine learning algorithms for predicting fertility outcomes, gene editing technologies for correcting genetic abnormalities, and single cell sequencing techniques for analyzing gene expression patterns at the individual cell level. However, there are several challenges, limitations and ethical issues involved with the use of reproductomics, such as the applications of gene editing technologies and their potential impact on future generations are discussed. The review comprehensively covers the applications and advancements of reproductomics, highlighting its potential to improve reproductive health outcomes and deepen our understanding of reproductive molecular mechanisms.
- MeSH
- Reproductive Techniques, Assisted trends MeSH
- Genomics MeSH
- Infertility genetics therapy diagnosis MeSH
- Humans MeSH
- Reproduction genetics physiology MeSH
- Machine Learning MeSH
- Computational Biology * MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
RATIONALE: Severe alcohol-associated hepatitis (SAH) is the most critical, acute, inflammatory phenotype within the alcohol-associated liver disease (ALD) spectrum, characterized by high 30- and 90-day mortality. Since several decades, corticosteroids (CS) are the only approved pharmacotherapy offering highly limited survival benefits. Contextually, there is an evident demand for 3PM innovation in the area meeting patients' needs and improving individual outcomes. Fecal microbiota transplantation (FMT) has emerged as one of the new potential therapeutic options. In this study, we aimed to address the crucial 3PM domains in order to assess (i) the impact of FMT on mortality in SAH patients beyond CS, (ii) to identify factors associated with the outcome to be improved (iii) the prediction of futility, (iv) prevention of suboptimal individual outcomes linked to increased mortality, and (v) personalized allocation of therapy. METHODS: We conducted a prospective study (NCT04758806) in adult patients with SAH who were non-responders (NR) to or non-eligible (NE) for CS between January 2018 and August 2022. The intervention consisted of five 100 ml of FMT, prepared from 30 g stool from an unrelated healthy donor and frozen at - 80 °C, administered daily to the upper gastrointestinal (GI) tract. We evaluated the impact of FMT on 30- and 90-day mortality which we compared to the control group selected by the propensity score matching and treated by the standard of care; the control group was derived from the RH7 registry of patients hospitalized at the liver unit (NCT04767945). We have also scrutinized the FMT outcome against established and potential prognostic factors for SAH - such as the model for end-stage liver disease (MELD), Maddrey Discriminant Function (MDF), acute-on-chronic liver failure (ACLF), Liver Frailty Index (LFI), hepatic venous-portal pressure gradient (HVPG) and Alcoholic Hepatitis Histologic Score (AHHS) - to see if the 3PM method assigns them a new dimension in predicting response to therapy, prevention of suboptimal individual outcomes, and personalized patient management. RESULTS: We enrolled 44 patients with SAH (NR or NE) on an intention-to-treat basis; we analyzed 33 patients per protocol for associated factors (after an additional 11 being excluded for receiving less than 5 doses of FMT), and 31 patients by propensity score matching for corresponding individual outcomes, respectively. The mean age was 49.6 years, 11 patients (33.3%) were females. The median MELD score was 29, and ACLF of any degree had 27 patients (81.8%). FMT improved 30-day mortality (p = 0.0204) and non-significantly improved 90-day mortality (p = 0.4386). Univariate analysis identified MELD ≥ 30, MDF ≥ 90, and ACLF grade > 1 as significant predictors of 30-day mortality, (p = 0.031; p = 0.014; p = 0.034). Survival was not associated with baseline LFI, HVPG, or AHHS. CONCLUSIONS AND RECOMMENDATIONS IN THE FRAMEWORK OF 3PM: In the most difficult-to-treat sub-cohort of patients with SAH (i.e., NR/NE), FMT improved 30-day mortality. Factors associated with benefit included MELD ≤ 30, MDF ≤ 90, and ACLF < 2. These results support the potential of gut microbiome as a therapeutic target in the context of 3PM research and vice versa - to use 3PM methodology as the expedient unifying template for microbiome research. The results allow for immediate impact on the innovative concepts of (i) personalized phenotyping and stratification of the disease for the clinical research and practice, (ii) multilevel predictive diagnosis related to personalized/precise treatment allocation including evidence-based (ii) prevention of futile and sub-optimally effective therapy, as well as (iii) targeted prevention of poor individual outcomes in patients with SAH. Moreover, our results add to the existing evidence with the potential to generate new research along the SAH's pathogenetic pathways such as diverse individual susceptibility to alcohol toxicity, host-specific mitochondrial function and systemic inflammation, and the role of gut dysbiosis thereof. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13167-024-00381-5.
