• Je něco špatně v tomto záznamu ?

Reproductomics: Exploring the Applications and Advancements of Computational Tools

P. Sengupta, S. Dutta, F. Liew, A. Samrot, S. Dasgupta, MA. Rajput, P. Slama, A. Kolesarova, S. Roychoudhury

. 2024 ; 73 (5) : 687-702. [pub] 20241112

Status minimální Jazyk angličtina Země Česko

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/bmc24022811

Over recent decades, advancements in omics technologies, such as proteomics, genomics, epigenomics, metabolomics, transcriptomics, and microbiomics, have significantly enhanced our understanding of the molecular mechanisms underlying various physiological and pathological processes. Nonetheless, the analysis and interpretation of vast omics data concerning reproductive diseases are complicated by the cyclic regulation of hormones and multiple other factors, which, in conjunction with a genetic makeup of an individual, lead to diverse biological responses. Reproductomics investigates the interplay between a hormonal regulation of an individual, environmental factors, genetic predisposition (DNA composition and epigenome), health effects, and resulting biological outcomes. It is a rapidly emerging field that utilizes computational tools to analyze and interpret reproductive data, with the aim of improving reproductive health outcomes. It is time to explore the applications of reproductomics in understanding the molecular mechanisms underlying infertility, identification of potential biomarkers for diagnosis and treatment, and in improving assisted reproductive technologies (ARTs). Reproductomics tools include machine learning algorithms for predicting fertility outcomes, gene editing technologies for correcting genetic abnormalities, and single cell sequencing techniques for analyzing gene expression patterns at the individual cell level. However, there are several challenges, limitations and ethical issues involved with the use of reproductomics, such as the applications of gene editing technologies and their potential impact on future generations are discussed. The review comprehensively covers the applications and advancements of reproductomics, highlighting its potential to improve reproductive health outcomes and deepen our understanding of reproductive molecular mechanisms.

000      
00000naa a2200000 a 4500
001      
bmc24022811
003      
CZ-PrNML
005      
20250312151301.0
007      
ta
008      
241205s2024 xr f 000 0|eng||
009      
AR
035    __
$a (PubMed)39530905
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xr
100    1_
$a Sengupta, P $u Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, UAE; Department of Life Science and Bioinformatics, Assam University, Silchar, India. shubhadeep1@gmail.com
245    10
$a Reproductomics: Exploring the Applications and Advancements of Computational Tools / $c P. Sengupta, S. Dutta, F. Liew, A. Samrot, S. Dasgupta, MA. Rajput, P. Slama, A. Kolesarova, S. Roychoudhury
520    9_
$a Over recent decades, advancements in omics technologies, such as proteomics, genomics, epigenomics, metabolomics, transcriptomics, and microbiomics, have significantly enhanced our understanding of the molecular mechanisms underlying various physiological and pathological processes. Nonetheless, the analysis and interpretation of vast omics data concerning reproductive diseases are complicated by the cyclic regulation of hormones and multiple other factors, which, in conjunction with a genetic makeup of an individual, lead to diverse biological responses. Reproductomics investigates the interplay between a hormonal regulation of an individual, environmental factors, genetic predisposition (DNA composition and epigenome), health effects, and resulting biological outcomes. It is a rapidly emerging field that utilizes computational tools to analyze and interpret reproductive data, with the aim of improving reproductive health outcomes. It is time to explore the applications of reproductomics in understanding the molecular mechanisms underlying infertility, identification of potential biomarkers for diagnosis and treatment, and in improving assisted reproductive technologies (ARTs). Reproductomics tools include machine learning algorithms for predicting fertility outcomes, gene editing technologies for correcting genetic abnormalities, and single cell sequencing techniques for analyzing gene expression patterns at the individual cell level. However, there are several challenges, limitations and ethical issues involved with the use of reproductomics, such as the applications of gene editing technologies and their potential impact on future generations are discussed. The review comprehensively covers the applications and advancements of reproductomics, highlighting its potential to improve reproductive health outcomes and deepen our understanding of reproductive molecular mechanisms.
650    _2
$a lidé $7 D006801
650    _2
$a zvířata $7 D000818
650    12
$a výpočetní biologie $7 D019295
650    _2
$a genomika $7 D023281
650    _2
$a strojové učení $7 D000069550
650    _2
$a asistovaná reprodukce $x trendy $7 D027724
650    _2
$a rozmnožování $x genetika $x fyziologie $7 D012098
650    _2
$a infertilita $x genetika $x terapie $x diagnóza $7 D007246
655    _2
$a časopisecké články $7 D016428
655    _2
$a přehledy $7 D016454
700    1_
$a Dutta, S
700    1_
$a Liew, F
700    1_
$a Samrot, A
700    1_
$a Dasgupta, S
700    1_
$a Rajput, M A
700    1_
$a Slama, P
700    1_
$a Kolesarova, A
700    1_
$a Roychoudhury, S
773    0_
$w MED00003824 $t Physiological research $x 1802-9973 $g Roč. 73, č. 5 (2024), s. 687-702
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39530905 $y Pubmed
910    __
$a ABA008 $b A 4120 $c 266 $y - $z 0
990    __
$a 20241205 $b ABA008
991    __
$a 20250312151308 $b ABA008
999    __
$a min $b bmc $g 2283540 $s 1234816
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 73 $c 5 $d 687-702 $e 20241112 $i 1802-9973 $m Physiological research $n Physiol Res $x MED00003824
LZP    __
$a Pubmed-20241205

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...