- Publication type
- Journal Article MeSH
Background/Objectives: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing global health problem closely linked to dietary habits, particularly high fructose consumption. This study investigates the combined effects of fructose and common food preservatives (sodium benzoate, sodium nitrite, and potassium sorbate) on the development and progression of MASLD. Methods: We utilized a human microbiota-associated mouse model, administering 10% fructose with or without preservatives for 11 weeks. Liver histology, hepatic gene expression (microarray analysis), biochemical markers, cytokine profiles, intestinal permeability, and gut microbiome composition (16S rRNA and Internal Transcribed Spacer (ITS) sequencing) were evaluated. Results: Fructose and potassium sorbate synergistically induced liver pathology characterized by increased steatosis, inflammation and fibrosis. These histological changes were associated with elevated liver function markers and altered lipid profiles. The treatments also induced significant changes in both the bacterial and fungal communities and disrupted intestinal barrier function, leading to increased pro-inflammatory responses in the mesenteric lymph nodes. Liver gene expression analysis revealed a wide range of transcriptional changes induced by fructose and modulated by the preservative. Key genes involved in lipid metabolism, oxidative stress, and inflammatory responses were affected. Conclusions: Our findings highlight the complex interactions between dietary components, gut microbiota, and host metabolism in the development of MASLD. The study identifies potential risks associated with the combined consumption of fructose and preservatives, particularly potassium sorbate. Our data reveal new mechanisms that are involved in the development of MASLD and open up a new avenue for the prevention and treatment of MASLD through dietary interventions and the modulation of the microbiome.
- MeSH
- Gene Expression drug effects MeSH
- Fructose * adverse effects MeSH
- Liver * metabolism drug effects MeSH
- Sorbic Acid pharmacology MeSH
- Disease Models, Animal MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Food Preservatives * pharmacology adverse effects MeSH
- Gastrointestinal Microbiome * drug effects MeSH
- Drug Synergism MeSH
- Fatty Liver MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Consumption of plant-based diets, including vegan diets, necessitates attention to the quality of the diet for the prevention and early detection of nutritional deficiencies. Within the VEGANScreener project, a unique brief screening tool for the assessment and monitoring of diet quality among vegans in Europe was developed. To provide a standardized tool for public use, a clinical study will be conducted to evaluate the VEGANScreener against a reference dietary assessment method and nutritional biomarkers. An observational study is set to include 600 participants across five European sites - Belgium, Czech Republic, Germany, Spain, and Switzerland. In total, 400 self-reported vegans (≥2 years on a vegan diet), and 170 self-reported omnivore controls will be examined, aged between 18 and 65 years, with males and females being equally represented in a 1:1 ratio for two age groups (18-35 and 36-65 years). Participants with diseases affecting metabolism and intestinal integrity will be excluded. The clinical assessment will include a structured medical history, along with taking blood pressure and anthropometric measurements. Blood and urine will be sampled and analyzed for a set of dietary biomarkers. Metabolomic analyses will be conducted to explore potential novel biomarkers of vegan diet. Moreover, saliva samples will be collected to assess the metabolome and the microbiome. Participants will receive instructions to complete a nonconsecutive 4-day diet record, along with the VEGANScreener, a socio-demographic survey, a well-being survey, and a FFQ. To evaluate reproducibility, the VEGANScreener will be administered twice over a three-weeks period. Among vegans, the construct validity and criterion validity of the VEGANScreener will be analyzed through associations of the score with nutrient and food group intakes, diet quality scores assessed from the 4-day diet records, and associations with the dietary biomarkers. Secondary outcomes will include analysis of dietary data, metabolomics, and microbiomes in all participants. Major nutrient sources and variations will be assessed in the sample. Exploratory metabolomic analysis will be performed using multivariable statistics and regression analysis to identify novel biomarkers. Standard statistical models will be implemented for cross-sectional comparisons of geographical groups and vegans versus omnivores.
- Publication type
- Journal Article MeSH
The mangrove ecosystem is the world's fourth most productive ecosystem in terms of service value and offering rich biological resources. Microorganisms play vital roles in these ecological processes, thus researching the mangroves-microbiota is crucial for a deeper comprehension of mangroves dynamics. Amplicon sequencing that targeted V4 region of 16S rRNA gene was employed to profile the microbial diversities and community compositions of 19 soil samples, which were collected from the rhizosphere of 3 plant species (i.e., Avicennia marina, Ceriops tagal, and Rhizophora mucronata) in the mangrove forests of Lasbela coast, Pakistan. A total of 67 bacterial phyla were observed from three mangroves species, and these taxa were classified into 188 classes, 453 orders, 759 families, and 1327 genera. We found that Proteobacteria (34.9-38.4%) and Desulfobacteria (7.6-10.0%) were the dominant phyla followed by Chloroflexi (6.6-7.3%), Gemmatimonadota (5.4-6.8%), Bacteroidota (4.3-5.5%), Planctomycetota (4.4-4.9%) and Acidobacteriota (2.7-3.4%), Actinobacteriota (2.5-3.3%), and Crenarchaeota (2.5-3.3%). After considering the distribution of taxonomic groups, we prescribe that the distinctions in bacterial community composition and diversity are ascribed to the changes in physicochemical attributes of the soil samples (i.e., electrical conductivity (ECe), pH, total organic matter (OM), total organic carbon (OC), available phosphorus (P), and extractable potassium (CaCO3). The findings of this study indicated a high-level species diversity in Pakistani mangroves. The outcomes may also aid in the development of effective conservation policies for mangrove ecosystems, which have been hotspots for anthropogenic impacts in Pakistan. To our knowledge, this is the first microbial research from a Pakistani mangrove forest.
- MeSH
- Avicennia microbiology MeSH
- Bacteria * classification genetics isolation & purification MeSH
- Biodiversity * MeSH
- DNA, Bacterial genetics MeSH
- Phylogeny * MeSH
- Microbiota * MeSH
- Wetlands * MeSH
- Soil Microbiology * MeSH
- Rhizophoraceae microbiology MeSH
- Rhizosphere MeSH
- RNA, Ribosomal, 16S * genetics MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Pakistan MeSH
BACKGROUND: Faecal microbiota transplantation (FMT) is a developing therapy for disorders related to gut dysbiosis. Despite its growing application, standardised protocols for FMT filtrate preparation and quality assessment remain undeveloped. The viability of bacteria in the filtrate is crucial for FMT's efficacy and for validating protocol execution. We compared two methods-in vitro cultivation and membrane integrity assessment-for their accuracy, reproducibility and clinical applicability in measuring bacterial viability in frozen FMT stool filtrate. METHODS: Bacterial viability in stool filtrate was evaluated using (i) membrane integrity through fluorescent DNA staining with SYTO9 and propidium iodide, followed by flow cytometry and (ii) culturable bacteria counts (colony-forming units, CFU) under aerobic or anaerobic conditions. RESULTS: Using different types of samples (pure bacterial culture, stool of germ-free and conventionally bred mice, native and heat-treated human stool), we refined the bacterial DNA staining protocol integrated with flow cytometry for assessment of bacterial viability in frozen human stool samples. Both the membrane integrity-based and cultivation-based methods exhibited significant variability in bacterial viability across different FMT filtrates, without correlation. The cultivation-based method showed a mean coefficient of variance of 30.3%, ranging from 7.4% to 60.1%. Conversely, the membrane integrity approach yielded more reproducible results, with a mean coefficient of variance for viable cells of 6.4% ranging from 0.2% to 18.2%. CONCLUSION: Bacterial viability assessment in stool filtrate using the membrane integrity method offers robust and precise data, making it a suitable option for faecal material evaluation in FMT. In contrast, the cultivation-dependent methods produce inconsistent outcomes.
- MeSH
- Bacteria isolation & purification MeSH
- Feces * microbiology MeSH
- Fecal Microbiota Transplantation * methods MeSH
- Humans MeSH
- Microbial Viability * MeSH
- Mice MeSH
- Flow Cytometry * methods MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Comparative Study MeSH
Závěrečná zpráva o řešení grantu Agentury pro zdravotnický výzkum MZ ČR
nestr.
Mikroprostředí hraje významnou roli v patogenezi lymfomu a jeho prognóze. Vzhledem k úzké interakci mezi imunitním systémem a střevní mikrobiotou není překvapením, že některé lymfomy (např. mucosa-associated lymphoid tissue- MALT lymfom žaludku ad.) jsou prokazatelně způsobeny přítomností specifických typů baktérií. Hlavním cílem navrhovaného projektu je získat nové poznatky o složení, vlivu a odlišnostech mikrobiomu u pacientů s nitroočním lymfomem, lymfomem CNS a s dalšími typy lymfomů, a popsat jejich vztah i vzhledem k jejich molekulárně genetické charakteristice. K dosažení těchto cílů bude využita analýza vlastní nádorové tkáně, nitroočních tekutin, likvoru, séra a mikrobiomu pacientů s lymfomem, a experimentální model nitroočního lymfomu u myši. Výsledky získané z pokusů na experimentálním modelu budou porovnány s klinickým výzkumem u pacientů. Získané poznatky přispějí k navržení nového diagnostického a léčebného protokolu lymfomu v humánní medicíně.; Microenvironment plays a significant role in the lymphoma pathogenesis and prognosis. Since there is such a close interaction between the immune system and the intestinal microbiota, it is not surprising that some lymphomas such as mucosa-associated lymphoid tissue, i.e. MALT gastric lymphoma have been shown to be caused by the presence of certain specific bacteria. The main aim of this project is to gain new knowledge of the composition, influence and differences in microbiome in patients with intraocular, CNS and other types of lymphoma, and to define their relationship and molecular biological characteristics. To achieve these goals, analysis of tumour tissue, intraocular fluids, CSF, serum and microbiome of patients with lymphoma, and experimental murine model of lymphoma, will be used. The experimental results will be compared to those from clinical research of patients with lymphoma. The acquired data will contribute to the definition of new diagnostic and therapeutic strategies in human lymphoma.
- Keywords
- microRNA, microRNA, mikrobiom, microbiome, DLBCL, DLBCL, lymfom, lymphoma, mikrobiota, microbiota, vitreoretinální lymfom, MALT, CNS lymfom, vitreoretinal lymphoma, MALT, CNS lymphoma,
- NML Publication type
- závěrečné zprávy o řešení grantu AZV MZ ČR
... Analysis of biochemical and clinical pregnancy loss between frozen-thawed embryo transfer of blastocysts ... ... Embryo Transfer Compared With One Cycle of Double Embryo Transfer: A Systema tic Review and Meta-Analysis ... ... Embryo placement in IVF and reproductive outcomes: a cohort analysis and review. ... ... Human implantation: The complex interplay between en dometrial receptivity, inflammation, and the microbiome ...
1. elektronické vydání 1 online zdroj (552 stran)
Kniha zahrnuje celý rozsah specializačního studia a nové poznatky z klinické embryologie a reprodukční fyziologie. V novém vydání je kniha v plném rozsahu aktualizována a doplněna.; Postgraduální učebnice specializačního oboru klinická embryologie přináší údaje o anatomii, vývoji a fyziologii mužského a ženského pohlavního ústrojí, o těhotenství a porodu.
- Keywords
- Lékařské obory,
- MeSH
- Embryology MeSH
- Embryonic and Fetal Development MeSH
- Reproductive Medicine MeSH
- NML Fields
- embryologie a teratologie
Úvod a cíl: Druhy rodu Lactobacillus jsou nezbytné pro udržení zdravého vaginálního mikrobiomu. Tyto bakterie, dominující vaginální flóře, zabraňují infekcím, podporují imunitní funkce a přispívají k celkovému reprodukčnímu zdraví. Nerovnováha těchto mikrobiálních komunit, známá jako dysbióza, je spojována s řadou zdravotních problémů. Tento přehled si klade za cíl shromáždit poznatky o roli vaginálního mikrobiomu při vzniku nemocí postihujících ženský reprodukční systém, stejně jako o jejím potenciálu při prevenci a léčbě těchto onemocnění. Přehled a metody: Analýza a shrnutí dostupných studií získaných z databází PubMed a Google Scholar. Současné poznatky: Nedávné výzkumy zdůrazňují významnou roli vaginálního mikrobiomu v reprodukčním zdraví žen, který je převážně složen z druhů rodu Lactobacillus. Tyto bakterie pomáhají chránit vaginální prostředí produkcí kyseliny mléčné, která snižuje pH a inhibuje růst škodlivých patogenů. Snížené hladiny Lactobacillů mohou vést k dysbióze, která je spojena s komplikacemi, jako je bakteriální vaginóza, předčasný porod a vyšší riziko pohlavně přenosných infekcí. Kromě toho je pokles Lactobacillů a zvýšená diverzita vaginálního mikrobiomu spojen s vyšším rizikem infekce HPV, cervikálních lézí a možná i rakoviny děložního čípku. Vaginální dysbióza může také přispívat k opakovanému selhání implantace při IVF léčbě. Závěry: Současné poznatky o vaginálním mikrobiomu a jeho vlivu na reprodukční zdraví se významně rozšířily. Výzkumy ukazují, že dysbióza je spojena s různými gynekologickými a porodnickými problémy, přičemž probiotika ukazují potenciál při řešení těchto problémů. Pokračující výzkum je nezbytný pro vývoj cílených terapií, které mohou účinněji zlepšovat zdraví žen.
Introduction and Objective: Lactobacillus species are essential for maintaining a healthy vaginal microbiome. These bacteria by dominating the vaginal flora, prevent infections, support immune function, and contribute to overall reproductive health. An imbalance in these microbial communities, known as dysbiosis, has been associated with a range of health issues. This review aims to gather insights into the role of vaginal microbiota in the development of diseases affecting the female reproductive system, as well as its potential in preventing and treating these conditions. Review and Methods: Analysis and summary of accessible studies obtained from Pubmed and Google Scholar. State of Knowledge: Recent research underscores the significant role of the vaginal microbiome, predominantly composed of Lactobacillus species, in female reproductive health. These bacteria help protect the vaginal environment by producing lactic acid, which lowers the pH and inhibits the growth of harmful pathogens. Reduced Lactobacillus levels can lead to dysbiosis, associated with complications like bacterial vaginosis, preterm birth, and higher risks of STIs. Additionally, a decrease in Lactobacillus and increased vaginal microbiota diversity are linked to a higher risk of HPV infection, cervical lesions, and possibly cervical cancer. Vaginal dysbiosis may also contribute to recurrent implantation failure in IVF treatments Conclusions: The current understanding of the vaginal microbiome and its impact on reproductive health has advanced significantly. Research shows that dysbiosis is connected to various gynecological and obstetric issues, with probiotics demonstrating potential in addressing these issues. Ongoing research is essential to develop targeted therapies that can more effectively enhance women’s health.
Sarcodon aspratus (Berk.) S. Ito is a Japanese local dish with unique aroma and is effective against allergic diseases. However, its cultivation was still difficult. Recently, coexisting bacteria were regarded as an important factor for mycelium growth and fruiting body formation. Therefore, we performed 16S rRNA amplicon sequencing in the fruiting body of S. aspratus and its adhered soil to understand the bacterial communities in the fruiting body of S. aspratus. The fruiting body group showed lower alpha diversities and a significant difference in the structure of bacterial communities compared to the soil group. In addition, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium had the highest relative abundance in the fruiting body group, and it was also a potential coexisting bacterium in the fruiting body of S. aspratus by linear discriminant analysis effect size (LEfSe) analysis. This highest relative abundance phenomenon in Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium clade was also found in the fruiting body of Cantharellus cibarius. These findings suggested that Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium plays a key role in the bacterial communities in the fruiting body of S. aspratus. Bacteria in the fruit bodies of S. aspratus and C. cibarius probably present a similar coexistence model.
- MeSH
- Bacteria * classification genetics isolation & purification MeSH
- Biodiversity MeSH
- DNA, Bacterial genetics MeSH
- Phylogeny * MeSH
- Microbiota MeSH
- Fruiting Bodies, Fungal * growth & development MeSH
- Soil Microbiology MeSH
- RNA, Ribosomal, 16S * genetics MeSH
- Sequence Analysis, DNA MeSH
- Publication type
- Journal Article MeSH
The detection of HPV infection and microbial colonization in cervical lesions is currently done through PCR-based viral or bacterial DNA amplification. Our objective was to develop a methodology to expand the metaproteomic landscape of cervical disease and determine if protein biomarkers from both human and microbes could be detected in distinct cervical samples. This would lead to the development of multi-species proteomics, which includes protein-based lateral flow diagnostics that can define patterns of microbes and/or human proteins relevant to disease status. In this study, we collected both non-frozen tissue biopsy and exfoliative non-fixed cytology samples to assess the consistency of detecting human proteomic signatures between the cytology and biopsy samples. Our results show that proteomics using biopsies or cytologies can detect both human and microbial organisms. Across patients, Lumican and Galectin-1 were most highly expressed human proteins in the tissue biopsy, whilst IL-36 and IL-1RA were most highly expressed human proteins in the cytology. We also used mass spectrometry to assess microbial proteomes known to reside based on prior 16S rRNA gene signatures. Lactobacillus spp. was the most highly expressed proteome in patient samples and specific abundant Lactobacillus proteins were identified. These methodological approaches can be used in future metaproteomic clinical studies to interrogate the vaginal human and microbiome structure and metabolic diversity in cytologies or biopsies from the same patients who have pre-invasive cervical intraepithelial neoplasia, invasive cervical cancer, as well as in healthy controls to assess how human and pathogenic proteins may correlate with disease presence and severity.
- MeSH
- Biomarkers * analysis metabolism MeSH
- Biopsy MeSH
- Cervix Uteri * microbiology pathology MeSH
- Adult MeSH
- Galectin 1 metabolism analysis genetics MeSH
- Lactobacillus MeSH
- Humans MeSH
- Lumican MeSH
- Microbiota MeSH
- Uterine Cervical Neoplasms pathology microbiology MeSH
- Proteomics * methods MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Recurrent acute otitis media (rAOM) poses a significant challenge in children aged 1 to 6 years, characterized by frequent and treatment-resistant ear infections. While existing studies predominantly focus on alterations in the nasopharyngeal microbiome associated with rAOM, our research explores the understudied association with the gut microbiome. In this cross-sectional observational prospective study, we enrolled 35 children aged 1 to 6 years during the 2021/2022 cold season. The test group comprised children with rAOM (n = 16), and the control group consisted of generally healthy children (n = 19). Samples (stool and nasopharyngeal swabs) were collected in late spring to ensure an antibiotic-free period. Detailed metadata was gathered through a questionnaire examining factors potentially influencing microbiota. Microbiota composition was assessed through amplicon sequencing of the V3-V4 region of the 16S rRNA gene. Our findings revealed limited alterations in gut microbiota composition among children with rAOM compared to healthy controls. Six bacterial taxa (Veillonella, Lachnospiraceae, Ruminococcaceae, Lachnospiraceae, Bacteroides and Blautia) were differentially represented with weak statistical significance. However, several bacterial taxa displayed correlations with multiple consecutive infections, with Turicibacter showing the most significant association. Additionally, day care centre attendance emerged as a potent gut microbiota modifier, independent of rAOM. Although our study identified limited differences in gut microbiota composition between children with rAOM and healthy controls, the observed correlations between the number of infections and specific bacterial taxa suggest a potential link between rAOM and the gut microbiota, warranting further investigation.
- MeSH
- Acute Disease MeSH
- Bacteria * classification genetics isolation & purification MeSH
- Child MeSH
- Feces microbiology MeSH
- Infant MeSH
- Humans MeSH
- Nasopharynx microbiology MeSH
- Otitis Media * microbiology MeSH
- Child, Preschool MeSH
- Prospective Studies MeSH
- Cross-Sectional Studies MeSH
- Recurrence MeSH
- RNA, Ribosomal, 16S * genetics MeSH
- Gastrointestinal Microbiome * MeSH
- Check Tag
- Child MeSH
- Infant MeSH
- Humans MeSH
- Male MeSH
- Child, Preschool MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Observational Study MeSH
- Keywords
- polatuzumab, studie POLARIX,
- MeSH
- Survival Analysis MeSH
- Lymphoma, Large B-Cell, Diffuse * drug therapy MeSH
- Hematologic Neoplasms complications MeSH
- Communicable Diseases * diagnosis complications therapy MeSH
- Clinical Studies as Topic MeSH
- Congresses as Topic MeSH
- Humans MeSH
- Antibodies, Monoclonal pharmacology therapeutic use MeSH
- Gastrointestinal Microbiome MeSH
- Check Tag
- Humans MeSH
- Publication type
- Overall MeSH
- News MeSH
... Analysis of biochemical and clinical pregnancy loss between frozen-thawed embryo transfer of blastocysts ... ... Embryo Transfer Compared With One Cycle of Double Embryo Transfer: A Systema tic Review and Meta-Analysis ... ... Embryo placement in IVF and reproductive outcomes: a cohort analysis and review. ... ... Human implantation: The complex interplay between en dometrial receptivity, inflammation, and the microbiome ...
2., přepracované a doplněné vydání xi, 539 stran : barevné ilustrace ; 24 cm
Publikace se zaměřuje na embryologii a reprodukční lékařství. Určeno odborné veřejnosti.; Postgraduální učebnice specializačního oboru klinická embryologie přináší údaje o anatomii, vývoji a fyziologii mužského a ženského pohlavního ústrojí, o těhotenství a porodu.
- MeSH
- Embryology MeSH
- Embryonic and Fetal Development MeSH
- Reproductive Medicine MeSH
- Publication type
- Monograph MeSH
- Conspectus
- Anatomie člověka a srovnávací anatomie
- NML Fields
- embryologie a teratologie
Coccidiosis is a protozoan intestinal disease that reduces the production of the sheep industry and causes large economic losses for sheep. Although chemically synthesised drugs are routinely employed to treat coccidiosis in sheep, the anticoccidial drug resistance and drug residues in edible meat have prompted an urgent search for alternatives. Herein, the anticoccidial properties of diclazuril, a conventional anticoccidial drug, and Allium sativum, Houttuynia cordata and Portulaca oleracea were assessed. Forty 45-day-old lambs naturally infected with Eimeria spp. were selected and randomly divided into five groups. The results showed that the sheep treated for coccidiosis had considerably decreased average daily gain (ADG) during both administration and withdrawal of the drug compared to the control group. Furthermore, at days 14, 21, 28 and 35, respectively, the three herbs and diclazuril had similar anticoccidial effects, with lower oocysts per gram (OPG) than the control group. On day 78, OPG in the three herbal groups was significantly lower than in the diclazuril group. In addition, the abundance and composition of the gut microbiota were changed in sheep treated with the three herbs and diclazuril compared to the untreated sheep. Moreover, some intestinal microorganisms have a correlation with OPG and ADG when using Spearman correlation analysis. In summary, our results suggest that all three herbs produce anticoccidial effects similar to diclazuril and modulate the balance of gut microbiota in growing lambs.
- MeSH
- Eimeria drug effects physiology MeSH
- Coccidiostats pharmacology administration & dosage MeSH
- Coccidiosis * veterinary drug therapy parasitology MeSH
- Drugs, Chinese Herbal pharmacology administration & dosage MeSH
- Sheep Diseases * parasitology drug therapy MeSH
- Oocysts drug effects MeSH
- Sheep MeSH
- Gastrointestinal Microbiome * drug effects MeSH
- Triazines pharmacology administration & dosage MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH